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Abstract

The ability to produce high-quality single-phase diluted magnetic semiconductors (DMS) is the driving factor to study
DMS for spintronics applications. Fe-doped ZnO was synthesized by using a low-temperature co-precipitation
technique producing Zn1−xFexO nanoparticles (x = 0, 0.02, 0.04, 0.06, 0.08, and 0.1). Structural, Raman, density
functional calculations, and magnetic studies have been carried out in studying the electronic structure and magnetic
properties of Fe-doped ZnO. The results show that Fe atoms are substituted by Zn ions successfully. Due to the small
ionic radius of Fe ions compared to that of a Zn ions, the crystal size decreases with an increasing dopant
concentration. First-principle calculations indicate that the charge state of iron is Fe2+ and Fe3+ with a zinc vacancy or
an interstitial oxygen anion, respectively. The calculations predict that the exchange interaction between transition
metal ions can switch from the antiferromagnetic coupling into its quasi-degenerate ferromagnetic coupling by
external perturbations. This is further supported and explains the observed ferromagnetic bahaviour at magnetic
measurements. Magnetic measurements reveal that decreasing particle size increases the ferromagnetism volume
fraction. Furthermore, introducing Fe into ZnO induces a strong magnetic moment without any distortion in the
geometrical symmetry; it also reveals the ferromagnetic coupling.
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Background
The relation between semiconductors and magnetism has
led to the next generation of magnetic semiconductors [1].
Keen interest in spintronic devices consisting of diluted
magnetic semiconductors (DMSs) is driven by a possi-
bility to control the magnetism by electric gating. Such
devices based on spin and charge degrees of freedom are
greatly desired seeing that DMSs are a class of semicon-
ductors where both ferromagnetism and insulating behav-
ior can coexist in a single phase [2]. Particularly in these
semiconductor materials, global ferromagnetic order in
the entire lattice can be realized by the interplay of spin
of the dopant atoms and the carriers [3–8]. ZnO, a widely
studied semiconductor with a wide band gap of 3.37 eV, is
of growing significance in advanced electronics and spin-
tronics. The exotic properties of ZnO have led [9] and
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have observed quantum hall effect in a high-mobility two-
dimensional electron gas in ZnO-based polar heterostruc-
ture [10]. Additionally, ZnO was extensively studied for its
transparent conductive oxide aspects, in hope of replacing
an indium tin oxide, because it is nontoxic, low cost, and
abundant [11]. As in the area of spintronics, technological
progress of introducing transition metals like Co, Mn, Fe,
Cr, Cu, and Ni has enabled doped ZnO to exhibit excel-
lent magnetic, optical, and electronic properties required
for spintronic materials [12–19].
Among these, most researchers have been attracted on

the fabrication of Co-Cr-, Ni-, and Mn-doped ZnO sys-
tems as well as their structural, optical, and magnetic
properties [20–23]. However, the Fe-doped ZnO nanopar-
ticle is still an unsolved problem because some studies
show ferromagnetic behavior at room temperature when
being prepared by mechanical alloy [24], hydrothermal
method [25], a solid-state reaction, and the sol-gel method
[26–28]. On the other hand, some reports show that Fe-
doped ZnO has an antiferromagnetic nature [29]. The
variations in magnetic behavior of Fe-doped ZnO indicate
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that ferromagnetism of such a system may depend on the
methods and conditions used in the preparation.
In transition-metal-doped ZnO, the energy position of

the dopant 3d states relative to the host conduction and
valence bands determining the possibility of long-range
ferromagnetism [30]. For Fe-doped ZnO materials, most
of the research focuses on the ferromagnetic behavior
of Fe-doped ZnO nanoparticles. Although several studies
have been proposed, the origin of ferromagnetism in tran-
sition meatl-doped ZnO remains very controversial. Sim-
ilar contradictory results were also observed in Fe-doped
ZnO nanomaterials [31–33]. Sharma et al. [34] demon-
strated that 0.01 Fe-doped ZnO samples show a diamag-
netic character, while ferromagnetic nature is observed for
0.02 and 0.03 Fe-doped samples, and the higher doping
of Fe. However, to the best of our knowledge, no straight
forward procedure has been reported yet for fabricating
reproducible and stable transition-metal-doped ZnO of
high quality.
In this work, we concentrate on Fe-doped ZnO bulk

samples. We examine five samples grown with a varied Fe
content from 0.02 to 0.1. The weight percents were cal-
culated from the weight of Fe2O3 vs. ZnO in the starting
material. The idea of additional Fe doping in Zn1−xFexO
was highly successful and led us to a ferromagnetic DMS.
We present a low-cost and suitable method for synthe-
sizing Fe-doped ZnO nanoparticles with a semispheri-
cal shape, without using a surfactant. X-ray diffraction
confirms that the samples have a single-phase wurtzite
structure where the crystal size decreases with an increas-
ing dopant concentration. Raman studies show that the
local symmetry in the Zn1−xFexO nanocrystals is differ-
ent from that of pure ZnO. From these results, we have
discussed the origin of the ferromagnetism of Zn1−xFexO.
Introducing Fe into ZnO induces a strong magnetic
moment without any distortion in the geometrical sym-
metry; it also reveals the ferromagnetic coupling. The
exchange interaction between transition metal ions can
switch from the antiferromagnetic coupling into its quasi-
degenerate ferromagnetic coupling by external perturba-
tions, which is obtained by first-principle calculations.

Methods
The material synthesis is one of the key features for
the development and realization of semiconductor based
spintronic applications. All preparation steps like weigh-
ing, mixing, grinding, and storage were carried out in an
Ar-filled glove box; the O2 and H2O level is less than
0.1 ppm. The preparation of Zn1−xFexO in a nanoparticle
form is achieved by using the co-precipitation technique.
The following procedure was adopted.
ZnCl2 and NaOH solution were prepared separately

and then mixed together. The solution was maintained at
room temperature stirring for 2 h and heating of Zn(OH)2

at 70 °C for 24 h for drying. The dryed ingots were heated
at 400 °C for 4 h; after that time period, the powder was left
to cool down slowly to room temperature to get pure ZnO.
To prepare mixed oxide dilute magnetic semiconductors,
mixed solutions of ZnCl2 and FeCl2 at the desired ratio
were prepared; then NaOH solution was added slowly to
the mixed solution, and the process described above is
repeated to obtain Zn1−xFexO nanoparticles.
The X-ray powder diffraction data were collected at

room temperature using a Huber G670 Guinier imag-
ing plate diffractometer with Co Kα-radiation and a
Ge-111 monochromator. Scanning electron microscopy
(SEM) images of the surface and cross section of films
were taken with a Leo Gemini 982 microscope. Raman
studies were obtained from their vibration modes in
wave number range of 50–1500 cm−1 using a Jobin-
Yvon Raman spectrophotometer with the incident laser
power of 40 mW. The magnetization measurements were
performed by using a superconducting quantum interfer-
ence device magnetometer (MPMS-XL5) from Quantum
Design.
First-principle calculations within the framework of

density functional theory (DFT) are performed by Vienna
Ab initio Simulation Package (VASP) [35, 36]. A kinetic
energy cutoff is set to be 550 eV for the plane wave
basis and the Brillouin zone integration is sampled by
using a 8 × 8 × 6 Monkhorst-Pack grid. The exchange-
correlation functional is treated in the form of Perdew-
Burke-Ernzerhof (PBE) [37]. In the relaxations, the lattice
parameters are fixed on the experimental lattice con-
stants of ZnO, and the atomic positions are fully relaxed
until the Hellmann-Feynman forces on each atom are
less than 1 meV/Å and the total energies are converged
to within 10−3 meV/atom. To obtain highly accurate
energy and density of states (DOS), we use the linear
tetrahedron method with Blöchl corrections through-
out the whole computations. In addition, we introduce
an effective Hubbard parameter U = 4 eV to better
describe the onsite Coulomb interactions of d electrons
for Fe.

Results and discussion
The most common lattice of ZnO is recognized as a
hexagonal wurtzite structure as shown in Fig. 1. The num-
bers in Fig. 1 on the spheres illustrate the atomic positions
substituted by Fe cations in subsequent first-principle cal-
culations. The atom labeled 1 is the reference position. In
our study, the structure of pure ZnO and Zn1−xFexO are
both carefully characterized.
Figure 2 shows the X-ray diffraction pattern of the

Zn1−xFexO nanostructure compared to the pure ZnO
nanostructure. The XRD pattern suggests that the pure
ZnO exhibits a hexagonal wurtzite structure (belonging
to the C46v space group (P63mc). It is indext and uses
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Fig. 1 Schematic diagram of 2 × 2 × 2 ZnO supercell with a hexagonal wurtzite structure. The numbers on the spheres indicate the atomic
positions substituted by Fe cations in subsequent first-principle calculations. The atom labeled 1 is the reference position

a standard JCPDS file for ZnO (JCPDS 36-1451)) with a
preferred (101) orientation. The diffraction peaks corre-
sponding to (002) and (100) planes of ZnO a hexagonal
phase were also observed but with a different intensity
ratio. One can observe that the hexagonal wurtzite planes
show a small shift with an increasing Fe content except
the sample doped with 0.06. It is well known that the Fe
ions have two oxidation states Fe+2 and Fe+3, where the
ionic radius of Fe+2 is 0.78Å which is bigger than that
of Zn+2 (0.74Å) whereas that of Fe+3 is smaller by about
10 % [38]. Therefore, the hexagonal wurtzite structure
will not strongly change with replacing Zn+2 with Fe+2

ions. When the Zn+2 ions are replaced with Fe+3 ions,

the oxygen ions would be drawn to the Fe+3 ions to keep
the balance of charge [39, 40]. Based on the above discus-
sions, we can conclude that the large shift of the crystalline
peaks for the x = 0.06 sample could be attributed to the
replacement of the Zn+2 by Fe+3 ions. This variation was
previously observed and attributed to the different ionic
radii of Fe ions substituted in the ZnO lattice [41].
Table 1 depicts the lattice constants for the Zn1−xFexO

samples compared to those of a pure ZnO. The lattice
parameters a and c do not show any significant change
compared to those of the pure ZnO sample except the
x = 0.06 sample. This change could be attributed to the
substitution of the Zn+2 with Fe+3 ions in the hexagonal
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Fig. 2 XRD patterns of the pure ZnO and the Fe-doped ZnO. The inset shows the magnified of the (101) plane showing the peak shift

structure. The lattice parameters a and c are calculated by
using the relations [42]

1
a2

= 4
3a2

[
h2 + hk + k2

] + l2

c2
. (1)

The crystal size (D) was calculated by using Debye-
Scherrer’s equation [43, 44]: The D = 0.94λ

β cos(�)
, where D is

the particle size, λ is the wavelength of radiation, β is the
full width at half maxima (FWHM), and � is the Bragg
angle.
The calculated values are listed in Table 1. From the

table, one can observe that with the increasing concen-
tration of the iron ion, the particle size decreases. This
decrease in the particle size was previously observed and
attributed to the decrease in the nucleation and subse-
quently growth rate due to the difference between the Fe
ions (Fe+2 and Fe+3) and Z+2 ions [38, 45].
The microstructure of the Zn1−xFexO nanoparticles

was investigated by SEM, as shown in Fig. 3. It clearly

Table 1 The calculated values of the lattice constants and the
crystal size for all samples investigated for Zn1−xFexO at (101)

x a c c/a D (nm)

0 3.257 5.203 1.6 31.4

0.02 3.245 5.203 1.603 28.5

0.04 3.269 3.220 1.6 29.6

0.06 3.233 3.185 1.603 28.5

0.08 3.257 3.220 1.602 29.8

0.1 3.257 3.220 1.602 29.2

proofs that the structures of the investigated particles are
crystals in form. In addition, the particles show a nar-
row size distribution due to their magnetic attraction
exhibiting a partially sintered microstructure. It should be
noticed that the agglomeration of particles were related
to many factors such as the shape factor, surface area,
porosity, and density. It is worth mentioning that the most
colloidal particles are electrically charged, e.g., most metal
oxides have a surface layer of the metal hydroxide which is
amphoteric and can become either positively or negatively
charged. From Fig. 3, one can observe that a pure ZnO
sample has a spherical shape (with 30 nm average particle
size) where the doped samples show (with 28 nm average
particle size) compared to the pure sample.
In order to study the modified lattice dynamics, we

performed Raman studies for all samples. Raman spec-
troscopy is a non-invasive technique and the elementary
excitations detected by Raman scattering are phonons.
Therefore, Raman can provide us with many information
on the structural properties or crystalline quality. Figure 4
shows the Raman spectra for the pure ZnO nanocys-
tals. In hexagonal structures with a C46v symmetry like
ZnO, six sets of phonon normal modes at the center of
the Brillouin zone (� point) are optically active modes
[46–48]. The phonons of the Wurtzite ZnO belong to the
following irreducible representation:

� = A1 + E1 + 2B1 + 2E2, (2)

where A1 and E1 modes are two polar branches and split
into the transverse optical (TO) and longitudinal optical
(LO) phonons, resulting from beating along the c-axis,
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Fig. 3 SEM images for Zn1−xFexO samples, for Fe concentrations 0, 0.02 0.04, 0.06, 0.08, and 0.1, respectively

with different frequencies due to the macroscopic electric
fields associated with LO phonons. For lattice vibrations
with A1 and E1 symmetry, the atoms move parallel and
perpendicular to the c-axis, respectively. The two nonpo-
lar E2 branches are Raman active only, and the B1 modes
are generally inactive in Raman spectra and are called
silent modes [49].
The Raman spectrum of ZnO nanoparticles consists of

six peaks located at about 200, 332, 377, 437, 600, and
1144 cm−1. The 200 peak is due to E2 (LO) possibly related
to the doping of the zinc oxide layer and to the charge
carrier concentration; the 332-cm−1 peak is due to an
A1 (TO) mode which shows a second-order Raman pro-
cesses (multiple-phonon processes). The 377-cm−1 peak

is due to an E1 (TO) mode. Also, the sharpest and the
strongest peak at 437 cm−1 can be assigned E2 (high) due
to the high-frequency branch of E2 mode of ZnO, which is
the strongest and characteristic mode of wurtzite crystal
structure [50–55]. Raman peak corresponding to the high-
energy range observed between ≈1030 and 1190 cm−1 is
assigned to the E2 (LO) second-order polar mode [56].
The Raman spectra of Zn1−xFexO nanocrystals are

shown in Fig. 4. It is clear from the figure that all the
ZnO peaks are also observed in Fe-doped samples. As the
Fe content increases, the ZnO peaks shift toward lower
frequencies expect the x = 0.06 sample which shows a
relatively large shift (see the inset of Fig. 4). This means
that the local symmetry in the Zn1−xFexO nanocrystals

200 400 600 800 1000 1200 1400

280 300 320 340 360

R
am

an
in
te
ns

ity
(a
.u
.)

Wave number (cm-1)

ZnO
x=0.02
x=0.04
x=0.06
x=0.08
x=0.1

Fig. 4 The main frame represents the Raman spectra of Zn1−xFexO samples. The inset shows the magnified of the A1 (TO) mode showing the peak
shift
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is different from that of the pure ZnO, but the crys-
tal structure is the same. The relatively large shift in the
x = 0.06 sample could be attributed to the bonds softening
in the Zn-O bond as a result of substitution of Zn+2 with
Fe+3. The Fe3+ ions have relatively large electro-negativity
than the Fe2+ and Zn2+; this could reduce the strength of
the Zn-O bond, hence leading to shift the peak to lower
energy [57, 58].
In order to explore the magnetic and electronic prop-

erties of Fe-doped ZnO, we adopt 2 × 2 × 2 Zn1−xFexO
superlattices to perform first-principle calculations. The
models with substitutional dopants, zinc vacancy (Znvan)
and interpolated oxygen (Oint) were all considered.
Figure 5a–c shows the most stable structures obtained
in total energy calculations. We also calculate the energy
differences (meV/Fe-cation) between the ferromagnetic
state and the antiferromagnetic state for the above sta-
ble cases. The energy difference indicates the interactomic
exchange interaction, and it is proportional to phase tran-
sition temperature within the framework of mean-field
theory.

In our calculations, using the charge analyses, the
respective oxidation states of Fe atoms are Fe2+ in the
case of Fig. 5a and Fe3+ in Fig. 5b, c; it is unexpected
that all these stable cases energetically favor antiferro-
magnetic states. Due to that all the exchange interactions
in these cases are mediated by the oxygen anions, we
can employ the semi-empirical Goodenough-Kanamori-
Anderson rules [59, 60] to analyze the superexchange
for each case qualitatively, in combination with the first-
principle calculations. In the case of Fig. 5a with Fe2+ ions,
Fe2+-Fe2+ coupling favors antiferromagnetic interaction
can be understood by the 180° Fe-O-Fe superexchange
contributed by the virtual electron hopping between
the half-filled t2g orbitals (see Fig. 5d). In the case of
Zn1−xFexO with Znvan in Fig. 5b, we find that the angle of
Fe3+-O-Fe3+ is 116.1°, as suggested by the Goodenough-
Kanamori-Anderson rules for transitionmetal oxides [60],
a 90° Fe3+-O-Fe3+ angle usually leads to ferromagnetic
coupling while a 180° Fe3+-O-Fe3+ angle favors antiferro-
magnetic coupling. Consequently, in this situation with a
116.1° Fe3+-O-Fe3+ angle, there is a competition between

a b c

d e f

Fig. 5 Schematic diagram of the most stable structures (upper panel) and their corresponding crystal field splitting (bottom panel) in our calculations
for Zn1−xFexO, Zn1−xFexO with Znvan, and Zn1−xFexO with Oint, respectively (a–f)
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ferromagnetic and antiferromagnetic superexchange. As
calculated in our first-principle calculations, Zn1−xFexO
with Znvan is finally compromised into an antiferromag-
netic state.
On the other hand, one can further find from Fig. 5b

that the sites of two Fe cations adopt a close config-
uration in which two Fe atoms locate at the same xy
plane. This indicates that introductions of Znvan might
tend to a cluster together the Fe ions during growth,
rather than evenly distribute them through the entire lat-
tice, such a dynamical behavior can inhibit the formation
of global magnetism owning to the localization of mag-
netic states. For the last case incorporated of an Oint in
Fig. 5c, the crystal field splitting of magnetic ion Fe3+ is
very different from those in the previous two cases, as
seen in Fig. 5f, where an interpolated oxygen atom and

its neighboring oxygen atoms form a pentahedral ligand
field and lift the energy level of dz2 . The virtual elec-
tron hopping between the two half-filled dz2 orbitals gives
rise to the antiferromagnetic coupling of Fe3+-Fe3+. In
addition, we obtain from our total energy calculations
that ferromagnetic states for the structures in Fig. 5a, c
is only 1.8 and 2.0 meV energetically disfavored, respec-
tively. The scale of these energy differences is quite small
in first-principle calculations; thus, the antiferromagnetic
and the magnetic state in these two cases can be thought
as quasi-degenerate states. It can be predicted that the fer-
romagnetism cloud be brought by a small applied external
perturbations.
The calculated total density of states (TDOS) and the

projected density of states (PDOS) of Fe atoms are pre-
sented in Fig. 6. Due to that, each model which is used in
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our calculations contains two Fe atoms. We have plotted
the PDOS separately, with the reference Fe atom shown
by a blue line and the other one by a dark yellow line.
Correspondingly to the above discussions, DOS in all
cases which remain insulted shows antiferromagnetic fea-
tures, indicating all structures remain insulating with the
existence of Znvan or Oint. Compared to the TDOS of
Zn1−xFexO, one can observe that the Fermi level shifts
down and the energy gap narrows in Zn1−xFexO with
Znvan or Oint. Furthermore, it can be seen from the PDOS
that the exchange splitting energy is much larger than the
crystal field splitting energy; it opens the energy gap in
each case. The Fe-3d manifold is split by a large exchange

splitting into distinct states in two spin channels, each
of which in turn is split by the smaller tetrahedral crys-
tal field or pentahedral crystal field. In the energy range
from −8 to −6.5 eV, the Fe-3d states are strongly
hybridized with O-2p states in Zn1−xFexO with Znvan or
Oint; in contrast, they vanish in Zn1−xFexO without addi-
tional defects, and we think that these states tightly related
to covalent bonding might contribute to the Fe-O-Fe
superexchange. Motivated by the predictions of mergence
of magnetism in first-principle calculations, we perform
the magnetic characterization of our samples. The tem-
perature dependencies of magnetization zero-field cool-
ing (ZFC) and field cooling (FC) are shown in Fig. 7 for
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2, 4, and 8 % Fe-doped the ZnO samples, respectively.
The ZFC measurements were performed by warming the
sample, after prior cooling it to a low temperature in the
absence of a magnetic field, followed by the application
of the field of a given strength. The FC data were also
recorded on warming, after previous cooling of the sam-
ple in a magnetic field. A sharp ferromagnetic transition
is seen at Tc for all investigated samples, which the Tc is
accurately estimated from the derivative plot of magneti-
zation data (inset of Fig. 7). Obviously, one can see that Fe
doping enhances the ferromagnetism of Zn1−xFexO with
Tc increasing from 39K for the 2 % to 44 K for the 8 %.
For all study samples, the ferromagnetic transition and
themagnetic susceptibility decreases sharply and continu-
ously at low temperature as seen clearly in low-field plots.
As shown in Fig. 8, this decreasing disappears upon apply-
ing high magnetic field and the ZFC curve overlaps with
the FC curve. This downturn can be attributed to the
antiphase ferromagnetic domains.
For better understanding the nature of the ferromag-

netic transitions, the temperature dependence of magne-
tization at different applied fields below and above the
critical temperature has been measured. Figure 8 presents
ZFC and FC data for six values of the applied magnetic
fields only. At high temperatures, the ZFC and FC mag-
netizations match each other and gradually increase as
temperature decreases, probably due to local clustering of
the spins [61] or to ferromagnetic domain growth [62].
The ZFC and FCmagnetization start to differ below a cer-
tain field-dependent temperature Tf (H), which is a phe-
nomenon that can be interpreted in terms of a spin-glass
transition or by freezing domain walls motion [63].
Further signatures of the ferromagnetic behavior is

observed from the magnetic hysteresis loop at 2K (inset
of Fig. 9). Although the Tc is increasing by introducing Fe
to the ZnO system, only a signature of single-phase fer-
romagnetic ordering is evident in the temperature depen-
dence of x = 0.02, 0.04, and 0.08 (Fig. 9). It is well
known that the pure ZnO nanoparticles are paramagnetic
materials. Fe-doped ZnO exhibits a clearly ferromagnetic
hysteresis loop (see the insets of Fig. 9). As reported by
Xing et al., the appearance of ferromagnetism in tran-
sition metal-doped ZnO might be due to the increase
of the number of defects and oxygen vacancies [64]. On
the other hand, theoretically, Chu et al. prove that fer-
romagnetism could be induced by the exchange inter-
action between transition metal ions and O ion spin
moments [65].

Conclusions
Summarizing, we have grown a Zn1−xFexO system and
characterized its structural, electronic, and magnetic
properties through XRD, SEM, electronic, magnetization,
and DFT. X-ray diffraction confirms that the samples have

a single-phase wurtzite structure which the main crystal
size decreases with an increasing dopant concentration.
This decrease occurs due to the small ionic radius of
Fe ions in comparison to Zn ions. To ensure the super-
structure electrically neutral, we replaced Fe2+ ions by
Zn2+ ions. Additionally, Fe3+ ions are introduced either
by a Zn vacancy or an interpolated O. Magnetic measure-
ments reveal that when the particle sizes decrease, then
the FM volume fraction decreases. The ferromagnetism is
enhanced caused by Fe doping to the ZnO.
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