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Abstract

A series of TiO2–ZrO2/SiO2 nanocomposites were synthesized using a liquid-phase method and characterized by
various techniques, namely, nitrogen adsorption–desorption, X-ray diffraction (XRD), X-ray photoelectron spectroscopy
(XPS), Raman spectroscopy, high-resolution transmission electron microscopy, and photon correlation spectroscopy (PCS).
It was revealed that the component ratio and calcination temperature affect the phase composition of nanocomposites.
Composites TiZrSi1 (TiO2:ZrO2:SiO2 = 3:10:87) and TiZrSi2 (10:10:80) calcined at 1100 °С demonstrate the presence of t-ZrO2

crystallites in TiZrSi1 and ZrTiO4 phase in TiZrSi2. The samples calcined at 550 °С were amorphous as it was found from
XRD data. According to the Raman spectra, the bands specific for anatase are observed in TiZrSi2. According to XPS data,
Zr and Ti are in the highest oxidation state (+4). Textural analysis shows that initial silica is mainly meso/macroporous, but
composites are mainly macroporous. The particle size distributions in aqueous media showed a tendency of increasing
particle size with increasing TiO2 content in the composites.
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Background
Highly disperse (nanoparticulate) oxide composites are
of great interest for individual applications not only as
heterogeneous catalysts with an adjustable set and
strength of surface active sites [1–4] but also as a part of
organic–inorganic composites and polymer fillers [5, 6].
Combination of dissimilar oxides allows to create surface
active sites, which are absent in individual components
[7]. The nature of active sites of solid acid catalysts is de-
fined by mobile surface protons generating Brønsted acid
sites and coordinately unsaturated cationic centers as
Lewis acid sites [8]. Therefore, much attention has been
focused on development of binary or ternary metal oxides
as heterogeneous catalysts [1]. Thus, the main objective to
prepare such nanoscale systems is aimed at controlling
their surface composition and particle morphology. One

of the common methods of the synthesis of nanoparticu-
late oxides is based on the use of a substrate of a high
specific surface area. The fumed silica properties are a
convenient vehicle for the synthesis of the mentioned
composites due to silica inertness in catalytic processes,
developed surface area, and homogeneity of active sites on
a surface [9]. Among various metal oxide catalysts, the
combination of titania and zirconia has attracted attention
in recent years. These mixed oxides have been extensively
used as catalysts and catalyst supports for a wide variety
of reactions [2]. TiO2–ZrO2 mixed oxide composites are
used as photocatalysts due to a reduced bandgap in com-
parison to individual components [3, 10–15]. They have
been reported to exhibit a high surface acidity due to an
imbalance of charges resulting from the formation of the
Ti–O–Zr bridges [14, 16]. According to [11], TiO2/SiO2

and TiO2/ZrO2 are characterized by more acidic proper-
ties than single/pure components. TiO2–ZrO2 system is a
strong solid acid showing catalytic activity in such reac-
tions as isomerization and cracking of alkanes, hydration
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and polymerization of alkenes, etc. [7, 17]. The most
widely employed methods to prepare TiO2–ZrO2 com-
posites are co-precipitation [18, 19] and sol–gel synthe-
sis [2, 10, 20, 21]. A method of grafting of mixed oxides
onto a surface of highly disperse matrices with nonporous
nanoparticles can be a good alternative to the mentioned
methods. Therefore, the objective of this study was the
synthesis of silica-supported titania–zirconia nanocom-
posites (TiO2–ZrO2/SiO2) and investigation of their mor-
phological and structural properties.

Methods
Materials
Fumed silica (pilot plant of the Chuiko Institute of Surface
Chemistry, Kalush, Ukraine), zirconium (Aldrich, > 98 %
Zr(acac)4), and titanyl (C10H11O5Ti) acetylacetonates
(Merck) were used as precursors to prepare oxide
composites.

Synthesis of Silica-Supported Titania–Zirconia
Nanocomposites
Silica-supported titania–zirconia nanocomposites (TiO2–
ZrO2/SiO2) were prepared using a liquid-phase method.
The synthesis was performed in a glass double-neck re-
actor equipped with a propeller agitator and a reflux con-
denser. Zr(acac)4 and C10H11O5Ti solutions in isopropyl
alcohol (IPA) were added to fumed silica (5 g; previously
calcined at 500 °C; specific surface area S = 283 m2/g) at
82.5 °С. The reaction mixture was stirred in the refluxing
tube for 1 h. Then, IPA and acetylacetone were removed
from the mixture by evacuation. The solid products were
dried and calcined at 550 °С and 1100 °С for 1 h. Ac-
cording to [22], the temperature range 500–550 °C cor-
responds to the destruction of acetylacetonate ligands
and complete removal of the volatile carbon components
upon oxide formation. But at 550 °C, a high probability of
the formation of the amorphous structure takes place,
while the temperature of 1100 °C was chosen as sufficient
for crystalline structure formation. The content of grafted
TiO2 was varied from 3 to 10 wt.% while ZrO2 content
was held constant at 10 wt.% (samples TiZrSi1 and
TiZrSi2, respectively).

X-Ray Powder Diffraction Analysis (XRD)
X-ray diffraction patterns were recorded at room tem-
perature using a DRON-3M diffractometer (Burevestnik,
St. Petersburg, Russia) with Cu Kα (λ = 0.15418 nm) ra-
diation and a Ni filter in the 2θ range from 10° to 70°.
The average size of nanocrystallites (Dcr) was estimated
according to the Scherrer equation [23]. Crystalline struc-
ture of samples was analyzed using the JCPDS Database
(International Center for Diffraction Data, PA, 2001) [24].
Silica was totally amorphous in all samples.

Raman Spectroscopy (RS)
The Raman spectra were recorded over the 150–3200-
cm−1 range using an inVia Reflex Microscope DMLM
Leica Research Grade, Reflex (Renishaw, UK), with Ar+

ion laser excitation at λ0 = 514.5 nm. For each sample,
the spectra were recorded at several points in order to
ascertain the homogeneity of the sample, and the aver-
ages of all these spectra were plotted.

X-Ray Photoelectron Spectroscopy (XPS)
The XPS measurements were performed using a VG
Scienta R4000 electron analyzer with an MX650 mono-
chromatized Al Kα (1486.6 eV) radiation source. The bind-
ing energy (BE) was referenced to Si 2p (BE = 103.5 eV)
with an accuracy of ±0.1 eV. Peak fitting was done using
Casa XP5 with Shirley background and 10:90 Lorentzian/
Gaussian convolution product shapes. The atomic concen-
tration ratios were achieved by determining the elemental
peak areas, following a Shirley background subtraction by
the usual procedures documented in the literature [25].

High-Resolution Transmission Electron Microscopy
(HRTEM)
The particulate morphology was analyzed using high-
resolution transmission electron microscope (HRTEM)
employing a Tecna™ G2 T20 X-TWIN (FEI Company,
USA) apparatus operating at a voltage of 200 kV with
LaB6 electron source. The samples were supported on
holey carbon copper grids by dropping ethanol suspen-
sions containing uniformly dispersed oxide powders.

Textural Characterization
To analyze the textural characteristics of TiO2–ZrO2/SiO2

nanocomposites, low-temperature (77.4 K) nitrogen
adsorption–desorption isotherms were recorded using
an automatic gas adsorption analyzer ASAP 2405N
(Micromeritics Instrument Corp., USA) after outgassing
the samples at 110 °C for 2 h in a vacuum chamber. The
values of the specific surface area (SBET) were calculated
according to the standard BET method [26]. The total
pore volume Vp was evaluated by converting the volume
of adsorbed nitrogen at p/p0 = 0.98–0.99 (p and p0 denote
the equilibrium pressure and saturation pressures of ni-
trogen at 77.4 K, respectively) to the volume of liquid
nitrogen per gram of adsorbent. The nitrogen desorp-
tion data were used to compute the pore size distribu-
tions (differential fV ~ dVp/dR and fS ~ dS/dR) using a
self-consistent regularization (SCR) procedure under
non-negativity condition (fV ≥ 0 at any pore radius R) at
a fixed regularization parameter α = 0.01 with voids (V)
between spherical nonporous nanoparticles packed in
random aggregates (V/SCR model) [27]. The differential
pore size distributions with respect to pore volume fV ~
dV/dR, ∫fVdR ~Vp were re-calculated to incremental pore
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size distributions (IPSD) at ΦV(Ri) = (fV(Ri+1) + fV(Ri))
(Ri+1 − Ri)/2 at ∑ΦV(Ri) =Vp). The fV and fS functions were
also used to calculate contributions of micropores (Vmicro

and Smicro at 0.35 nm < R < 1 nm), mesopores (Vmeso and
Smeso at 1 nm < R < 25 nm), and macropores (Vmacro and
Smacro at 25 nm < R < 100 nm).

Particle Size Distribution in Aqueous Media
Particle sizing for the aqueous suspensions of different
fine oxides were carried out using a Zetasizer 3000
(Malvern Instruments) apparatus based on photon cor-
relation spectroscopy (PCS, λ = 633 nm, Θ = 90°, soft-
ware version 1.3).
The aqueous suspensions of oxides 0.1 wt.% were pre-

pared using an ultrasonic disperser for 5 min (Sonicator
Misonix Inc., power 500 W and frequency 22 kHz) prior
to measuring particle size distribution.

Discussion
Textural Characterization
The nitrogen adsorption–desorption isotherms obtained
for initial silica and composites (Fig. 1a) demonstrate
sigmoidal-shaped behavior with a narrow hysteresis loop.
The incremental pore (voids between particles in aggre-
gates) size distribution functions (Fig. 1b) show that the
textural characteristics change after the modification.
The specific surface area (Table 1, SBET) does not

demonstrate a significant reduction after grafting of tita-
nia/zirconia. However, the total pore volume increases for
TiO2–ZrO2/SiO2 compared to the initial silica. Further-
more, there is a significant decrease in mesopore contribu-
tion to the total porosity with a simultaneous increase in
contribution of macropores. Moreover, the microporosity
is slightly reduced for composites compared to the initial
silica. Thus, the analysis of the results suggests the
existence of mainly meso/macroporosity of aggregates
of the initial silica and mainly macroporosity of the
composites (Fig. 1b).

High-Resolution Transmission Electron Microscopy
HRTEM images of TiO2–ZrO2/SiO2 nanocomposites
(Fig. 2) show the formation of titania–zirconia particles
(dark structures) at the silica surface (light structures).
The aggregated structures of grafted oxides varying be-
tween 15 and 50 nm in size are well observed for
TiZrSi1–2. Composites look like more compacted than
initial silica. Therefore, contribution of macropores in-
creases (Fig. 1b), as well as the total pore volume Vp

and Vmacro (Table 1) as an increased part of the empty
volume (Vem = 1/ρb−1/ρ0, where ρ0 and ρb are the true
density of oxide nanoparticles and bulk density of the
powder, respectively), in the powders. Note that any
treatment or modification of fumed silica results in a
decrease in the value of Vem, i.e., the value of ρb in-
creases, and sometimes the value of Vp increases, des-
pite a decrease in Vem, because nitrogen can fill only a
portion of macropores even at p/p0→ 1 [28].

X-Ray Powder Diffraction Analysis
XRD analysis of TiO2–ZrO2/SiO2 containing different
amounts of TiO2 (Fig. 3) shows that the samples TiZrSi1
and TiZrSi2 calcined at 550 °С are amorphous. A broad
peak in the range of 20–23° is due to amorphous silica
[29, 30]. Calcination at 1100 °C resulted in the appearance
of crystalline phases: t-ZrO2 (PDF-ICDD 80-0965) for
TiZrSi1 and ZrTiO4 (PDF-ICDD 74-1504) for TiZrSi2
(Table 2). For TiZrSi1, there are four sharp peaks at 30.5°,
35.3°, 50.4°, and 60.2°, which can be attributed to diffrac-
tion planes (111), (200), (220), and (311) of tetragonal zir-
conia (No. 79–1771). TiZrSi2 is characterized by peaks at
25.3°, 30.5°, 35.3°, 42.1°, 50.4°, 53.8°, and 61.4°, which can
be assigned to the planes (101), (111), (200), (211), (202),
(204), and (311) of crystalline ZrTiO4. The broad dif-
fraction peaks indicated a small size of crystallites that
signifies the influence of the silica substrate preventing
consolidation of nuclei of grafted oxides. The average
size of crystallites (Dcr) revealed a nominal increase
with increasing titania content (Table 2). Thus, the use

Fig. 1 Nitrogen adsorption–desorption isotherms (a) and incremental pore size distributions (b) for initial silica (curve 1), TiZrSi1 (2), and TiZrSi2 (3)
calcined at 550 °C
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of fumed silica as the inert substrate results in the for-
mation of small nanocrystallites of grafted oxides, only.

Raman Spectroscopy
Raman spectroscopy (Fig. 4) allows to get more informa-
tion on the sample structure, composition effects, fea-
tures of phase transition, and the quantum size effect.
Fumed silica does not show any Raman features, as re-
ported in the literature [31, 32]. It is known that zirconia
exists as three polymorphs: monoclinic (m-ZrO2), tetrag-
onal (t-ZrO2), and cubic (c-ZrO2). However, no Raman
bands at 280, 316, 462, and 644 cm−1 due to tetragonal
ZrO2 [33] or at 615 and 638 cm−1 due to monoclinic
ZrO2 [34] are observed.

Additionally, no Raman bands at 148, 263, 476, and
550 cm−1 due to three-dimensional amorphous zirconia
[35] are detected. For each sample, the spectra were
recorded at several points, and no shift in the band pos-
ition or differences of width were observed. This obser-
vation clearly reveals that all of the samples are mostly
in a homogeneous state. For sample TiZrSi1, characteris-
tic Raman bands are not observed. However, for sample
TiZrSi2, the well-resolved Raman peaks at 143, 400, 500,
518, 630, 810, and 1083 cm−1 are observed. Some of
these bands are specific to anatase [36] at 143 cm−1

(Eg, very strong), 197 cm−1 (Eg), 396 cm−1 (B1g), 514 cm−1

(A1g, B1g), and 637 cm−1 (Eg).
The obtained Raman spectrum is well correlated with

the data for ZrTiO4 [37, 38]. It was noted [33] that the

Table 1 Textural characteristics of initial and titania–zirconia-coated silica

Sample SBET (m
2/g) Smicro (m

2/g) Smeso (m
2/g) Smacro (m

2/g) Vmicro (cm
3/g) Vmeso (cm

3/g) Vmacro (cm
3/g) Vp (cm

3/g) Rp,V (nm)

SiO2 283 21 225 38 0.008 0.35 0.57 0.93 29

TiZrSi1 276 17 163 97 0.005 0.08 1.12 1.21 39

TiZrSi2 280 18 169 92 0.005 0.07 1.13 1.20 45

Specific surface area in total (SBET), of nanopores (Smicro), mesopores (Smeso), macropores (Smacro), and respective specific pore volumes (Vp, Vmicro, Vmeso, Vmacro). Rp,V
represents the average pore radius determined from the differential pore size distributions with respect to the pore volume

Fig. 2 TEM micrographs of TiZrSi1 (a) and TiZrSi2 (b, d) samples calcined at 550 °C and initial SiO2 (c)
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variations in broad bands at 148 (Eg), 401 (B1g), 522
(A1g or B1g), and 648 (Eg) cm–1 are characteristic for
anatase depending on the ratio TiO2:ZrO2 in films, but
no other bands characteristic for other polymorphs were
found. According to [37], the degree of line broadening in
a peak at 815 cm−1 as probing local microstructure was
chosen because this peak did not overlap with other peaks
and exhibited a pronounced change in the degree of line
broadening.
Thus, it can be seen that anatase is formed only at

relatively high concentration of TiO2 in the composite,
whereas at a low concentration of TiO2, the amorphous
titania is observed. Based on the presence of the back-
ground at the location of line Eg(1) for TiZrSi2, an
amorphous phase is also present. The intensity of the
Raman bands depends on several factors including grain
size and morphology [38]. A strong increase in line Eg(1)
background at the presence of small (2–3 nm) crystal-
lites was also noted previously [39]. Peak Eg(2) near
197 cm−1 has a very low intensity and in our composites
is not observed.
The absence of any other Raman features providing

inference that silica does not form any compound with
titania and zirconia is in line with XRD observations.

Surface Characterization by XPS
Formation of chemical bonds between components in
ternary oxides was investigated using the XPS method

(Fig. 5). Two main peaks for silicon (Si 2s and Si 2p),
two peaks for zirconium (Zr 3p and Zr 3d), and only
one main peak for titanium (Ti 2p doublet) were de-
tected in the spectra (Fig. 5). For all the samples, analysis
of the 1s line of the carbon showed that the states with a
binding energy within 284.7–290.8 eV are formed by a

Fig. 3 XRD patterns of TiZrSi1 (a) and TiZrSi2 (b) samples calcined at 550 and 1100 °C. Asterisks correspond to t-ZrO2 and black diamonds correspond
to ZrTiO4

Table 2 Characteristics of TiO2–ZrO2/SiO2 composites calcined
at different temperatures

Sample ID Composition СZrO2
(wt.%)

СTiO2
(wt.%)

СSiO2
(wt.%)

Dcr (nm)

550 °С 1100 °С

SiO2 SiO2 – – 100 a

TiZrSi1 TiO2–ZrO2/SiO2 10 3 87 a 4 (b)

TiZrS2 TiO2–ZrO2/SiO2 10 10 80 a 7 (c)

a amorphous, b t-ZrO2, c ZrTiO4

Fig. 4 Raman spectra for initial silica and composite TiZrSi1 and TiZrSi2

Sulym et al. Nanoscale Research Letters  (2016) 11:111 Page 5 of 9



variety of carbon bonds of surface hydrocarbon contam-
ination of samples [40].
For the analysis of the chemical state of elements

forming nanolayers TiO2–ZrO2/SiO2, the following line
core levels Si 2p, O 1s, Zr 3d, and Ti 2p were selected.
The detailed XPS spectra of oxygen for silica and ternary
oxide samples are compared (Fig. 6a). In oxygen O 1s
region, one can see that the positions of O 1s are slightly
shifted in samples TiZrSi1 and TiZrSi1 compared to the
initial silica. For TiO2–ZrO2/SiO2, the O 1s peak can be
divided into two bands O 1s A and O 1s B, and the ratio
of these components depends on the content of titania
(Fig. 6 and Table 3). The appearance of the O 1s peak at
lower energy is due to the effects of TiO2 and ZrO2 with
a large displacement of the electron density to the O
atoms than that in silica.
The binding energy of the Si 2p peak ranged between

103.5 and 103.7 eV (Fig. 6b) that are consistent with the
values reported in the literature [40]. The weak intensity

Fig. 5 Wide XPS spectra: TiZrSi1 and TiZrSi2

Fig. 6 Detailed XPS of O 1s (a), Si 2p (b), Zr 3d (c), and Ti 2p (d) initial silica (Si 2p, O 1s) and TiO2–ZrO2/SiO2 at different contents of TiO2 (TiZrSi1
and TiZrSi2) calcined at 550 °C
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of the spectra with large peak widths in case of TiZrSi1
and TiZrSi1 samples indicates that silica is not easily
accessible at the surface due to the presence of titania–
zirconia layers.
The Zr 3d5/2 and Ti 2p3/2 peaks (Fig. 6c, d) correspond

to the binding energy of 183.1–183.3 and 459.3–
459.6 eV, respectively, which represent the fully oxidized
zirconium ion Zr4+ and titanium ion Ti4+ [39]. Such
binding energies can be attributed both to the individual
metal oxides [39] and to ZrTiO4 [41, 42]. The observed
positive shifts of the peaks Ti 2p3/2 and Ti 2p1/2 (Fig. 6d)
relatively to the peaks in individual titania (458.7 and
464.7 eV) [40] may testify the formation of the Ti–O–Zr
bonds. The displacement was observed [43] for the
mixed triple films TiO2/ZrO2/SiO2. Note that during
mixed oxide formation, the inhibitive influence on the
growth and agglomeration of the individual phases of
the components occurs due to the formation of the
Ti–O–Zr bonds. In the investigated samples, the shift
of the Ti 2p3/2 peak relatively to pure TiO2 is larger for
TiZrSi1 at smaller content of TiO2 than for TiZrSi2
with a high content of TiO2. This fact shows that at in-
creasing TiO2 content in the ternary oxide, the number
of the Ti–O–Zr bonds decreases, i.e., at higher content,
TiO2 forms a separate phase, while at lower content it
forms TiO2–ZrO2 mixed oxide.

Particle Size Distribution
The degree of aggregation/agglomeration of nanoparti-
cles depends on their characteristics and interactions
with the dispersion medium. The initial silica is charac-
terized by nearly monomodal particle size distribution
(PSD) with a maximum at 21 nm (Fig. 7a, curve 1).
However, the PSD for composites is bimodal with two

peaks with respect to the particle number (Fig. 7a) and
particle volume (Fig. 7b). The PSDs for TiZrSi1 and initial
silica are similar, while for TiZrSi2, the aggregates are
characterized by larger sizes ~500 nm. Note that there is a
tendency of increasing particle size with increasing TiO2

content in the composites (Fig. 7, curves 2–3). The in-
crease of the average particle size in aqueous suspensions
can be associated as with a change in particle size during
the formation of a new phase of ZrO2/TiO2 during the
synthesis and also with influence of changes in surface
structure and related electrokinetic properties of the oxide
composites on the aggregation processes in an aqueous
medium.

Conclusion
In the present study, highly disperse silica-supported
titania–zirconia nanocomposites were synthesized by a
liquid-phase method. The samples were examined using a
set of techniques after their calcination at 550 and 1100 °C.
The structural characteristics (phase composition, average
size of crystallites) of the materials affected by pre-heating
were determined from the XRD data. The XRD mea-
surements indicated the presence of ZrTiO4 and ana-
tase in TiZrSi2 and tetragonal zirconia in TiZrSi1
calcined at 1100 °C. The TiZrSi1 and TiZrSi2 samples
calcined at 550 °С were XRD amorphous. The crystal-
linity slightly increased with increasing titania content
in nanocomposites. There is no indication of compound
formed with silica and titania or zirconia. The analysis of

Table 3 XPS core-level binding energy values (eV) for samples
studied

Sample ID O 1s Si 2p Zr 3d5/2 Zr 3d3/2 Ti 2p3/2 Ti 2p1/2

SiO2 532.90 103.52 – – – –

TiZrSi1 530.5 103.6 183.3 185.6 459.6 465.4

533.2

TiZrSi2 530.5 103.7 183.1 185.4 459.3 465.0

533.0

Fig. 7 PSD related to a particle number and b volume for silica and composites after sonication (3 min) of the aqueous suspensions (C = 0.1 wt.%) of
initial SiO2 (1), TiZrSi1 (2), and TiZrSi2 (3)
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the nitrogen adsorption–desorption data and HRTEM in-
dicates that the grafting new oxide phases changes the
textural characteristics of the powders. The incremental
pore size distribution functions revealed the existence of
mainly meso/macroporosity of aggregates of initial silica
and mainly macroporosity of TiO2–ZrO2/SiO2 nanocom-
posites. The HRTEM images show the presence of well-
dispersed Zr–Ti–oxide nanocrystallites ~15–50 nm in size
on the amorphous silica matrix. In line with XRD results,
Raman spectra show that silica did not form any com-
pound with titania or zirconia. The XPS results reveal that
O 1s, Si 2p, Zr 3d, and Ti 2p core-level photoelectron
peaks are sensitive to the phase composition of TiO2–
ZrO2/SiO2 nanocomposites. Moreover, XPS measure-
ments show that Zr and Ti ions are present in their high-
est oxidation states (+4). The shift of the peaks indicates
the possible formation of titanium–zirconium mixed
oxide. A tendency of increasing particle size with increasing
TiO2 content in the composites was detected accordingly
to the PSD characterization in the aqueous media.
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