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Abstract

Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold
promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles
under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In
this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into
crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes
to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field
promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between
the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-
shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical
and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by
changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and
saturation magnetization along the applied field direction, which is presumably associated with the magnetic
anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of
the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for
fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties

for magnetic and energy storage applications.
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Background

Enormous progress has been made in chemical synthesis
of magnetic nanoparticles, enabling us to precisely con-
trol their morphology and composition [1-4]. To find
their applications in data storage and energy storage, it
is of fundamental and practical interest to organize these
magnetic nanoparticles into structures with controlled
shape, spacing, and alignment [4-7]. Self-assembly strat-
egy by applying a magnetic field offers a simple and effi-
cient route to assemble magnetic nanoparticles as the
building blocks into well-ordered structures, providing

* Correspondence: ppong@eee.hku.hk

'Department of Electrical and Electronic Engineering, The University of Hong
Kong, Hong Kong, Hong Kong

Full list of author information is available at the end of the article

@ Springer Open

distinctive magnetic properties related to coercivity and
anisotropy energy [4, 7-9].

Generally, the magnetic-field-guided assembly of mag-
netic nanoparticles can be categorized into two types:
dynamic self-assembly, being a nanoparticle organization
process which occurs in liquid interfaces or solutions,
with continuous energy input to grant the interactions
responsible for the growing and sustaining of ordered
structures; and static self-assembly, in which the nano-
particles assemble on solid surfaces or substrates, lead-
ing to stable structures or patterns without dissipating
energy after the completion of assembly [10, 11]. A rep-
resentative example of the liquid-phase assembly of
magnetic nanoparticles is colloidal assembly of photonic
crystals, and a number of research works have reported
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the dynamic assembly of magnetic colloidal crystals
under applied field. Wang’s group demonstrated a mag-
netically actuated liquid crystal by controlling the assem-
bly orientation and hence the transmittance intensity of
magnetic nanorods using a weak magnetic field [12].
They further developed the magnetically responsive pho-
tonic structures built from magnetic nanoellipsoids,
whose diffraction properties can be tuned reversibly
[13]. Xia’s group introduced the colloidal clusters of
magnetite nanocrystals into polymer matrix via photo-
polymerization, and photonic bandgap of the resulting
photonic crystals can be modulated by tuning the
cluster size and field strength during self-assembly
[14]. Timonen and his coworkers presented a switchable
dynamic self-assembly technique by driving the ferrofluid
droplets of iron oxide nanoparticles on super-hydrophobic
surface under a time-vary magnetic field [15]. For the
dynamic assembly of photonic crystals, manipulating
the orientation or controlling the spacing of assem-
bled structures is usually implemented by changing
the applied magnetic field for the purpose of modu-
lating optical properties [16, 17]. However, if magnetic
storage application is envisioned, the assembled struc-
tures should be physically robust and mechanically
stable without the presence of an external magnetic
field. In this regard, magnetic-field-guided static as-
sembly strategy is much preferred. Recent works on
this topic mostly involve fabricating magnetic nano-
particle superstructures with alignment and shape an-
isotropy through evaporative or convective deposition
process, during which geometric constraints or exter-
nal stimuli could be applied to pattern or direct the
assembled superstructures [18-21]. Park et al
achieved the production of crystalline superstructures
in rod and wire shapes composed of 10-nm cobalt
nanoparticles, which show enhanced coercivity associ-
ated with easy-axis anisotropy [22]. Li et al. demon-
strated a solvent-evaporation assembly process to
obtain micro-rod superstructures made of 21-nm
magnetite nanoparticles, exhibiting specific crystallo-
graphic orientations [23]. Singh et al. developed an
interfacial deposition method to assemble 13-nm
magnetite nanocubes into aligned superstructures with
stranded helical shapes [24]. Although periodic chain
or rod structures in micron size with a high aspect
ratio could be prepared in these reports and also in
the recently developed strategies for static assembly
of magnetic nanoparticles under a uniform magnetic
field [22-26], fabrication of sub-10-um nanoparticle
superstructures with homogeneous morphology and
controlled spacing still remains challenging. Besides, it
will be of great value to investigate how the shape of
the constituent nanoparticles and the gradient of the
magnetic field influence the assembly process and
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measure the anisotropy-associated magnetic properties
of the resulting superstructures. From the application
viewpoint, the assembled superstructures with both
shape anisotropy and magnetic anisotropy could be
exploited as unique magnetic systems for studying
nanomagnetism, and they could also be used for fab-
ricating functional materials and solid-state magnetic
devices with controlled magnetization direction and
desired anisotropy energy.

In this work, sub-20-nm iron oxide nanoparticles
(IONPs) with spherical and polyhedral shapes were syn-
thesized by thermal pyrolysis in organic phase. An evap-
orative deposition method was applied to assemble the
IONPs into superstructures under the applied magnetic
field. The direction and rate of the assembly process and
the magnitude and gradient of the magnetic field were
controlled. Morphologies of the IONPs and their super-
structures were characterized, and the assembly mech-
anism was analyzed. Effects of the experimental
conditions and nanoparticle shape on the morphology
and alignment of the superstructures were investigated.
Magnetic properties of the superstructures were mea-
sured, and the enhancement of their coercivity and satu-
rated magnetization along the applied field direction was
investigated by calculating the magnetic anisotropy en-
ergy and dipole interaction energy of the IONPs.

Methods

Iron (III) oxyhydroxide (99 %), iron (III) acetylacetonate
(99.9 %), 1,2-tetradecanediol (90 %), oleic acid (90 %),
lauric acid (98 %), and decanoic acid (98 %) were pur-
chase from Aldrich. Octadecene (90 %) and benzyl ether
(98 %) were obtained from Acros. All chemicals were
used as received.

Spherical IONPs capped by lauric acid were synthe-
sized using iron (III) oxyhydroxide (3 mmol), lauric acid
(9 mmol), oleic acid (1 mmol), and octadecene (15 ml).
The reaction mixture was vigorously stirred under N,
and it was first heated to 200 °C for 30 min and then
heated to reflux for 1 h. By removing the heating source,
the resulting black mixture was cooled to 50 °C and kept
in a water bath. Excess acetone was added to the mix-
ture, and a black-brown material was precipitated by
centrifugation and then dissolved in hexane. This purifi-
cation step was repeated two more times, and the ob-
tained nanoparticles were dispersed in 6 ml of
chloroform and toluene (v:v = 9:1).

Polyhedral IONPs capped by decanoic acid were synthe-
sized using iron (III) acetylacetonate (3 mmol), decanoic
acid (18 mmol), benzyl ether (60 ml), and 1,2-tetradecane-
diol (15 mmol). The heating process and the purification
process were the same as those for spherical IONPs.

Superstructures of the IONPs were prepared by depos-
iting the diluted nanoparticle solution (volume 20 l,
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concentration 160 mM based on Fe) onto a flat Si sub-
strate (8 mm x 8 mm, thermally oxidized) subjected to
an in-plane magnetic field generated by NdFeB magnets
(Fig. 1a). The evaporation rate of the solvent was con-
trolled by covering the sample with a petri dish, while
the translation direction of the air-solution-substrate
contact line was controlled by tilting the substrate at 1.5°
with respect to the ground. The magnetic field direction
was adjusted to be parallel to the translation direction of
the three-phase contact line. The magnitude and gradi-
ent of the magnetic field (typical values at the initial as-
sembly stage 200 Oe and 60 Oe/mm, measured at the
sample center) were controlled by changing the distance
and location of the magnets. After the solvent evapo-
rated completely, the sample was transferred to a hot
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plate for annealing. Here, a hot plate was used instead of
a convection oven due to that it heats the sample from
the bottom by thermal conduction, which can prevent
skin effect and shorten the heating time for thin film an-
nealing. As shown in Fig. 1b, two glass slides were
placed parallelly to fix the sample, and a curved
aluminum foil and a glass petri dish were covered on
top but without contacting the sample to prevent air
flow and reduce heat dissipation. The sample was then
heated at 200 °C for 15 min in air to remove the organic
substances. After the heat treatment, a solid coating was
obtained on the substrate surface.

The IONPs were characterized by transmission elec-
tron microscope (TEM). The nanoparticle superstruc-
tures were characterized using optical microscope and
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Fig. 1 Schematic illustration of the experimental setups. a Magnetic-field-assisted assembly of the IONPs. b Heat treatment of the
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scanning electron microscope (SEM), and their magnetic
properties were measured using vibrating sample
magnetometer (VSM) and magnetic force microscope
(MFM).

Results and Discussion

Morphology and composition of the synthesized nano-
particles were investigated by bright-field TEM, high-
resolution TEM (HRTEM), and selected-area electron
diffraction (SAED). Figure 2a shows that the lauric acid-
capped nanoparticles are in spherical shape with an
average size of 19 nm and their measured lattice spacing
based on the diffraction rings in Fig. 2c matches well
with the d-spacing of &kl planes in y-Fe,O3 (JCPDF #04-
0755). Figure 2b shows that the decanoic acid-capped
nanoparticles are in polyhedral shape with an average
size of 16 nm and their diffraction rings in Fig. 2d can
be well indexed to the lattice spacing of Fe;O, (JCPDF
#19-0629). The TEM and HRTEM images demonstrate
that the spherical nanoparticles are polycrystalline
with a narrow size distribution of 8 %, while the
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polyhedral nanoparticles are single crystalline with a
size distribution of 15 %. The ring features in both
SAED patterns indicate the random orientations of
the nanoparticles.

Synthesis protocols of the IONPs with different sizes
and shapes are inspired by thermal pyrolysis procedures
developed by William [27] and Sun [28] It was found
that the chemical property of the precursor material and
the coordinating ability of the organic solvent have great
influence on the morphology of the IONPs. As illus-
trated in Fig. 3, the use of inorganic precursor and non-
coordinating solvent led to isotropic growth of the
IONPs with spherical shape, while using organometallic
precursor and weakly coordinating solvent resulted in
anisotropic growth of the IONPs with polyhedral shape.
Surfactants with carboxylic groups were chosen as the
capping agents for the IONPs due to their strong bind-
ing ability with the surface atoms of the IONPs, which
contributes to the formation of nearly monodisperse
nanoparticles with high vyield and high stability.
Decanoic acid and lauric acid were used instead of oleic

1)

Fig. 2 Characterization of the synthesized nanoparticles. a TEM image of spherical IONPs. b TEM image of polyhedral IONPs. Inserts show the
HRTEM images. ¢ SAED pattern of spherical IONPs. d SAED pattern of polyhedral IONPs
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acid since they have lower boiling point and shorter
chain length, which could facilitate the removal of or-
ganic surfactant during heat treatment and also decrease
the spacing between the neighboring IONPs for enhan-
cing magnetic coupling. A temporal separation of the
nucleation stage and the growth stage by kinetic and
thermodynamic parameters was achieved using a two-
step heating strategy, which helps to narrow the size dis-
tribution of the IONPs.

Morphology of the assembled structures formed by
spherical IONPs is investigated by SEM. As shown in
Fig. 4a, without the applied magnetic field, a homoge-
neous film composed of well-ordered spherical IONPs
could be obtained. The nanoparticle film is compact and
continuous without void or defect at micron scale, illus-
trating that the assembly technique by controlling the
evaporation rate and assembly direction could lead to
self-organized structures formed by monodisperse nano-
particles. As shown in Fig. 4b, under the in-plane ap-
plied magnetic field, rod-shaped superstructures with a
length of 2.8 um, width of 0.5 pm, and aspect ratio of ~6
were obtained, and they are homogeneously distributed
with controlled spacing of 0.7 pm. By measuring the
intersecting angle (f5) between the applied magnetic field
and the longitudinal axis of each rod-shaped superstruc-
ture, it is found that the superstructures show good
alignment with the magnetic field (8 =4.0°+2.7°). The
orientation of the superstructure may not accurately re-
flect the direction of the magnetic moments of its con-
stituent IONPs, but it is obvious that the assembly
directions of the superstructures correlate with the mag-
netic field direction. Besides, some dot-shaped super-
structures were formed probably due to the incomplete
growth of the assembled structures. Park et al. also re-
ported the shape evolution of supercrystal dots during

the magnetic assembly of supercrystal rods [22]. En-
larged SEM image in Fig. 4c reveals that the rod-shaped
superstructures are composed of closely packed spher-
ical IONPs without coalescence or crack and the dark
regions between the adjacent superstructures are capped
by a monolayer of IONPs. The ordered stacking struc-
tures in the close-up SEM image (Fig. 4d) and the six
symmetric bright spots in the fast Fourier transform
(FFT) pattern of the superstructure (inset of Fig. 4d)
demonstrate that highly ordered hexagonal packing
patterns were formed by uniform nanoparticles in the
rod-shaped superstructures as an energetically favor-
able configuration [29].

Effects of the experimental conditions on the morph-
ology of the rod-shaped superstructures were investigated.
As shown in Fig. 5a, by increasing the tilt angle of the sub-
strate to 3°, the length of the rod-shaped superstructures
dramatically reduced to 1.8 pm while the width and spa-
cing exhibited slight changes. As shown in Fig. 5b, by de-
creasing the concentration of the nanoparticle solution to
40 mM, the spacing of the rod-shaped superstructures sig-
nificantly increased to ~2 pm, and the size distribution of
the rod-shaped superstructures also increased. As pre-
sented in Fig. 5¢, by reducing the magnitude and gradient
of the applied magnetic field to 120 Oe and 40 Oe/cm, re-
spectively, a slight shrink of the superstructure size and an
increase of the superstructure spacing were observed.
Overall, the tilt angle of the substrate mainly affects the
length of the superstructure, while the concentration of
the nanoparticle solution has great influence on the spa-
cing of the superstructures. The applied field also plays an
important role in determining the size and spacing of the
superstructures. Besides, all the superstructures obtained
under different experimental conditions show good align-
ment with the applied magnetic field. It is noteworthy that
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rod-shaped superstructures, with an inset of microscopic image. ¢ Enlarged SEM image revealing the monolayer and superstructure. d Close-up
SEM image and FFT pattern (inset) of the delineated region revealing the hexagonal packing of the nanoparticles

all the experimental conditions should be adjusted and
tuned within proper ranges; otherwise, anisotropic super-
structures would not form during the magnetic-field-
assisted assembly process. This is because nanoparticle
self-assembly has nonlinear nature and it is highly sensi-
tive to the experimental conditions, which will affect the
growth and arrangement of the assembled structures [30].
Other experimental conditions such as the boiling point

and evaporation rate of the dissolving solvent and also the
temperature of the substrate will be investigated in our fu-
ture research.

Effects of the nanoparticle shape on the morphology
and alignment of the superstructures were further inves-
tigated. Here, polyhedral IONPs were used instead of
spherical IONPs for preparing the sample, and inher-
ently, they could assemble into a closely packed and

Fig. 5 SEM images of the rod-shaped superstructures prepared under different conditions. a SEM image of the superstructures prepared by
increasing the tilt angle of the substrate. b SEM image of the superstructures prepared by decreasing the concentration of the nanoparticle
solution. ¢ SEM image of the superstructures prepared by reducing the magnitude and gradient of the applied magnetic field
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defect-free film at micron scale as shown in Fig. 6a.
Under the in-plane applied magnetic field, spindle-
shaped superstructures with a length of 0.8 pum, width of
0.15 pm, and aspect ratio of ~5 were formed as pre-
sented in Fig. 6b. The spindle-shaped superstructures
have uniform size, but their alignment with the applied
field (intersecting angle =12.9°+9.7°) are not as good
as the rod-shaped superstructures, and they do not have
uniform spacing. The lack of spatial order in these su-
perstructures could be due to the fact that the spindle-
shaped superstructures tend to aggregate together, and
the shape anisotropy of these superstructures and their
constituent polyhedral IONPs should also be taken into
consideration. These spindle-shaped superstructures ob-
served here are similar to the loosely aligned micro-rod
superstructures reported by Li et al. [23]. The structural
difference between these spindle-shaped superstructures
and the previously mentioned rod-shaped superstruc-
tures could be mainly attributed to the different shapes
of their constituent IONPs, which influence the packing
and ordering of nanoparticles during self-assembly.
Moreover, nanoparticle compositions (related to mag-
netic properties) and nanoparticle surfactants (affecting
diffusion and interaction of nanoparticles in organic
solvent) also affect the assembly process and hence the
superstructure shape, although their differences are triv-
ial between the two superstructures.

The magnetic-field-assisted assembly of IONPs is a
particle deposition process, which depends on the bal-
ance between evaporation-driven assembly and field-
driven assembly [31, 32]. During the assembly process,
convection of the organic solvent due to evaporation
drives the IONPs to transport and deposit at the three-
phase contact line. The evaporation rate mainly deter-
mines the assembly rate, which is quite fast due to that
chloroform used for dispersing the IONPs is a highly
volatile solvent. The evaporation direction relates to the
translation direction of the contact line [33], which
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determines the assembly direction, and the applied field
direction was experimentally adjusted to be parallel to
this assembly direction. At the first stage of the assembly
process, a gradient magnetic field (typical values magni-
tude 200 Oe, gradient 60 Oe/cm) was applied in plane,
and the dominant forces exerted on IONPs are capillary
force induced by solvent evaporation and magnetic force
caused by external field and dipolar interactions, while
effects of the thermal fluctuations and the local interac-
tions (such as van der Waals attraction and steric repul-
sion) are negligible [15, 21]. Under the magnetic field,
each IONP behaves as a magnetic dipole with magnetic
moment m = uoMV, where p, is the permeability of free
space and M and V are the domain magnetization and
volume of the IOND, respectively [32]. Magnetic dipole-
dipole interaction between two magnetically aligned
IONPs is given by F;, = 3m*(1 - 3 cos’a)/d*, where a is
the angle between their magnetic moment and the line
connecting their centers and d is the inter-particle dis-
tance [25, 34]. This interaction is attractive along the
field direction but repulsive perpendicular to the field
direction [34], which results in the anisotropic growth of
spaced superstructures with preferred alignment along the
field direction. The gradient of the magnetic field also in-
duces a force along the field direction Fag= V(m - B),
with B being the magnetic field, and this force together
with the capillary force expedites the packing of the
IONPs and causes the formation of micron-sized struc-
tures. After the evaporation of chloroform (~80 s), assem-
bled structures with uniform size started to develop. At
the second stage of the assembly process, a strong and
uniform magnetic field with a magnitude of 2 kOe was ap-
plied in plane. The IONPs closely packed into condensed
superstructures, and their magnetic moments may also
get aligned with this strong field. After complete dewet-
ting of the nanoparticle solution (~120 s), the assembled
structures became solid coatings on Si. The two stages of
the assembly process both affect the morphology and

Fig. 6 SEM images of the assembled structures prepared with polyhedral IONPs. a SEM image of the homogeneous film. b SEM image of the
spindle-shaped superstructures, with an inset of close-up SEM image showing the crystalline texture
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property of the superstructures. Specifically, applying the
first stage alone led to micron-sized superstructures with-
out significantly enhanced magnetism, while solely imple-
menting the second stage produced parallel strip patterns
with a long length (up to 100 pm) and large spacing
(~2 pm).

To probe the magnetic properties of the superstruc-
tures, hysteresis loops for the rod-shaped superstruc-
tures (Fig. 7a) and spindle-shaped superstructures
(Fig. 7c) were measured at 300 K along two in-plane di-
rections, namely, the direction along the applied field
(H/)) and the direction perpendicular to the applied field
(H.). As a comparison, in-plane hysteresis loops for the
spherical IONPs (Fig. 7b) and polyhedral IONPs (Fig. 7d)
assembled as uniform films in the absence of a magnetic
field were measured, respectively. For the rod-shaped
superstructures, coercivity H, of 22 Oe and satur-
ation magnetization M, of 56 emu/g were observed
along H,,, which are larger than the results obtained
along H, (H.=8 Oe, My=51 emu/g). For the spindle-
shaped superstructures, increased H. of 18 Oe and
increased M, of 62 emu/g were also obtained along
H;, compared to the results measured along H, (H.=
6 Oe, My=52 emu/g). The results indicate that the
magnetic easy axes of both superstructures are along
the applied field direction and the superstructures
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show larger coercivity and higher saturation magnetization
at their easy axes compared to the uniform films assem-
bled from the same IONPs.

To gain insights into the magnetic interactions of the
superstructures, MFM imaging was performed for the
sample of the rod-shaped superstructures in different
magnetization states. The measurements were per-
formed in tapping mode using a magnetized tip (Mag-
netic Multi75-G, BudgetSensors) through a two-pass
process. In the first pass, AFM image of surface topog-
raphy (Fig. 8a) was recorded, and further analysis of the
topographical data indicates a thickness of 0.68 um for
the rod-shaped superstructures, close to the measured
width of 0.5 um from the corresponding SEM image
(inset of Fig. 8a). In the second pass, the tip is lifted
above the sample surface and scanned at a constant
height of 400 nm following the acquired AFM topog-
raphy. Magnetic contrast of the superstructures was ob-
served on the demagnetized sample by comparing the
MEFM image (Fig. 8b) with the AFM topography (Fig. 8a)
at the same region. This magnetic contrast is probably
caused by the MFM tip magnetizing the originally
demagnetized sample. It is well known that a MFM tip,
being a source of stray field itself, could cause
magnetization to the sample it is scanning. Particularly,
the building material of our sample is magnetically soft
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Fig. 7 M-H curves of the assembled structures at 300 K. a Rod-shaped superstructures of spherical IONPs assembled under a magnetic field. b
Uniform films of spherical IONPs assembled without a magnetic field. ¢ Spindle-shaped superstructures of polyhedral IONPs assembled under a
magnetic field. d Uniform films of polyhedral IONPs assembled without a magnetic field. Insets show the enlarged curves
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iron oxide nanoparticles with a small coercivity (<25 Oe)
and small size (<20 nm), which show nearly superpara-
magnetic behavior at room temperature; thus, the nano-
particles could be easily magnetized by the stray field of
the MEM tip, and the nanoparticle dipole coupling
within each superstructure led to the phase difference of
the MEM cantilever oscillation [35]. The sample-tip
interaction was also reported by Confalonieri et al. in
their magnetic system containing a monolayer of 20-nm
Fe,O3 nanoparticles [36]. MFM images of the sample in
a remanent state after saturation along H,, (easy axis)
and after saturation along H, (hard axis) are shown in
Fig. 8¢, d, respectively. In all the three MFM images
(Fig. 8b—d), the superstructures exhibit the same mag-
netic contrast, indicating that the neighboring super-
structures are magnetically coupled together [35].
However, it is not easy to identify the difference between

Fig. 8¢ and d because their magnetic contrasts are simi-
lar and also, these two images cannot be directly com-
pared since they are not from exactly the same region.
Therefore, the VSM results are more useful and convin-
cing to reflect the magnetism of the superstructures at
the easy axis and at the hard axis.

To quantitatively interpret the origin of the enhanced
magnetism observed in the VSM results, magnetic anisot-
ropy energy and dipole interaction energy are calculated
for the two types of IONPs, respectively. For single-
domain non-interacting magnetic nanoparticles, the ef-
fective magnetic anisotropy energy constant K.g can be
calculated as K= 25kgTp/V,, where kg is Boltzmann
constant, Tp is the blocking temperature of nanoparticles,
V} is the volume of a nanoparticle (sz1.33ndz /8, d, is
nanoparticle diameter), and K. is the sum of several
terms including magnetocrystalline anisotropy, shape
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anisotropy, surface anisotropy, and stress anisotropy [37].
The calculated K g (2.16 x 10° erg/cm® for 19-nm spher-
ical maghemite IOND; 3.70 x 10° erg/cm® for 16-nm poly-
hedral magnetite IONP) using 7y of the nanocrystals in
powder form with similar size and shape as our IONPs
(225 K; 230 K) [37-39] is much larger than the reported
values for bulk maghemite (0.46 x 10> erg/cm®) and mag-
netite (1.35 x 10° erg/cm?). This enhancement of magnetic
anisotropy is associated with dipole interactions between
IONPs. According to the Stoner-Wohlfarth theory, mag-
netocrystalline anisotropy energy E, of a single-domain
magnetic nanoparticle is approximated by E, = K;V,, sin’,
where Kj is the magnetocrystalline anisotropy constant
(K1 = Keg/12) and 0 is the angle between the easy axis of
the nanoparticle and the direction of the field-induced
magnetization [38]. The estimated E, is 1.62 x 1071° erg
for a spherical IONP using K; = 1.8 x 10* emu/cm® and
sin 6 =0.05, while E, is 7.64 x 107" erg for a polyhedral
IONP using K =3.1x10* emu/cm® and sin 6=0.34.
Similarly, shape anisotropy energy Eg, can be approximated
as Egy = K Vp sin’6, where Ky, is 0.5M} ) X (Np=N,),
with N, and N}, being the demagnetization factors of the
nanoparticle in the short-axis and long-axis directions and
My(casy) being the saturation magnetization at the easy axis
[40, 41]. The estimated Eg, is 1.71 x 107" erg for a spherical
IONP  using N, -N,=005  Measy) =56 emu/g=
2744 emu/cm®, and Ky, = 1.9 x 10* emu/cm®, while Ey, is
3.72 x 107" erg for a polyhedral IONP using Nj, - N, = 0.3,
My(easy) =62 emu/g=316.2 emu/cm®, and Ky, =15x
10* emu/cm?®. Besides, surface anisotropy also has signifi-
cant contribution to the effective magnetic anisotropy due
to surface spin disorder, while stress anisotropy is much less
pronounced considering that the lattice constants of the
IONPs are nearly equal to their bulk counterparts [40, 41].
For the assembled superstructure composed of magnetic-
ally aligned nanoparticles under the applied magnetic field,
the dipole interaction energy of one nanoparticle in the
superstructure can be approximated as Egj, = 2ﬂ0,bt123 JAmr?
using the macro-spin approximation, where y,, is the dipole
moment of the nanoparticle and r is the mean center-
to-center distance between the neighboring nanoparti-
cles [42]. By measuring the average inter-particle
distance from the SEM images (22 nm for spherical
IONP; 18 nm for polyhedral IONP) and assuming , =
Mj(easy) V) in @ remanent state along the easy axis, the esti-
mated Eg, is 1.45 x 10™* erg for a spherical IONP, and
Egip is 1.25 x 10™* erg for a polyhedral IONP. Note that
accurate calculation of total dipole interactions in a super-
structure is not trivial, due to their long-range effects,
highly anisotropic nature, and their dependence on the ar-
rangement of the constituent nanoparticles and the direc-
tion of nanoparticle dipole moments [43]. Here, the
estimated dipole interaction energy is comparable to the
estimated magnetic anisotropy energy for both types of
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IONPs, indicating that it is also of great importance in de-
termining the magnetic properties of the interacting nano-
particles. Furthermore, by modeling the superstructures as
aligned arrays of nanowires, the corresponding coercivity
along the easy axis can be evaluated as H(easy) = 412 q*
M (casy) /D% + P.K %dﬁ /Mi(casy)Aex, Where the first term is
related to the shape anisotropy energy of nanowires, the
second term is related to the magnetocrystalline anisot-
ropy energy of nanoparticles [35, 42, 44], L. is the ex-
change length, g is the smallest solution of the Bessel
function relating to the aspect ratio (1.84), D,, is the aver-
age diameter of nanowires, P, is a coefficient (0.5), and
A is the exchange stiffness constant (1 x 107 erg/cm).
The estimated H(casy) is 6.6 Oe for the rod-shaped super-
structures using L.,=5 nm and D, =500 nm, while
He(easy) is 11 Oe for the spindle-shaped superstructures
using L, =24 nm and D,, =208 nm. Both of the calcu-
lated H(casy) values are smaller than the experimentally
obtained H, values (22 Oe; 18 Oe), due to that the estima-
tion of coercivity using the nanowire model does not
consider the magnetic interactions between different su-
perstructures and the dipole interactions between different
nanoparticles [35]. Above all, the enhanced magnetism in
the superstructures is mainly attributed to the magnetic
anisotropy of the constituent nanoparticles, the strong di-
pole interactions between the neighboring nanoparticles
within each superstructure, and the increased shape an-
isotropy of the superstructures. Additionally, the building
blocks of the superstructures are magnetically soft IONPs
with sub-20-nm sizes, which show nearly superparamag-
netic behavior at room temperature. If other magnetic
nanoparticles with strong ferromagnetism (for example,
CoFe,O,) [45] are used for the magnetically directed as-
sembly, much more significant enhancement of coercivity
and saturation magnetization in the resulting superstruc-
tures could be anticipated. Future works will be carried
out to fabricate anisotropic superstructures using mag-
netically hard nanoparticles (sub-20-nm cobalt ferrite
nanoparticles) and also develop uniform superstructures
with controllable size (from 2 um down to 200 nm) and
tunable magnetic properties (including strength of mag-
netic coercivity and orientation of magnetic easy axis)
for the application of high-density magnetic storage de-
vices and magnetic sensors.

Conclusions

In summary, sub-20-nm IONPs with spherical shape
and polyhedral shape were chemically synthesized, and
self-assembly of these IONPs into anisotropic super-
structures under the in-plane magnetic field was demon-
strated. The solvent-evaporation assembly process
expedited by an external magnetic field produced nano-
particle superstructures at sub-10-um sizes with homo-
geneous morphology and controlled spacing. The
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experimental conditions exhibit influence on the size
and spacing of the superstructures, while the shape of
the building nanoparticles affects the morphology and
alignment of the superstructures. Well-aligned rod-
shaped superstructures were obtained using spherical
IONPs, and loosely aligned spindle-shaped superstruc-
tures were prepared with polyhedral IONPs. The two
types of superstructures both show magnetic easy axes
along the applied field direction, and they also show en-
hancement of coercivity and saturation magnetization
along their easy axes. The enhanced magnetism in the
superstructures is associated with magnetic anisotropy
and dipole interactions of the nanoparticles and shape
anisotropy of the superstructures. This low-cost tech-
nique of magnetically directed nanoparticle assembly
could be used for fabricating nanomaterial-based struc-
tures with controlled geometric dimensions and en-
hanced magnetic properties for magnetic and energy
storage applications. The anisotropic superstructures
prepared here are promising for studying fundamental
physics related to magnetic interactions and collective
behaviors of magnetic nanomaterials.
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