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Current in the Protein Nanowires: Quantum
Calculations of the Base States
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Abstract

It is known that synthesis of adenosine triphosphoric acid in mitochondrions may be only completed on the
condition of transport of the electron pairs, which were created due to oxidation processes, to mitochondrions.
As of today, many efforts were already taken in order to understand those processes that occur in the course of
donor-acceptor electron transport between cellular organelles (that is, between various proteins and protein
structures). However, the problem concerning the mechanisms of electron transport over these organelles still
remains understudied. This paper is dedicated to the investigation of these same issues.
It has been shown that regardless of the amino acid inhomogeneity of the primary structure, it is possible to apply
a representation of the second quantization in respect of the protein molecule (hereinafter “numbers of filling
representation”). Based on this representation, it has been established that the primary structure of the protein
molecule is actually a semiconductor nanowire. In addition, at the same time, its conduction band, into which an
electron is injected as the result of donor-acceptor processes, consists of five sub-bands. Three of these sub-bands
have normal dispersion laws, while the rest two sub-bands have abnormal dispersion laws (reverse laws). Test
calculation of the current density was made under the conditions of the complete absence of the factors, which
may be interpreted as external fields. It has been shown that under such conditions, current density is exactly
equal to zero. This is the evidence of correctness of the predictive model of the conductivity band of the primary
structure of the protein molecule (protein nanowire). At the same time, it makes it possible to apply the obtained
results in respect of the actual situation, where factors, which may be interpreted as external fields, exist.
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Background
For some time past, the investigations of physical prop-
erties of proteins (particularly, such as transfer of energy
or transfer of charge [1]) are performed taking into
account their actual structure [2–10] with increasing
frequency. In effect, amino acid inhomogeneity [2, 3],
discreteness [4, 5], finite length of the α-spiral section
[6], and other factors [7–10] are inherent in general to
the structures containing carbon [11–13]. Particularly,
average-electron structure and average-nuclear structure
of the protein molecule were analysed in detail in article
[14]. The goal of the analysis within the present article
was to investigate the type of crystallinity of the primary
structure of these molecules, as well as to investigate the
possibility of performance of the electron transport

through this structure to a mitochondrion. Hypothesis
suppositions concerning the semiconductor type of crys-
tallinity of the primary structure of the protein molecule,
which were expressed long ago [15–20], were approved.
In fact, it is a semiconductor nanowire having the average-
oxygen structure of the electron configuration, as well as
the average-nitrogen composition of the nuclear subsys-
tem (along with the hydrogen compensators of the charge
deficit). The average-oxygen electron structure makes it
possible to implement the model, in accordance with
which such protein nanowire has five energy bands, one of
which is a conductivity band, while other energy bands are
valence bands. The average-nitrogen nuclear subsystem
makes it possible to select a relevant basis for transform-
ation into the numbers of filling representation in the
form of wave functions of the single-electronic nitrogen
ion (having the charge number z = 7). In addition, reason
of the electron transport over the protein nanowire was
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clear, that is, the reason of actual existence of a microcur-
rent through the primary structure of protein in the ab-
sence of external fields. This reason is connected with the
presence of residual electrostatic long-range field, which is
connected with the inhomogeneous pattern of the system
(this pattern is associated with the presence of radicals in
the amino acids). It has been established that availability
of not identical radicals has no any substantial influence
upon the electron configuration of the protein molecule,
because these radicals do not take part in the creation of
the primary structure. However, at the same time, avail-
ability of such radicals adds substantial complexity to the
elementary cell, and this fact has influence upon the struc-
ture of the spectrum of electronic states, particularly, upon
the energy structure of the conductivity band. The struc-
ture of this band is the main subject of scientific research
within the present article. And this subject of research is
based on the fact that protein molecule in the zeroth-
order approximation is considered in the nitrogen-oxygen
model [14] in the conditions of the absence of all external
influences, including those that are connected with the
amino acid inhomogeneity of the protein molecule. It has
been shown that in such conditions, which are idealised in
respect of the external field, the electron, which was
injected into the conductivity band, does not create any
current. This is the evidence of correctness of the energy
structure of the conductivity band, which was determined
in this article.

Methods
Description of an Electron Injection to the Conductivity
Band as an Excited State of a Protein Molecule
Energy operator of the primary structure of protein mol-
ecule (protein nanowire) in accordance with the numbers
of filling representation was formulated in article [14] as
follows:
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f n
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þ
f nbf n−

X
f n

X
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==Q fg
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Double slash primes over the summation symbols
point to the absence of those summands, where n = l =m.
Matrix elements, which are included to this operator, have
the following definitions εf≡ − (z/nf)

2εR . Subscript f of the
energy εf points to the standard set of quantum numbers:
f = {nf, lf,mf}, where nf = 1, 2, 3,… is the main quantum
number, which belongs to the set f, lf = 0, 1, 2, … , nf − 1

is the orbital quantum number, while mf = 0, ± 1, ± 2,
… , ± lf is the azimuthal quantum number of the same set.
Similar definitions exist for the sets g, f′, and g′ as

well. εR≡mee4

2 ℏ2 is the Rydberg energy, z is the charge num-
ber (for the average-nitrogen basis z = 7). This energy is
the same as the energy of the single-electronic nitrogen
ion, while the total amount, which holds this energy, has
physical significance of the considered system, within
which any interactions between electrons and nuclei are

absent. Qf g
n lm≡ φf n rð Þ

D ���ze2= r−lj j φgm rð Þ
��� E

is the modulus

of the matrix element of the energy of interaction between
an electron and all nuclei, which are situated in the
spatial positions: l. Averaging is made in accordance
with the quantum understanding over the hydrogen-
like wave functions of the single-electronic nitrogen
ion: φfn(r), φgm(r). They are centred in respect of the
spatial positions n, m; that is, they have the following
property: φfn(r)≡φf(r − n). This property makes it pos-
sible to formulate simplified representations for the
matrix elements, particularly, such representations,

which only depend on the difference n −m. V f g f ′ g′

nmn′m′≡

φf n r1ð Þφgm r2ð Þ
D ���e2= r1−r2j j φf ′ n′ r2ð Þφg′ m′ r1ð Þ

��� E
is the mo-

dulus of the matrix element of the electronic interaction

energy, while ~W ˜f g
nm≡ φf n rð Þ

D ���W rð Þ− 1=13ð Þ
X
l

ze2= r−lj jð Þ

φgm rð Þ
��� E

is the matrix element of the difference of

interaction energies of the electron with external influences.

In this case, W(r) is the external field, while 1=13ð ÞX
l

ze2= r−lj j� �
[14] is the effective external field, which is

associated with the amino acid inhomogeneity. As it may
be inferred from this definition, under certain circum-

stances for example; W rð Þ≈ 1=13ð Þ
X
l

ze2= r−lj j� � !
, this en-

ergy may be a negligible quantity.
Operators of occupation and operators of escapement

(creation/annihilation operators) of the electronic states
bþf n, bfn satisfy the anticommutation relations:

bf nb
þ
gm þ bþgmbf n ¼ δf gδnm ; bf nbgm þ bgmbf n

¼ 0 ; bþf nb
þ
gm þ bþgmb

þ
f n ¼ 0 ð2Þ

and act upon the functions of the filling numbers |… ,
Nfn,… 〉. Variables within these functions Nfn will take
only two values: Nfn = 0, if the state is not filled-in, and
Nfn = 1, if the state is filled-in. Influence of the operators
bþf n , bfn upon the functions of the filling numbers is
determined by the following relationships:
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bþf n … ;Nf n;…
�� � ¼ −1ð Þχ f n 1−Nf n

� �
… ; 1−Nf n;…
�� �

; bf n … ;Nf n;…
�� �

¼ −1ð Þχ f nNf n … ; 1−Nf n;…
�� �

Index of power χfn is equal to the quantity of the
filled-in states, which are situated before the state fn.
State of the system under consideration (protein nano-

wire—electron, which was injected into the conductivity
band f = с) may be described with the help of the wave
function as follows:

1j i ¼
X
n

anb
þ
сn 0j i ð3Þ

Vacuum state |0〉 of the entire system is determined in
Eq. (3) in such a manner that filling numbers for all
valence bands (Ef < Ec) at the zero temperature are equal
to 1, while for all conductivity bands filling numbers are
equal to 0. With the help of the anticommutation rela-
tions (2), it is not difficult to show that operation 〈1| 1〉

will be reduced to the equation: 1j1h i ¼
X
n

anj j2. This is
the basis for formulation of the normalisation condition
〈1| 1〉 = 1. With the help of this condition, it is possible
to attach probabilistic meanings to the values |an|

2, as
well as attach meanings of the wave functions of the
variable n to the values an. Orthogonality conditions are
met as well: 〈1| 0〉 = 〈0| 1〉 = 0. With the help of averaging
the operator (1) over functions (3), that is, due to execu-
tion of the operation E({a}) = 〈1|Ĥ|1〉, we will find the ef-
ficient functional in respect of the functions an:
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þ 2
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ð4Þ
In accordance with the above-presented meanings of

the matrix elements Qf g
n lm , V f g f ′ g′

nmn′m′ , and ~W ˜f g
nm , the

following values were introduced in the functional (4)
for the energy of the protein molecule, which was excited

as the result of the injection of an electron. wnm≡ Kn−m=2

−
X
f
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f 0 Q f f

0;m−n;0−
X
g
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g 0 γ
f g g f
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" #
is the en-

ergy of the interatomic interaction. This interaction plays
the leading part in the course of consolidation of the iso-
lated atoms into the single-coupled system. In this case,
additional values and meanings are introduced in order to
simplify entries and records: Kn −m = (ze)2/|n −m| is the
direct Coulomb interaction between atomic nuclei and

γ f g f
′ g′

nmn′m′≡V
f g f ′ g′

nmn′m′−V
f g g′ f ′

nmm′n′ . Factors of the type N Tð Þ
f 0 are

in fact Fermi-Dirac distributions. As concerns temperature,

these distributions have the following form with sufficient
degree of accuracy: N Tð Þ

f 0 ¼ 1þ exp Ef −μ
� �

=kT
� 	
 �−1 , where μ

is the chemical potential. In the conditions under consid-
eration, μ is determined by the following relationship: μ
= (Eс + Eν)/2, where “c” subscript is used in order to de-
note the conductivity band, which is characterised by the
lowest energy, while “v” subscript denotes the valence
band, which is the closest one to the above-mentioned
conductivity band. As concerns energies of Ef type in a
certain approximation, in accordance with which it is
possible to neglect the details concerning influence of the
temperature, it may be worth to consider the following

relationship: Ef ≡Na εf þ
X
g

γ f g gf0 0 0 0=2

 !
. However, in

the cases where these details are essential ones, then: Ef ≡

Na N Tð Þ
f 0 εf þ

X
g

N Tð Þ
f 0 N Tð Þ

g 0 γ
f g gf
0 0 0 0=2

 !
. In the absence of

the electron injection, the equilibrium-coupled state of the
atomic system is determined by the minimum of energy

wnm over the vector components n −m. Dс
n≡−

X
m ≠nð Þ

Q с с
0;m−n;0−

X
f

N Tð Þ
f 0 γс f f с

nmmn

" #
is an additional energy to

wnm. This energy, as it may be seen from the structure of
the functional (4), is substantially connected with the
excitation and it disturbs the equilibrium state of the
system. Such disturbance causes occurrence of non-
linearity in the system at the expense of the self-
influence of the excitation due to the response of the

crystal lattice to such excitation. ~W ˜ c c
nn≡ φcn rð Þh jW rð Þ−

1=13ð Þ
X
l

ze2= r−lj j� �
φcn rð Þj i represents influence of the

external fields (both actual and effective ones) upon the
injected electron. In the case of availability, only actual ex-
ternal field, energy of s electron may be represented for
the most part with the help of the following relationship:
W(r) = (r ⋅ J), where J − is the vector force constant (in
respect of the variable r). Then:

W cc
nn ¼ φс r−nð Þ r⋅Jð Þj jφс r−nð Þh i

¼ φс ρð Þ ρþnð Þ⋅Jð Þj jφс ρð Þh i ¼ ρс с⋅Jð Þ þ n⋅Jð Þ

As concerns the above-shown basis in the form of
wave functions of the single-electronic ion, the following
condition is always met: ρс с = 0. Then the considered
energy of the external field is reduced to the following
form: W cc

nn ¼ n⋅Jð Þ . At last, the matrix element Mс с
nm ,
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which is included to the functional (4), is determined

with the help of the strict equality: Mс с
nm≡− 1=2ð Þ

X
l

Q с с
0;l−n;m−n−

X
f

N Tð Þ
f 0 γс f f сn l l m

" #
. It is an additional sum-

mand to the energy (in the same manner as Dс
n ) and

describes dynamics of excitation, if it would be consid-
ered as a quasi-particle, that is, as the object of a classic
type. That is, the matrix element Mс с

nm , being the part
of energy of the system, is the actual value and it sat-
isfies the following condition: Mс с

nm ¼ Mс с
mn . Then it is

possible to reduce functional (4) to the following final
form:

E af gð Þ ¼
X
nm
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X
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⋅ anj j2

þ
X
nm
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ð5Þ

Such detailed meanings of the values, which are in-
cluded to the functional (5), are required in order to
have further possibilities for analysis of the issues under
consideration not only at the quality level, but in order
to make adequate quantitative estimates (which are im-
portant ones for the diagnostic and treatment under-
standing) as well.

Results and Discussion
States of Conductivity of the Protein Molecule
Regardless of the fact that the primary structure of the
protein molecule has a spiral form (α-spiral), we will
analyse this structure as a linear one. This is explained
by the fact that taking into account the spirality of its
form is only important in the cases where direction of
the external electric field does not coincide with the axis
of the α-spiral. Then, the injected electron is in the con-
ditions of the spatial-periodical field, and this problem
will require a special analysis and discussion. In this
case, the question is connected with calculation of the
conductivity states, upon which configuration of the pro-
tein nanowire in the conditions of absence of external
fields has only a slight impact. Therefore, we will restrict
our analysis with linear structure in order to simplify the
discussion.
In order to ensure approximation of the linearly elon-

gated protein nanowire, spatial variables n,m in the func-
tional (5) will loose their vector nature, and functional (5)
will have the following form:

E af gð Þ ¼
X
nm

=
wnm þ

X
n

~W ˜ с с
n n þ
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m ≠nð Þ

D с с
nm

0@ 1A anj j2
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X
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=
Μ с с
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ð6Þ

In addition, the above equation in this case takes into

account the following notion: Dс
n≡−

X
m ≠nð Þ

Q с с
0;m−n;0 −

X
f
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f 0 γс f f с
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,

from which it is possible to obtain an expression: D с с
nm≡−

Q с с
0;m−n;0−

X
f

N Tð Þ
f 0 γс f f с

nmmn

 !
, and for the spatially one-di-

mensional situation, which is under consideration, the ex-

pression will be as follows: D с с
nm ¼ − Q с с

0;m−n;0−
X
f

N Tð Þ
f 0 γс f f с

nmmn

 !
.

Now, we will use the approximation of the nearest
neighbours, which is typical for the one-dimensional
molecular structures, when all double amounts of the
functional (6) will only take into account the sum-
mands, which correspond to the neighbouring atoms:
m = n + Rn, where Rn is the distance between neighbour-
ing atoms (this distance may be different for different
values of n).
If we will analyse the structure of the periodically

recurring molecular group in the proteins (in fact, it is the
structure of the averaged amino acid residual) [14], then,
in accordance with the nitrogen model of the nuclear sub-
system, the spatial variable n will not determine a separate
atom. In this case, it will determine the entire amino acid
residual already. Therefore, it would be necessary to intro-
duce the second subscript for the atoms that are present
within this residual, for example, α, which will include all
atoms at the fixed value of n. Therefore, periodically re-
curring molecular groups will have the form, which is
schematically presented in Fig. 1 for the certain nth amino
acid residual in the protein nanowire.
If we will know the spatial organisation of the elemen-

tary cell, it will be possible to reproduce a relevant sub-
zone structure of the conductivity band. In accordance
with Fig. 1, all matrix elements now will be numbered
with the help of the double subscript n, α, where α = 0, 1,
2, 3, 4, while n = 1, …,N0, where N0 is the quantity of
the amino acid residuals, but it is not the quantity of
separate atoms, as it was earlier in the functionals
(4)–(6).
In the presence of an excitation in the form of the

electron, which was injected into the conductivity band,
interatomic equilibrium disturbs in such a manner that
equilibrium distances Rαþ1

n change quite significantly
and such excitation takes form of a soliton wave. For the
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time being, we will neglect this effect in order to pay
attention to the conductivity states.
Let us consider that the equilibrium state is not dis-

turbed, as well as that conditions Rαþ1
n ¼ Rαþ1≡R0 are

met. Then, with the help of the transformation of the
functional (6) in accordance with the latter supposition,
as well as in accordance with Fig. 1, we may determine
such working form of this functional:

E af gð Þ ¼ Nawþ
XN0

n¼1

"X4
α¼0

~W ˜α
n þ Pα

� �
anαj j2þM

�
(X1

α¼0

a�nαan; αþ1 þ a�n; αþ1anα
� �

þ

þ
X3
α¼2

a�n; α−1an; αþ1 þ a�n; αþ1an; α−1
� �

þ a�n2anþ1; 0 þ a�nþ1; 0an2
� �)#

:

ð7Þ

Within this functional, “c” subscripts, which symbolise
conductivity band, are eliminated. Na is the quantity of
atoms, while N0 =Na/5 is the quantity of the amino acid
residuals. Designations for w≡w(R0) and M≡M(R0) may
be obtained in a successive order from the general
specifications:

wnm≡Kn−m=2−
X
f

N Tð Þ
f 0 Q f f

0;m−n;0−
X
g

N Tð Þ
f 0 N Tð Þ

g 0 γ
f g g f
nmmn=2

" #
ð8Þ

Mс с
nm≡− 1=2ð Þ

X
l

Q с с
0;l−n;m−n−

X
f

N Tð Þ
f 0 γс f f сn l l m

" #
ð9Þ

Field summand ~W ˜α
n is denoted as follows: ~W ˜α

n≡
~W ˜ с с

nα; nα, while coefficients Pα taking into account des-
ignation D≡Dс с(R0), as well as the general
specification:

D с с
nm ¼ Q с с

0;m−n;0−
X
f

N Tð Þ
f 0 γс f f с

nmmn ð10Þ

are determined by the relationships: P0≡DccðR1
nÞ≡D ;

P1≡DccðR2
nÞ þ DccðR3

nÞ=2≡3D=2; P2≡DccðR4
nÞ=2þ DccðR5

nÞ
≡3D=2 ; P3≡DccðR3

nÞ=2≡D=2 ; and P4≡DccðR4
nÞ=2≡D=2 .

Now, we will perform variation of the conventional

functional of the considered system: Econd af gð Þ ¼ E af gð Þ

þε 1−
XN0

n¼1

X4
α¼0

anαj j2
 !

, where the main part of this func-

tional is determined in (7), while its conventional part is

connected with the normalisation condition:XN0

n¼1

X4
α¼0

anαj j2 ¼ 1 . Parameter ε is the energy eigenvalue.

As the result of variation of the functional Econd({a}) in

respect of the functions anα on the condition of ~W ˜α
n ¼ 0,

as well as due to presentation of these functions in the
form of: anα =Aα exp(i kR0n), it is possible to obtain such
system consisting of five equations in order to determine
both Aα coefficients, and x≡ε/|D| eigenvalue, which deter-
mine energy ε:

ðxþ 1ÞA0 þ vA1 þ ve−ikR0A2

¼ 0; vA0 þ ðxþ 3=2ÞA1 þ vA2 þ vA3

¼ 0; veikR0A0 þ vA1 þ ðxþ 3=2ÞA2 þ vA4

¼ 0; vA1 þ ðxþ 1=2ÞA3 ¼ 0; vA2 þ ðxþ 1=2ÞA4

¼ 0

In this case, we have introduced new designation:
v≡|M/D|, as well as we have used Born-Karman condi-
tion: a1 α ¼ aN0þ1 α , which determines the wave vector:
k = 2π j/N0R0, where, as usual, j will take integer
values: j= 0, ± 1, ± 2, …, of which only the first N0

values correspond to the independent solutions.
Compatibility condition of this system leads to the equa-

tion of the fifth degree in respect of the non-dimensional
eigenvalue x:

Fig. 1 Schematic presentation of the amino acid residual. Dash lines
represent its conventional borders. Digits represent quantities of
atoms within each such group. Within the nitrogen model of the
nuclear subsystem, all atoms are similar; Rαþ1

n − distances between
atoms (α = 0, …, 4)
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x5 þ 5x4 þ 1
2

19−10v2
� �

x3 þ 1
2

17−26v2 þ 4v3 cos kR0ð Þ� �
x2 þ

þ 1
16

57−164v2 þ 32v3 cos kR0ð Þ þ 48v4
� �

xþ 1
16

� 9−40v2 þ 8v3 cos kR0ð Þ þ 32v4
� � ¼ 0 :

ð11Þ

The detailed graphical and numerical analysis of Eq.
(11) makes it possible to develop the approximation
solution of this equation. Because of there exist five such
solutions, it is suitable to present the same in the matrix
form and describe all five roots of Eq. (11) with the help
of one relationship:

xs v; kð Þ ¼ −

1:0
3=2
3=2
1=2
1=2

0BBB@
1CCCAþ

v2
v

−v
v2

v2

0BBB@
1CCCAþ

3:15v4
−2:49v2

−1:42v2

−1:23v4

3:72v4

0BBB@
1CCCA

−v3

0:68
−3:10
1:90

−0:35
0:87

0BBB@
1CCCA cos kR0ð Þ :

ð12Þ

State subscript “s” will take five values (for example,
from 0 to 4) and within the representation (12), it will
accept these solutions from the top to the bottom. In
spite of the approximate nature of these solutions, they
are enough accurate as concerns quantitative under-
standing practically for any values within the interval 0
< v < 1, more particularly for the values that are close to
v = 0.4. In the case of deviation from the value v = 0.4,
numerical factors in the third summand of the right part
of the expression (12) may slightly change. From the
physical point of view, relationship of the resonance
exchange energy |M| to the main part of the excitation
energy |D|: v≡|M/D| will ensure fulfilment of the follow-
ing condition: 0 < v < 1.
It is obvious that at v ≠ 0, all eigenvalues are not

degenerate values. Only in the idealised conditions, at
v = 0, we will observe a pairwise degeneracy of two
states: x1(v, k) = x2(v, k) and x3(v, k) = x4(v, k). In this case,
one pair of these states x1,2(v, k) is always situated energet-
ically lower lying of the non-degenerate state x0(v, k), while
the second pair x3,4(v, k) is always situated energetically
higher lying of the non-degenerate state x0(v, k). As
concerns each root of Eq. (12), if we will substitute this
root into the output system, we will obtain

ðxþ 1ÞA0 þ vA1 þ ve−ikR0A2

¼ 0; vA0 þ ðxþ 3=2ÞA1 þ vA2 þ vA3

¼ 0; veikR0A0 þ vA1 þ ðxþ 3=2ÞA2 þ vA4

¼ 0; vA1 þ ðxþ 1=2ÞA3 ¼ 0; vA2 þ ðxþ 1=2ÞA4

¼ 0

At the same time, taking into account the normalisa-

tion condition:
XN0

n¼1

X4
α¼0

anαj j2 ¼ 1 , it is possible to find

five solutions for Aα coefficients in the form of five sets
for them. However, there is no necessity to do so in the
conditions of the absence of external fields. One thing is
only important: it is necessary to state the fact of exist-
ence of these solutions, as well as the fact that they are
normalised to the figure of one.
With the help of representation (12) and designation

x≡ε/|D|, it is possible to find out actual (dimensional)
eigenvalues of energy: εs(v, k) = |D| xs(v, k).
In order to formulate the final determination for the

energy of the “protein nanowire-injected electron” system
(this energy will be an important figure later on), we will

return to the conventional functional: Econd af gð Þ ¼ E

af gð Þ þ ε 1−
XN0

n¼1

X4
α¼0

anαj j2
 !

. On the one hand, the sec-

ond summand (along with the multiplicand ε) within this
expression for the energy is identically transformed into 0,
if anα =Aα exp(i kR0n) solutions exist and if they are nor-
malised. Then, the following relationship: Econd({a}) =
E({a}) is obvious. On the other hand, in order to clear up
the question on the explicit form of energy E({a}), as well
as on the explicit form of energy Econd({a}) (without ne-
cessity to find out the explicit forms of the wave functions
anα =Aα exp(i kR0n)), we will utilise the following con-
siderations. This same energy may be described in the

form as follows: Econd af gð Þ ¼ εþ E af gð Þ−ε
XN0

n¼1

X4
α¼0

an αj j2.
The eigenfunctions anα =Aα exp(i kR0n), if they were

found, will ensure transformation of E af gð Þ−ε
XN0

n¼1

X4
α¼0

an αj j2 (the part of the difference, which depends on anα)
into 0 (zero). It follows from the expression (7), that
only product Naw will remain from this difference,
and at the same time, we will have the following ex-
pression for the energy, which we want to determine:
Econd({a}) =Naw + ε. Therefore, taking into account
the equality: Econd({a}) = E({a}), we at last will come
to the following expression:
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Es v; kð Þ ¼ Nawþ εs v; kð Þ≡Nawþ Dj j xs v; kð Þ

The energy Es(v, k) may be detailed up to the
calculated-and-evaluative level with the help of expres-
sions (8)–(10). Particularly, such detalization may be
interested from the special point of view, where it may
help to determine influence of the temperature upon the
electron subsystem, as well as upon the microcurrent
due to the presence of the injected electron in the condi-
tions of availability of external fields. However, we will
not detail this energy here, because the main goal of this
research is not connected with the detailed calculation
of the determined energies; this research is aimed at
the qualitative analysis of the general properties of
conductivity.

Determination of Current Density
Current density has such a general definition: j = e nV,
where e is the charge of an electron; n is the average vol-
ume density of charges. As concerns a single-injected
electron, this density (with the accuracy to the e n prod-
uct, which is a constant value for each protein molecule)
in fact is determined by the velocity V. Taking into con-
sideration the fact that current is to be determined based
on the consideration on an injected electron, it is neces-
sary to consider this electron as a free quasi-particle of
the classic type within the conductivity band of the pri-
mary structure of the protein molecule [19–21]. In this
case, each of the eigenvalues Es(v, k) for the energies of
subzones is to be considered as a classic Hamiltonian of
the wave pulse p = ℏ k [21, 22].
The above was a brief justification of the possibility of

review of the primary structure of the protein molecule
as a linear elongated object. Therefore, taking into con-
sideration the Hamiltonian pattern of energy Es(v, k) in
respect of the wave vector k, it would be sufficient to
analyse only the value of velocity in the spatially one-
dimensional situation (this velocity is a standard one for
the solid bodies): Vs(v, k) = (1/ℏ)[dEs(v, k)/dk]. It is im-
portant to underline that negativity of the value Vs(v, k)
is to be interpreted as the opposite directionality of the
velocity vector in respect of those direction, which was
determined as the positive one.
With the help of the explicit form of the energy Es(v, k)

in the expression for the velocity, it may be found out that:

Vs v; kð Þ ¼ 1
ℏ Dj jR0

0:68
−3:10

1:90
−0:35

0:87

0BBB@
1CCCAv3 sin kR0ð Þ . As it may be

inferred from this expression, two of these velocities (the
velocities, which correspond to the “abnormal” subzones
E1(v, k) and E3(v, k)) are presented as negative values
as compared with the other (“normal”) subzones.

Therefore, in accordance with the general definition j = e
nV, we will have for the current densities the following

expression: js ¼ e Dj jR0

ℏN0V 0

0:68
−3:10

1:90
−0:35

0:87

0BBB@
1CCCAv3 sin kR0ð Þ . Here, we

have taken into account that for a single-injected electron:

n ≡1/N0V0, where V0 is the effective average volume of the

amino acid residual, while N0 is the quantity of the amino

acid residuals (as it was already noted above).
Based on any physical considerations (both classic

ones, and quantum ones; “classic language” says about
parallel connection, while “quantum language” says
about equal probability of the conductivity channels), it
is obvious that the value of the general current density j
within the entire conductivity band is determined by the

following sum: j ¼
X4
s¼0

js . If we will substitute the values

js, which we have just determined, we will obtain: j = 0.
This result (which is an unexpected one, at the first
glance) we have to consider in effect as the test result
concerning correctness of the entire previous analysis.
Because of the conditions where there are no any fac-
tors, which would disturb an electrostatic equilibrium of
the system and which may be interpreted as external
electric fields, no current must exist.

Conclusions
It has been shown that the primary structure of the pro-
tein molecule may be considered as a semiconductor
nanowire in accordance with the numbers of filling rep-
resentation. Based on this representation, it has been
established that the conductivity band consists of five
subzones. Three of these subzones have normal disper-
sion laws, while the rest two sub-bands have abnormal
dispersion laws. Current density was calculated in the
conditions of the complete absence of any disturbances
of the electrostatic equilibrium of the system. It has been
shown that under such conditions, current density is
exactly equal to zero, and this fact is the evidence of
correctness of the calculated conductivity band, as well
as evidence of possibility to apply this calculated con-
ductivity band in respect of the actual situation, which is
connected with the presence of external fields.
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