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Abstract

It was found that if introduced into a nutrient medium of 0.05–1 g/L nano-SiO2, the oxidant activity (OA) of the
culture medium (CM) of bacilli increased by 43.2–60.1 % and the antioxidant activity (AA) decreased by 4.5–11.8 %.
SiO2 nanoparticles had different effects on antiradical activity (ARA) of the CM of Bacillus subtilis IMV B-7023. In particular,
nano-SiO2 had no significant effect on the ability of the CM of bacilli to inactivate the 2.2-diphenyl-1-picrylhydrazyl
(DPPH·) free radical. However, for the content of the nanomaterial of 0.01–1 g/L decreased hydroxyl radical scavenging
in the CM of B. subtilis IMV B-7023 on 7.2–17.6 % compared with a control. Low doses of silica nanoparticles stimulated
the reducing power of the CM of bacteria and then highly suppressed it.
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Background
High antioxidant and antiradical properties of Bacillus sub-
tilis IMV B-7023 [1] allow the recommend of bacterial
preparations that are based on this strain for crops which
are exposed to aggressive stress agents. Note, however, that
the introduction of these organisms into agroecosystem will
have an influence on disperse materials of various nature
[2], in particular nanomaterials, the dimensions of which
are at least in one geometric dimension of less than
100 nm [3]. In nanocondition, substances acquire a number
of new physical and chemical characteristics that differ
significantly from the original in the same substances of
micron size or larger size [4].
The unique properties of nano-sized silica, such as high

specific surface area, mechanical and thermal resistance,
the ability to pass UV radiation, and the lack of photodegra-
dation, found their application in various fields [5]. How-
ever, some authors [5–7] indicate that nano-SiO2 inherent
the oxidative effect in living organisms. Accordingly, the
purpose of this work was to study the influence of silica
nanoparticles on antioxidant and antiradical properties of
B. subtilis IMV В-7023.

Methods
Microorganisms, Nutrient Media, and Culture Conditions
The phosphate-mobilizing bacteria B. subtilis IMV B-7023
[8] were isolated at the Department of Microbiological
Processes on Solid Surfaces, Zabolotny Institute of Micro-
biology and Virology, National Academy of Sciences of
Ukraine. The strain B. subtilis IMV B-7023 was grown in
750 mL Erlenmeyer flasks with 100 mL of the Spizizen
glucose-mineral liquid medium (g/L): (NH4)2SO4 2.0,
K2HPO4·3H2O 14.0, KH2PO4 6.0, trisodium citrate dihy-
drate 1.0, MgSO4·7H2O 0.2, and glucose 10.0 (рH 7.0–7.2)
[9]. The initial bacterial concentration after inoculation
was 106 cells/mL. Incubation was performed under batch
conditions at 28 °C with shaking at 240 rpm for 22 h.
Then, studies were carried out in the “acute experiment”
that allowed to evaluate the response of the antioxidant
system of B. subtilis IMV B-7023 to make the nutrient
medium of the nanomaterial. The suspension of bacilli
was received in a number of flasks containing more than
108 cells/mL, averaged and added on 100 mL flasks with
sterile weighed quantities of nano-SiO2 (0.01–1.00 g/L),
and cultivated during 2 h in the conditions described
above. In the control, the bacteria were cultivated in a
nutrient medium without the nanomaterial.
The culture liquid of B. subtilis IMV B-7023 after com-

pletion of their growth was freed from the cells of bacteria
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and nano-SiO2 by centrifugation on the centrifuge OPn-8
(joint stock company “TNK DASTAN,” Kirgizstan) during
25 min at 5000g. In the obtained culture medium (CM) of
B. subtilis IMV B-7023, the indices of antioxidant poten-
tial were determined.

Nanomaterial
Nano-sized silica was kindly provided by Chuiko Institute
of Surface Chemistry, National Academy of Sciences of
Ukraine. The size of the silica nanoparticles was 5–20 nm
[10].

Assay of Antioxidant Activity
The antioxidant activity (AA) level in the CM of B. subtilis
IMV B-7023 was estimated by measuring the thiobarbituric
acid reactive substances (TBARS) following Tween 80
oxidation. This level was determined spectrophotometric-
ally at 532 nm [11, 12]. The assay of TBARS measures
malondialdehyde (MDA) present in the sample as well as
MDA generated from lipid hydroperoxides by the hydro-
lytic conditions of the reaction. The CM of B. subtilis IMV
B-7023 inhibits the Fe2+/ascorbate-induced oxidation of
Tween 80, resulting in a decrease in the TBARS level.
Briefly, 1.0 mL of the CM of bacilli was added to 2.0 mL of
1 % Tween 80 reagent, 0.2 mL of 1 Mm FeSO4, and 0.2 mL
of 10 Mm ascorbic acid. In the control assay, 1 mL of nutri-
ent media was used instead of the sample. The mixture was
heated in a boiling water bath for 48 h at 40 °C. After cool-
ing, 1.0 mL of 40 % trichloroacetic acid (TCA) was added.
After 60 min, the mixture was centrifuged at 5000g for
15 min. After centrifugation, 1.0 mL of supernatant and
2.0 mL of 0.25 % of thiobarbituric acid (TBA) reagent were
mixed. The mixture was heated in a boiling water bath at
95 °C for 15 min. The absorbance of the obtained solution
was measured at 532 nm using a UV-46 spectrophotometer
(joint stock company “Leningrad Optical-Mechanical Asso-
ciation (LOMO),” Russia). The level of AA in the sample
(%) was calculated using the following equation:

AA ¼ Acontrol−Asample

Acontrol
⋅100% ð1Þ

where Asample is the absorbance in the presence of the
sample of the CM of B. subtilis IMV B-7023 and Acontrol is
the absorbance of the control. The control contains all
reagents except the CM of B. subtilis IMV B-7023. All tests
were performed in triplicate, and the mean was centered.

Assay of Oxidant Activity
Oxidant activity (OA) of the CM of B. subtilis IMV B-7023
was assessed by the accumulation in a model system, the
end product of lipid peroxidation (LPO) such as MDA [12].
The substrate used was Tween 80, and the initiator of LPO
was the CM of bacilli. Briefly, 1.0 mL of the CM of B.

subtilis IMV B-7023 was added to 2.0 mL of 1 % Tween 80
reagent. In the control assay, 1 mL of nutrient media was
used instead of the sample. The mixture was heated in a
boiling water bath for 48 h at 40 °C. After cooling, 1.0 mL
of 40 % TCA was added. After 60 min, the mixture was
centrifuged at 5000g for 15 min. After centrifugation,
2.0 mL of supernatant and 2.0 mL of 0.25 % TBA reagent
were mixed. The mixture was heated in a boiling water
bath at 95 °C for 15 min. As a result of the reaction, two
molecules of TBA with one molecule of MDA produce a
trimethine complex having a pink color. The absorbance
of the obtained solution was measured at 532 nm using a
UV-46 spectrophotometer (joint stock company LOMO,
Russia). The level of OA in the sample (%) was calculated
using the following equation:

OA ¼ Asample−Acontrol

Asample
⋅100 % ð2Þ

where Asample is the absorbance in the presence of the
sample of the CM of B. subtilis IMV B-7023 and Acontrol

is the absorbance of the control. The control contains all
reagents except the CM of B. subtilis IMV B-7023. All tests
were performed in triplicate, and the mean was centered.

Reducing Power Assay
The reducing power of the CM of B. subtilis IMV B-7023
was analyzed according to the method of Oyaizu [13]. The
ability of the CM of bacilli to reduce the K3[Fe

3+(CN)6] to
K4[Fe

2+(CN)6] was determined by recording the absorb-
ance at 700 nm after incubation. For this purpose, 1.0 mL
of the CM of the studied strain of bacilli was mixed with
phosphate buffer (2.5 mL, 0.2 M, pH 6.6) and potassium
ferricyanide (K3[Fe

3+(CN)6]) (2.5 mL, 1 %). The mixture
was incubated at 50 °C for 20 min. A portion (2.5 mL) of
10 % TCA was added to the mixture, which was then
centrifuged (1000g at room temperature) for 10 min. The
upper layer of the solution (2.5 mL) was mixed with
distilled water (2.5 mL) and FeCl3 (0.5 mL, 0.1 %), and the
absorbance was measured at 700 nm using a UV-46
spectrophotometer (joint stock company LOMO, Russia).
Increased absorbance of the reaction mixture indicated
increased reducing power. All tests were performed in
triplicate, and the mean was centered.

DPPH· Radical Scavenging Activity
The free radical scavenging activity of the CM of B. subtilis
IMV B-7023, based on the scavenging activity of the stable
2.2-diphenyl-1-picrylhydrazyl (DPPH·) free radical, was
determined by the method described by Shimada et al. [14].
The rapid reaction between antioxidants (AH) and DPPH·
occurs with the transfer of the most labile H atoms to the
radical, while the subsequent slow step depends on the
residual H-donating capacity of antioxidant degradation
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products [15]: DPPH·+AH→DPPH·−H+A·. AH reacts with
DPPH·, which is a stable free radical, and converts it to a
stable diamagnetic molecule (2.2-diphenyl-1-picrylhydra-
zine). Briefly, 0.1 mM solution of DPPH· in ethanol was
prepared and 1 mL of this solution was added to 3.0 mL of
the CM of bacilli. The mixture was shaken vigorously and
allowed to stand at room temperature for 30 min. The
control was added with 3.0 mL of a nutrient medium.
Then, the absorbance was measured at 517 nm using a
UV-46 spectrophotometer (joint stock company LOMO,
Russia). Lower absorbance of the reaction mixture indi-
cated higher free radical scavenging activity. The percent
DPPH· scavenging effect was calculated using the following
equation:

DPPH⋅ scavenging effect %ð Þ
¼ 1−

Asample

Acontrol

� �� �
⋅100 % ð3Þ

where Asample is the absorbance in the presence of the
sample of the CM of B. subtilis IMV B-7023 and Acontrol is
the absorbance of the control. The control contains all
reagents except the CM of B. subtilis IMV B-7023. All tests
were performed in triplicate, and the mean was centered.

Hydroxyl Radical Scavenging Assay
The scavenging ability of the CM of B. subtilis IMV B-7023
on hydroxyl radicals was determined according to the
method described by Smirnoff and Cumbes [16] with some
modifications [17]. Briefly, the individual sample of the CM
of bacilli (3.0 mL) was added to the reagent containing
1.0 mL of 1.5 mM FeSO4, 0.7 mL of 6 mM H2O2, and
0.3 mL of 20 mM sodium salicylate. The control was added
with 3.0 mL of a nutrient medium. After incubation for 1 h
at 37 °C, the absorbance of the hydroxylated salicylate
complex was measured at 562 nm using a UV-46 spectro-
photometer (joint stock company LOMO, Russia). The
scavenging ability on hydroxyl radicals was calculated using
the following equation:

Scavenging ability on hydroxyl radicals %ð Þ
¼ Acontrol−Asample

� �
Acontrol

� �
⋅100 % ð4Þ

where Acontrol is the absorbance of the control reaction
(containing all reagents except the samples of the CM of
bacilli) and Asample is the absorbance in the presence of
the sample of the CM of B. subtilis IMV B-7023. All tests
were performed in triplicate, and the mean was centered.

Statistical Analysis
Microsoft Excel (Microsoft Corporation, USA) was used
to analyze the data on the average of the three replicates
(±SE) obtained from the three independent experiments.
Differences were compared with the statistical significance

at a P level less than 0.05 (P < 0.05). The Kolmogorov-
Smirnov test was used to assess the normality of the dis-
tribution of each treatment [18].

Results and Discussion
Silica nanoparticles can easily penetrate into the cells [19],
but increasingly, their biological effect is associated with
the pronounced membranotropic properties. Underlying
of these properties are electrostatic attraction and forma-
tion of the hydrogen bond between the silanol groups on
the surface of silica nanoparticles and active centers of
membrane phospholipids and proteins [20]. According to
the literature [5, 7], silica nanoparticles interact with the
lipid bilayer of cell membranes that can stimulate the ex-
cessive formation of reactive oxygen species (ROS), which
are biological factors of the peroxidation of bio-effecting
molecules [6].
In studying the effect of different doses of nano-SiO2 on

antioxidant potential of B. subtilis IMV B-7023, it was
established that this nanomaterial is characterized by a
pronounced prooxidant effect. According to the research of
oxidant and antioxidant activities of the CM of bacilli, it
was shown that by culturing the bacteria with 0.01 g/L of
nanodispersed SiO2, no significant changes were observed
in the AA. However, OA increased by 21.7 % compared
with a control (Fig. 1). With increasing doses of the nano-
material from 0.05 to 1 g/L, AA decreased by 4.5–11.8 %
and OA increased by 43.2–60.1 % (Fig. 1).
We have shown that silica nanoparticles cause a different

effect on antiradical activity (ARA) of the CM of B. subtilis
IMV B-7023 towards DPPH· and ·OH. In particular, nano-
dispersed SiO2 had no significant effect on the ability of the
CM of bacilli to inactivate the DPPH·. Thus, at culturing
bacilli with 0.01–0.05 g/L of nano-SiO2, ARA increased by
1.3–2.1 %. When the content of the nanomaterial in the
nutrient medium was 1 g/L, the investigational indicator
decreased by 2.8 % compared with the control (Fig. 2). It

Fig. 1 Effect of different doses of silica nanoparticles on antioxidant
activity (AA) and oxidant activity (OA) of the culture medium of Bacillus
subtilis IMV B-7023

Skorochod et al. Nanoscale Research Letters  (2016) 11:139 Page 3 of 6



should be assumed that the indicators of ARA of the CM
of B. subtilis IMV B-7023 remained at a high level regard-
less of the introduced dose of nano-SiO2 by virtue of the
ability of these bacteria to produce phenolic compounds
[21]. These compounds, according to published data, may
have inherent pronounced antiradical properties [22, 23].
However, the silica nanoparticles inhibited the hydroxyl

radical (·OH) scavenging in the CM of B. subtilis IMV
B-7023. It was found that, if introduced into the nutri-
ent medium of 0.01–0.05 g/L of nano-SiO2, the investi-
gated parameter was below the control by 7.2–10.1 %.
By increasing the content of the nanomaterial to 1 g/L,
the hydroxyl radical scavenging in the CM of bacilli
decreased relative to the control at 17.6 % (Fig. 3).
No detailed mechanism of accumulation of oxidants in

living cells with the participation of various nanomaterials
was found out. According to the published data [24–26],
the surface of nano-sized silica particles in an aqueous

medium can be generated hydrogen peroxide, singlet oxy-
gen, hydroxyl radical, and other ROS.
Shi et al. [27] and Lingard et al. [28] showed that the

concentration of ·OH is closely correlated with the size
of nanoparticles; the smaller the particle of nano-SiO2,
the more this radical is formed. According to the results
of Yu et al. [29], the hydroxyl-generating activity of
nanodispersed silica depends not only on the size of its
particles but also on the content of adsorbed iron ions
on the surface of the nanomaterial. It was established
that the addition of H2O2 to Fe3+-containing nano-SiO2

causes the excessive formation of ·OH for the mechan-
ism of Fenton’s reaction, which occurs on the surface of
particles of the nanomaterial [30]. Some scientists also
believe that the relatively high content of metal ions in
nanomaterials can play a key role in the formation of
hydroxyl radical by Fenton’s reaction [31].
In our studies, we used nano-sized silica, the purity of

which was not less than 99.9 %, and the mass fraction of
Fe3+-containing impurities amounted to only 0.002 % [32].
Fenoglio with co-authors [33, 34] found that SiO2 nanopar-
ticles can generate hydroxyl radical in the absence of the
adsorbed iron ions on their surface. However, according to
the literature [35], the mechanism of the formation of ·OH
could play an active role in superoxide anion radical (O2

−·),
which is also generated on the surface of nano-SiO2 in an
aqueous medium. O2

−· acts as a reductant of metal ions or
reaction sites on the surface of nano-sized silica. Redox re-
actions that occur with the participation of the oxidant can
contribute to nano-SiO2-mediated accumulation of ·OH:

1. О2
− · +Мn +

→M(n − 1) + O2;
2. M(n − 1) + H2O2→Mn + +ОН +OH−;

Mn+ /M(n − 1)

3. О2
− · + H2O2→ОН +O2 + OH−,

where Mn+ are the metal ions or the reaction sites on the
surface of nano-SiO2. Reactions 1–3 are reactions of type
Haber-Weiss [24, 35]. The hydroxyl radical, which formed
in the course of these reactions, can be site-specifically
generated on the surface of nano-SiO2 and can effectively
attack DNA [35].
The silica nanoparticles had a noticeable influence on the

reducing power of the CM of B. subtilis IMV B-7023. So,
absorption to the control variant amounted to 0.197. By
culturing bacteria with 0.01–0.05 g/L of nanodispersed
SiO2, the investigated index increased in comparison with
the control and amounted to 0.337–0.343. With increasing
doses of the nanomaterial up to 1 g/L, a sharp decline of
the reducing power of the CM of B. subtilis IMV B-7023
was observed to be 0.144 (Fig. 4). This effect of nano-SiO2

on the reducing power of the COP of the investigated strain
of bacteria may be associated with the increased content of
ROS [24, 26].

Fig. 2 Antiradical activity of the culture medium of Bacillus subtilis
IMV B-7023 for the different contents of silica nanoparticles in the
nutrient medium

Fig. 3 The impact of the silica nanoparticles on the inhibition in the
culture medium of Bacillus subtilis IMV B-7023. The hydroxyl radical is
a product of Fenton’s reaction
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Conclusions
Thus, low concentrations of silica nanoparticles caused a
moderate prooxidant effect on the background of activation
of antioxidant defense factors of B. subtilis IMV В-7023.
However, high doses of the nanomaterial suppressed a
number of indicators of the antioxidant potential of the
studied strain of the bacilli. The mechanism by which
nano-sized silica generates ROS requires further study.
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