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Abstract

Water electrolysis is an efficient way for hydrogen production. Finding efficient, cheap, and eco-friendly electrocatalysts
is essential to the development of this technology. In the work, we present a first-principles study on the effects
of tension on the hydrogen evolution reaction of a novel electrocatalyst, vanadium disulfide (VS2) monolayer.
Two electrocatalytic processes, individual and collective processes, are investigated. We show that the catalytic
ability of VS2 monolayer at higher hydrogen coverage can be efficiently improved by escalating tension. We find
that the individual process is easier to occur in a wide range of hydrogen coverage and the collective process is
possible at a certain hydrogen coverage under the same tension. The best hydrogen evolution reaction with
near-zero Gibbs free energy can be achieved by tuning tension. We further show that the change of catalytic
activity with tension and hydrogen coverage is induced by the change of free carrier density around the Fermi
level, that is, higher carrier density, better catalytic performance. It is expected that tension can be a simple
way to improve the catalytic activity, leading to the design of novel electrocatalysts for efficient hydrogen production
from water electrolysis.
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Background
Hydrogen, as an important energy carrier, is considered as
a replacement of fossil fuels because of its abundant,
clean, and renewable characteristics [1, 2]. Hydrogen pro-
duction can be realized by photo-driven or electrical-
driven water splitting [3–7], stream reforming [8], natural
gas oxidization [9], carbonation [10], biomass electroly-
sis [11, 12], etc. Among these methods, catalytic water-
spitting is highly appreciated because it is the cleanest
way for hydrogen production, where hydrogen is evolving
from proton to gas molecule by reduction [3–7]. Espe-
cially, electrical-driven water electrolysis has attracted
increasing interests because of its high efficiency and
eco-friendliness [7, 13–15]. To improve production effi-
ciency and reduce cost, the design and fabrication of
highly active, stable, and cheap electrocatalysts are crit-
ical to the development of green energy technology. It
is well-known that noble metals and their alloys, such
as platinum, are the most efficient catalysts in water
electrolysis [16–22]. However, large-scale application of

these catalysts in hydrogen evolution reaction (HER) for
hydrogen production is difficult because they are rare and
expensive. Alternatively, finding novel, environmental-
friendly electrocatalysts with earth-abundant elements has
been carried out with considerable efforts [7, 15].
Recently, transition metal dichalcogenides (TMDs)

nanomaterials have been widely investigated as electro-
catalysts in water electrolysis [23–32]. Particularly, The
TMD monolayers with the formula of MX2, which has
a sandwiched structure with one M-atom (M = transi-
tion metal element) layer enclosed within two X layers
(X = chalcogen element), and the atoms in layers are
hexagonally packed, have attracted increasing attention
because of their high surface area, active edges states,
and high mechanic flexibility [15, 25, 30–40]. For ex-
ample, MX2 nanoribbons show high HER performance
in water electrolysis due to their metallic edges [31],
which can be further improved by edge doping and
substrate [41, 42]. Metallic WS2 monolayers showed
better HER performance than semiconducting counter-
part [38]. Recently, Pan reported that VS2 monolayer
shows excellent HER activity [32]. However, its per-
formance is reduced at high hydrogen coverage because
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of reduced conductivity. To improve the HER perform-
ance of TMDs monolayers, the basic principle for the
design of catalysts is to achieve a near-zero overpoten-
tial [18]. It has been reported that the improvement of
HER activity can be achieved by doping, forming defect,
and hybridizing with graphene [15, 23–42]. Voiry et al.
[38] and Lee et al. [43] reported that mechanic strain
can efficiently improve the HER activity of WS2 and MoS2
monolayers. To date, the effect of strain on the HER per-
formance of TMDs monolayers at various hydrogen cov-
erages and strength of tension has not been systematically
studied. In this work, we carry out first-principles study
on the improvement of the HER performance of VS2
monolayer with tension. We show that the improve-
ment of catalytic activity of VS2 monolayer strongly de-
pends to the strength of applied tension, hydrogen
coverage, and reaction process. We find that the cata-
lytic performance at higher hydrogen coverage can be
enhanced by increasing tension, and both individual/
collective processes can happen at the same tension de-
pending on hydrogen coverage. We further show that
the catalytic performance is closely related to free car-
rier density, which is controlled by the tension and
hydrogen coverage.

Methods
First-principles calculations on the basis of the density
functional theory (DFT) [44] and the Perdew-Burke-
Eznerhof generalized gradient approximation (PBE-
GGA) [45] are carried out to study the effect of tension
on the HER activity of VS2 monolayer. The Vienna ab
initio simulation package (VASP) [46] with projector
augmented wave (PAW) scheme [47, 48] is used in our
calculations. The Monkhorst and Pack scheme of k
point sampling (3 × 3 × 1) is used for integration over
the first Brillouin zone [49] and the cut-off energy is
450 eV. A sufficiently large supercell with 4 × 4 × 1 unit
cells and a vacuum region of at least 20 Å in the vertical
direction is used to investigate the hydrogen-coverage-
dependent HER performance and avoid the interaction
between images in neighboring cells (Fig. 1). Good conver-
gence is obtained with these parameters and the total en-
ergy is converged to 2.0 × 10−5 eV/atom.

Results and Discussion
The larger supercell with 4 × 4 × 1 unit cells is con-
structed based on the unit of VS2 monolayer with one
surface fully covered by hydrogen atoms, that is, one S
atom is bonded with one H atom on one side of the
monolayer [50]. The hexagonal supercell with a lattice
constant of 13.1 Å (a0) has 16 H, 32 S, and 16 V atoms
(Fig. 1). To investigate the effect of tension on its HER
performance, the lattice is statically extended from a0

to a by biaxial stretching or tension ε ¼ a−a0
a0

� 100%
� �

.

The calculation on H-coverage-dependent HER perform-
ance is carried out by removing hydrogen atoms one by
one from the surface. The H-coverage is defined as n

16 (n =
0 ~ 16). On the basis of the Sabatier principle, the HER
performance of electrocatalyst in water electrolysis can be
quantified by calculating the reaction free energy of
hydrogen adsorption (ΔGH) [18, 19, 32, 33, 38], which
can be obtained from following formula:

ΔGH ¼ ΔEH þ ΔEZPE−TΔSH ð1Þ

where ΔEH is the H-coverage-dependent hydrogen chemi-
sorption energy. It can be differential chemisorption en-
ergy as calculated by:

ΔEH ¼ E VS2 þ nHð Þ−E VS2 þ n−1ð ÞHð Þ− 1
2
E H2ð Þ

ð2Þ

or it can be average chemisorption energy calculated by

Fig. 1 Atomic structure of VS2 monolayer with one surface fully
covered by hydrogen atoms
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ΔEH ¼ E VS2 þ nHð Þ−E VS2ð Þ− n
2
E H2ð Þ

� �
=n ð3Þ

where n is the number of H atoms adsorbed on a VS2
monolayer under tension. The H-coverage-dependent
ΔGH can be obtained by changing n. E(VS2 + nH),
E(VS2), and E(H2) in Eqs. (2 and 3) are the energies of
monolayer with hydrogen atoms (n), pure VS2 mono-
layer, and hydrogen molecule, respectively. ΔSH is the
difference in entropy. ΔEZPE is the difference in zero
point energy between the adsorbed and the gas phase.
ΔEZPE − TΔSH is about 0.24 eV [18, 19]. Therefore, Eq.
(1) can be simplified to ΔGH = ΔEH + 0.24. According to
the two methods (Eqs. 2 and 3) for the calculation of
hydrogen chemisorption energy, the reaction free ener-
gies can be defined as differential ΔGH (d-ΔGH) and
average ΔGH (a-ΔGH), which can be used to express the
hydrogen production in the individual and collective
processes, respectively. The individual process describes
that hydrogen is produced one by one, while the collect-
ive process shows that all of hydrogen atoms on the sur-
face are simultaneously converted to molecules. It is
required that electrocatalyst with optimal HER perform-
ance should have a ΔGH near 0 eV.
Our first-principles calculations show that ΔGH is

dependent on the H-coverage and can be efficiently
tuned by applied tension (Fig. 2). We see that the trend
of d-ΔGH as a function of hydrogen coverage under
tension is almost similar to that without tension in the
individual process (ΔEH is calculated from Eq. 2), that
is, d-ΔGH increases as hydrogen coverage increases
[32]. Importantly, d-ΔGH is reduced upon the tension
applied and the HER activity of VS2 monolayer in indi-
vidual process at certain hydrogen coverage is improved
by tension. The VS2 monolayer under ɛ = 2 % shows best
HER performance in individual process with d-ΔGH equal
to −0.043 and −0.029 eV at the hydrogen coverages of 2

16

and 3
16 , respectively (Fig. 2a). Under ɛ = 6 %, the best

HER performance occurs at the hydrogen coverages of
4
16 and 5

16 with d-ΔGH equal to 0.023 and 0.018 eV, re-
spectively (Fig. 2a). Further increasing ɛ to 10 %, the
VS2 monolayer shows best HER activity at the hydro-
gen coverages of 6

16 ,
7
16 , and

9
16 (d-ΔGH = 0.024, 0.040,

and −0.027 eV) (Fig. 2a). Clearly, the HER activity of
VS2 monolayer in individual process is improved at
relatively high H-coverage as tension increases, while
that at low H-coverage is weakened. At the same time,
we see that the effect of tension on the HER activity at
full H-coverage 16

16

� �
is minor in the individual process

(Fig. 2a), because removing one hydrogen atom is sub-
jected to the strong attraction from the remained
hydrogen atoms. Compared to the individual process,
a-ΔGH in the collective process (ΔEH is calculated from
Eq. 3) increases smoothly as the H-coverage increases
(Fig. 2b). The best HER activity of VS2 monolayer with
a-ΔGH near zero (−0.007 eV) occurs at a hydrogen
coverage of 5

16 under ɛ = 2 %. Under ɛ = 6 %, the optimal
performance (a-ΔGH = −0.005~0.02 eV) is within a H-
coverage range from 8

16 to
10
16. Further increasing tension

to 10 %, VS2 monolayer is more active at a H-coverage
of around 14

16 (a-ΔGH = −0.016 eV). Interestingly, ΔGH in
the collective process at full hydrogen coverage is sig-
nificantly reduced upon the tension applied, which is
about 0.1 eV/H at ɛ = 10 % (Fig. 2b). Although the abso-
lute value of a-ΔGH in the collective process is smaller
than that in the individual process at full H-coverage, it
should be difficult to happen if considering the total
number of H atoms. By comparing the individual and
collective processes (Fig. 2), we see that individual
process is easier than collective process because abso-
lute value of d-ΔGH is smaller than that of a-ΔGH

multiplied by the number of H atoms on the surface of
the monolayer. However, the collective process prefers

Fig. 2 Calculated reaction free energy of hydrogen chemisorption as a function of hydrogen coverage: a differential free energy and b average
free energy
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to occur at certain H-coverage, where a-ΔGH is close to
zero (Fig. 2b). For example, if the VS2 monolayer is fully
covered by hydrogen atoms 16

16

� �
initially at ɛ = 6 %, the

individual process starts first. When the H-coverage is
reduced to 9

16 (a-ΔGH = 0.003 eV), the collective process
occurs because the total reaction energy in collective
process (a-ΔGH × 9 = 0.027 eV) is less than d-ΔGH in
individual process (0.07 eV). If the H-coverage on the
VS2 monolayer is less than 8

16

� �
, initially, only individual

process will happen. Similarly, the collective processes
under ɛ = 2 and 10 % are more easier than individual
processes at hydrogen coverages of 5

16 and 14
16 , respect-

ively. Generally, the strained VS2 monolayer shows bet-
ter catalytic performance than other TMDs monolayers
and nanoribbons because of the near-zero Gibbs free
energy in a wide range of hydrogen coverage.
To reveal the origin of H-coverage-dependent HER ac-

tivity under tension, the density of state (DOS) is calcu-
lated. The carrier density can be estimated from the
calculated DOSs. We see that the carrier density changes

with the tension and hydrogen coverage (Fig. 3), which
may indicate their effects on the HER activity in individ-
ual/collective process. At ɛ = 2 %, the VS2 monolayer
shows strong metallic characteristic with high free carrier
density under the Fermi level at a hydrogen coverage of 3

16,
as indicated by the continuous DOS spectrum from −3 to
2.2 eV (Fig. 3a). With the increase of hydrogen coverage
to 9

16, the DOS spectrum separates into two regions with a
small gap from −0.9 to −0.5 eV, and the free carrier density
under the Fermi level is accordingly reduced (Fig. 3b).
Further increasing hydrogen coverage to 16

16 , the DOS
spectrum separates into three regions and the Fermi level
is within the band gap, resulting in semiconducting char-
acteristic and poor free carrier density. The reduction of
carrier density with the increment of hydrogen coverage
should be responsible for the reduction of HER perform-
ance (Fig. 2a). At the same time, we see that the DOS
spectrum of VS2 monolayer with a hydrogen coverage of
3
16 under ɛ = 6 % is divided into two regions and the carrier
density under the Fermi level is less than that under ɛ =

Fig. 3 Calculated total density of states of VS2 monolayer under a tension of 2 % (a–c), 6 % (d–f), and 10 % (g–i) at a hydrogen coverage of 3/16,
9/16, and 16/16, respectively
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2 % (Fig. 3d), leading to the reduction of HER activity.
Further increasing the tension (ɛ = 10 %), the gap between
two DOS regions is enlarged and the area under the Fermi
level is reduced, indicating reduced carrier density and
resulting in further reduction of HER activity, which is
consistent with the calculated Gibbs free energies (Fig. 2a).
Comparing the DOSs of VS2 monolayers with a hydrogen
coverage of 9/16 under ɛ = 2, 6, and 10 %, we see that the
carrier density under the Fermi level increases as the ten-
sion increases (Figs. 3b, e, h), as indicated by the reduced/
demolished gap around −0.5 eV, which is also consistent
with the calculated Gibbs free energies (Fig. 2a). At full
hydrogen coverage, we see that the HER activity of VS2
monolayer is not significantly improved (Fig. 2a). The cal-
culated DOSs show that the Fermi levels are within con-
duction bands (Fig. 3f, i). However, the strong sharp DOS
peaks around −0.8 eV may indicate localized states, which
may reduce the carrier density and increase charge recom-
bination centers, leading to differentially removing hydro-
gen difficult (Fig. 2a).

Conclusions
We carry out first-principles to investigate the effects of
tension on the hydrogen evolution reduction of VS2
monolayer. We find that tension can tune the HER per-
formance of VS2 monolayer at different hydrogen cover-
age. The HER activity at high hydrogen coverage is
greatly improved for both of individual and collective
processes by increased tension. The hydrogen coverages
for best HER performance in both individual and collect-
ive processes increase with the increment of tension.
Generally, individual process is easier to occur in a wide
range of hydrogen coverage, and collective process can
happen at certain hydrogen coverage at the same ten-
sion. The optimal HER performance of VS2 monolayer
with near-zero Gibbs free energy, comparable to Pt, can
be achieved by tuning tension. We further show that the
change of HER performance at different hydrogen cover-
ages and under various tensions is closely related to the
carrier density. High free carrier density is responsible
for the improved HER activity. During revision, we no-
ticed that Li et al. recently reported that strain can en-
hance the catalytic activity of MoS2 basal planes [51].
We see that the tension may provide an efficient way to
modify the HER performance of VS2 and other 2D
monolayers and find applications to water electrolysis
for hydrogen production.
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