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Abstract

The coupling plasmon of a hybrid nanostructure, silver island (SI) associated with silver nanoparticle (SNP), on
metal-enhanced fluorescence (MEF) was studied theoretically. We used the multiple multipole method to analyze
the plasmon-mediated enhancement factor on the fluorescence of a molecule immobilized on SNP and located
in the gap zone between SI and SNP; herein, the SI was modeled as an oblate spheroid. Numerical results show
that the enhancement factor of the hybrid nanostructure is higher than that of a SNP or a SI alone due to the
coupled gap mode. This finding is in agreement with the previous experimental results. In addition, the plasmon
band of the structure is broadband and tunable, which can be red-shifted and broadened by flattening or enlarging SI.
Based on this property, the hybrid nanostructure can be tailored to obtain the optimal enhancement factor on a
specific molecule according to its excitation spectrum. Moreover, we found that there is an induced optical force
allowing SNP be attracted by SI. Consequently, the gap is reduced gradually to perform a stronger MEF effect.

Keywords: Metal-enhanced fluorescence, Silver island, Silver nanoparticle, Surface plasmon resonance, Oblate
spheroid, Excitation rate, Apparent quantum yield, Enhancement factor, MMP

Background
In the past decade, using metallic nanostructures to
perform the metal-enhanced fluorescence (MEF; or
called surface-enhanced fluorescence) has attracted a lot
of attentions [1–11]. Due to the localized surface plas-
mon resonance (SPR) of gold or silver nanostructures,
the local electric field in their vicinity can be enhanced
significantly to raise the excitation rate on a nearby mol-
ecule [11–17]. Additionally, the plasmon-mediated
Forster resonance energy transfer (FRET) between the
excited molecule and the nanostructure facilitates the
emission of the fluorescence, so as to raise the quantum
yield and reduce the lifetime of the fluorescence dramat-
ically [6–8, 15–21]. In particular, for some molecular
fluorescence with low quantum yield, the MEF becomes
of importance [7]. The advantages of MEF include the
increased detectability and photostability of fluoro-
phores. Moreover, Purcell effect has elucidated that the
environment can modify the spontaneous emission of

emitters [22–24]. A variety of nanostructures have been
proposed for the purpose such as silver nanoparticle
(SNP), nanoshell, gold nanorod, silver nanotriangle, and
silver island film (SIF) [25–40]. For example, SIF with
discrete silver islands (SIs) on a substrate has been
widely used for sensing single molecular fluorescence
and protein in nano-biotechnology [2, 5, 8, 10]. Recently,
a hybrid nanostructure using SIF associated with SNPs
has been developed to enhance the fluorescence of mol-
ecules located within the gap zone between the SI and
SNP [41]. The hybrid nanostructure of SNPs over SIF on
a substrate forms a sandwiched layer where the detected
molecule is in between the gap of SI and SNP. Within
the nanogap, which is a hot spot, the MEF can be
performed significantly. In addition, this new structure
can also be applied to the surface-enhanced Raman
scattering (SERS) [42–44].
In this paper, the MEF performance of the new hybrid

nanostructure, a SI associated with a SNP, is studied and
characterized theoretically [41]. In this hybrid nanostruc-
ture, SI associated with SNP forms a heterodimer with a
nanogap [41, 45, 46]. We use the multiple multipole
(MMP) method to analyze the excitation rate, apparent
quantum yield, and enhance factor (EF) upon a molecule
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within the gap zone of the hybrid nanostructure [47–50].
Here, SI is simply modeled as an oblate spheroid. The
MMP method has been used to study the MEF of a metal-
lic dimer structure [23, 45, 46]. In this paper, we assume
that the molecule is immobilized on the surface of SNP
with a fixed distance for real applications. The effects of
the gap between SI and SNP and the distance between
molecule and SNP on the excitation rate are investigated.

Methods
The configuration of a SI with an oblate-spheroid shape

of x
a

� �2 þ y
a

� �2 þ z
b

� �2 ¼ 1 associated with a SNP above it
is shown in Fig. 1a, where the distance of gap between
SNP and SI is denoted by dg. The aspect ratio (AR) of SI
is a/b; a > b. We assume that a molecule is immobilized
on the surface of SNP with a distance d; the relative pos-
ition r.w.t. SNP is shown in Fig. 1b. In the following, the
MEF of the molecule located within the gap zone is par-
ticularly discussed. The wavenumber vector and the
electric field of the incident p-polarized plane electro-
magnetic (EM) wave are denoted by k and Ei, respect-
ively; both vectors are assumed on the yz plane. The
obliquely incident angle of the plane wave is denoted by
α; the angle between k and −ez. In addition, the position
vector of the molecule is represented by xd. The unit
vector of the dipole moment ed of the molecule (electric
dipole) is also on the yz plane; ed = (0, sinθ, cosθ), where
θ is the angle between ed and ez.

Excitation Rate
For the excitation stage of the molecule, the hybrid
nanostructure is irradiated by an incident plane EM
wave. The excitation rate at an excitation wavelength

λex, which is the normalized intensity for exciting the
emitter, is defined as [51, 52]

Ψ ed; xd; λexð Þ ¼ E xd; λexð Þ⋅edj j2= Ei
�� ��2 ð1Þ

Here, E is the total electric field induced by the inci-
dent plane wave at the emitter’s location xd, and |Ei| is
the amplitude of the electric field of the incident plane
wave. The total EM fields (E, H) in the exterior area
are the linear sum of the incident and scattered fields:
E = Ei + Es and H =Hi +Hs. According to the previous
researches, the strongest electric fields always occur in
the gap zone between metallic dimer [23, 45, 46].
Therefore, the hybrid nanostructure performs as a
nanolens to focus an incident wave into the gap zone,
which is a hotspot area [41]. The excitation rate at the
position of the molecule (emitter) exhibits the amplifi-
cation effect of the electric field caused by the hybrid
nanostructure.

Apparent Quantum Yield
Once the excited molecule is activated, it behaves as an
oscillating electric dipole (an emitter) to radiate fluores-
cence at an emission wavelength λem in the subsequent
emission stage. Since the radiation of the emitter is
significantly affected by the hybrid nanostructure, the
interaction of the dipole with the nearby SI and SNP is
needed to be further studied. For this model, MMP
method is also applied to analyze the near-field and far-
field responses of the emission of the emitter. First, we
need to calculate the dipole’s radiative power Pr, the
power emitted to the far field, and the nonradiative
power Pnr, the dissipating one inside the metallic hybrid
nanostructure [23]. Both powers of the electric dipole

Fig. 1 a Configuration of SI (an oblate spheroid), associated with SNP conjugated with a molecule on the surface, irradiated by an incident-polarized
plane wave in water, where k and Ei are on yz plane, the incident angle between k and −ez is α, and the gap between SI and SNP is dg. b The enlarged
drawing of SNP conjugated with a molecule, where the orientation angle of the dipole moment of molecule is θ, the distance between SNP and
molecule is d, and the angle of molecular position r.w.t. the center of SNP is ϕ
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with an orientation vector ed at the position xd in the
presence of the hybrid nanostructure are expressed in

terms of the Poynting vector Ed � �Hd in terms of the
total EM fields (Ed, Hd) in the exterior area as,

Pr ¼ 1
2
Re

Z
S

Ed � �Hd⋅n ds

8<
:

9=
; ð2Þ

Pnr ¼ −1
2
Re

Z
Sc

Ed � �Hd⋅n ds

8<
:

9=
; ð3Þ

where S is an any simply closed surface enclosing the
dipole and the hybrid nanostructure and Sc is the total
surface of SI and SNP [23, 51, 52]. Here, Re denotes the
real part, and the over bar is the complex conjugate. In
the following, these two powers will be normalized by
the radiative power of a free electric dipole. We assume
the surrounding medium is lossless material, e.g., water,
and the molecule is an ideal emitter. In terms of the two
powers, the apparent quantum yield η of the system is
defined by

η ed; xd; λemð Þ ¼ Pr

Pr þ Pnr
: ð4Þ

The apparent quantum yield represents the efficiency
of the emission of an ideal electric dipole affected by a
nearby hybrid nanostructure; 0 ≤ η ≤ 1 [23].

Enhancement Factor
Furthermore, the EF is defined as a multiple of the
excitation rate and the apparent quantum yield, Ψ(ed,
xd; λex) ⋅ η(ed, xd; λem), where λex and λem are the excita-
tion and emission wavelengths, respectively [23]. Here,
EF is a function of ed and xd, as well as λex and λem;
λex ≤ λem. In addition, EF depends on the configuration
of the plasmonic hybrid nanostructure and the incident
angle of the plane wave, as shown in Fig. 1.

Optical Force
When the hybrid nanostructure is irradiated by the inci-
dent plane wave, optical forces exerted upon SNP and SI
are also induced. Since the SI is assumed to be fixed on
a substrate, we only consider the optical force on SNP in
the following. The optical force F in terms of Maxwell
stress tensor T can be expressed by a surface integral,

F ¼
Z
SNP

T⋅nds ð5Þ

where SNP is the surface of SNP. The Maxwell stress
tensor in terms of the total EM field is expressed as
[53, 54]

T ¼ 1
2
Re εE�E þ μH �H−

1
2

εE⋅�E þ μH⋅�Hð Þ I
� �

ð6Þ

which is the average value of a period.

Results and discussion
A typical SI of (a, a, b) = (70, 70, 35) nm with an AR of
a/b = 2 is used for study. The surrounding medium is
water, and the frequent-dependent permittivity of silver
in Ref. [55] is used for analysis. Figure 2a shows the

Fig. 2 Scattering efficiencies of a hybrid nanostructure consisting of
a a SI of (70, 70, 35) nm associated with a SNP of r = 30 nm, with a
gap of 30 nm irradiated by plane waves with different incident angles
(α = 0°, 30°, and 45°), and b a SI of (60, 60, 35) nm associated with a
SNP of r = 30 nm with different gap dg (30 nm, 40 nm or 50 nm)
irradiated by 45°-incident plane wave
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scattering efficiencies of a hybrid nanostructure, a SI of
(70, 70, 35) nm associated with a SNP of 30 nm, with a
gap of 30 nm irradiated by plane waves with different
incident angles (α = 0°, 30° and 45°) [56]. From these
spectra, the plasmon band of this hybrid nanostructure
is broad, from 400 to 650 nm, where the plasmon peak
is at 593 nm. The results demonstrate that the longitu-
dinal plasmon band of SI (60, 60, 35) nm is also wide
and the plasmon-peak wavelength is 562 nm, which is
shorter than that of SI (70, 70 35) nm. This property
illustrate that the plasmon band of the structure is tun-
able by tailoring the AR of SI. In Fig. 2a, the first mode
at 420 nm is corresponding to the plasmon mode of
SNP as well as the transverse plasmon mode of SI and
the second one at 593 nm the longitudinal plasmon
mode of SI; the transverse mode and longitudinal mode
are the results of the collective motion of free electrons
oscillating along the short and long axes, respectively.
When the incident angle is 0° (the normal incidence
case), the electric field of the incident light is parallel to
the long axis (y axis), so the longitudinal plasmon mode
of SI is easily induced. Hence, as the incident angle
increases, the contribution of this longitudinal mode will
be reduced, and that of transverse mode will be in-
creased. In addition, the scattering efficiencies of another
hybrid nanostructure with a small SI of (60, 60, 35) nm
are shown in Fig. 2b for different gaps (30, 40, 50) nm;
AR = 1.71. Figure 2b shows that these two modes are at
420 and 540 nm, almost the same for different gaps
(30, 40, 50) nm. This is because the coupling modes of
the hybrid nanostructure do not clearly appear until
that the gap is smaller than 10 nm.
The yz-plane cross section of the near-field |E| distribu-

tion and the far-field scattering pattern Re Es � �Hs⋅eR
� �

R2

as R→∞ of the hybrid nanostructure consisting SI of
(70, 70, 35) nm and SNP of r = 30 nm are shown in
Fig. 3, where the incident angle is 45° and the excitation
wavelength is 593 nm. Here, R is the distance of the ob-
serving point from the origin of the coordinates. The
scattering pattern demonstrates that the directionality
of the scattered Poynting vector (energy flux) at far
field is along the z axis. This is because that the plas-
mon oscillation along the long axis (y axis) of SI domi-
nates the light scattering, no matter of the incident
angle. Therefore, the far-field scattering cross section
looks like an 8-shape with a major energy flux along
the z axis. Furthermore, we assume the molecular pos-
ition is at ϕ = 45° with a distance d = 15 nm from SNP,
as shown in Fig. 1b. For this case, the 3D spherical plot
of the excitation rate Ψ(ed, xd; λex) versus the orienta-
tion angle θ of the electric dipole is shown in Fig. 4a,
where λex = 593 nm and α = 45°. The yz-plane cross sec-
tion of Fig. 4a is shown in Fig. 4b; the maximum excita-
tion rate occurs at θ = 31°. Subsequently, the excitation

rate of the hybrid nanostructure versus the excitation
wavelength is shown in Fig. 4c, where α = 45°, dg =
30 nm, d = 15 nm, and θ = 31°. The excitation rates of
SI or SNP alone are also plotted in Fig. 4c. Comparing
these curves, we can find that the excitation rate of the
hybrid nanostructure is larger than that of SI or SNP
alone. Additionally, the excitation-rate spectra of the
hybrid nanostructure are broadband, compared to
those of SI and SNP alone. The maximum excitation
rate is 25 at 440 nm, and the excitation rate is still as
high as 7.24 at 593 nm. We can increase the excitation
rate by reducing the gap. Figure 5a shows that the exci-
tation rate versus the gap dg at λex = 488 or 593 nm, where
d = 5 nm, ϕ = 45°, and θ = 31°. The results indicate that

Fig. 3 a Near field |E| and b far-field scattering pattern in yz plane
for SI of (70, 70, 35) nm coupled with SNP of r = 30 nm irradiated by
a 45°-incident plane wave of 593 nm in water, where dg = 30 nm
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the excitation rate of 488 nm is larger than that of 593 nm
and can be increased as the gap is reduced. However, if
the distance between molecule and nanostructure is too
small, the apparent quantum yield could be reduced dra-
matically to cause the quenching of fluorescence [48, 49].
Moreover, if the molecule is located at the center line of
the hybrid nanostructure (i.e., ϕ = 0°), the excitation rate
can be raised more, as shown in Fig. 5b, where d = 5 nm
and θ = 0°. This illustrates that the excitation rate is also
sensitive to the molecular location in the gap zone.
Figure 6a shows the normalized radiative and nonradia-

tive powers, and the apparent quantum yields of an emit-
ter with θ = 31° affected by a hybrid nanostructure, SI of
(70, 70, 35) nm associated with SNP of r = 30 nm, where
dg = 30 nm, ϕ = 45°, and d = 15 nm. These results indicate
that the plasmon-mediated FRET can enhance the radia-
tive and nonradiative powers both within a broadband
range of 400 to 700 nm. This implies that the lifetime of
fluorescence in this range can be reduced dramatically.
Moreover, the apparent quantum yield indicates that the

hybrid nanostructure is like a low-pass filter with a cutoff
wavelength of 400 nm for the emission of a vicinal electric
dipole. When the emission wavelength is longer than
400 nm, the apparent quantum yield is about 0.9. In
contrast, as the emission wavelength is shorter than
400 nm, the emission is severely suppressed. The near-
field mapping of |E| of an electric dipole at λem = 618 nm
is shown in Fig. 6b. The far-field radiation pattern in yz
plane of an electric dipole in the presence of the hybrid

nanostructure is plotted in Fig. 6c; Re Ed � �Hd⋅eR
� �

R2 as

R→∞ at λem = 618 nm. The far-field radiative pattern
demonstrates that the emission on the backside of SI is
suppressed, and the main lobe of the radiation pattern is
in the opposite direction of the incident plane wave, as
shown in Fig. 6c. This important directionality of the
emission is attributed to the nanoantenna effect of the
hybrid nanostructure.
In order to assess the overall MEF effect of the hybrid

nanostructure on the spontaneous emission of a single

Fig. 4 a 3D spherical plot of excitation rate versus the orientation angle θ of electric dipole affected by SI of (70, 70, 35) nm associated with SNP
of r = 30 nm. b The yz-plane cross section of a, where dg = 30 nm, d = 15 nm, λex = 593 nm, and α = 45°. c Excitation rates of hybrid nanostructure
(SI + SNP), SI or SNP alone versus excitation wavelength λex, where θ = 31°
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emitter, the EF, Ψ(ed, xd; λex) ⋅ η(ed, xd; λem), is calculated.
Figure 7 shows the EF for a SI of (70, 70, 35) nm associ-
ated with SNP of r = 25 or 30 nm on an emitter with an
orientation of θ = 31° and a distance d = 15 nm from
SNP versus the emission wavelength λem, where ϕ = 45°,
dg = 30 nm, α = 45°, and λex = 593 nm (solid lines) or
488 nm (dash line). Due to the Stokes shift of fluores-
cence, λem is longer than λex. The EF of the hybrid

Fig. 5 Excitation rates versus gap dg induced by 45°-incident plane
wave of 593 nm (red) or 488 nm (blue) upon differently located
molecules with a ϕ = 45° and θ = 31° and b ϕ = 0° and θ = 0°. SI of
(70, 70, 35) nm, SNP: r = 30 nm, and d = 5 nm

Fig. 6 a Radiative power, nonradiative power, and apparent quantum
yield versus emission wavelength. b Near-field electric field distribution.
c Far-field radiation pattern in yz plane of an electric dipole with θ= 31°
at λem = 618 nm affected by a SI of (70, 70, 35) nm associated with SNP
of r = 30 nm, where dg= 30 nm, ϕ= 45°, and d= 15 nm
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nanostructure is 6.74 for the fluorescence of a specific
molecule (e.g., Texas Red) excited at 593 nm and emitting
at 618 nm for SNP of r = 30 nm, and EF is 14 for another
molecule (e.g., fluorescein isothiocyanate (FITC)) excited
at 488 nm and emitting at 520 nm. For a smaller SNP of
25 nm, the EF of the hybrid nanostructure is 5.2 at λex =
593 nm and λem = 618 nm. The previous experimental
results have shown that EF for a molecule can be as high
as 60-fold at λex = 635 nm and λem = 670 nm in air, where
the distance d between molecule and SNP is 5 nm and the
gap dg between SNP and SI is 10 nm [41]. According to
our study, we can raise the excitation rate to increase the
EF by reducing d and dg. For example, if the gap dg is re-
duced to 10 nm and d = 5 nm, the EF can be raised to 69
for λex = 593 nm and λem = 618 nm and to 128 for λex =
488 nm and λem = 520 nm according to the excitation rate
shown in Fig. 5b. Here, we assume the apparent quantum
yield for emission is 0.8.
Furthermore, we studied the attraction effect of optical

force induced by the irradiance of the incident plane
wave. Figure 8 shows the z-component of optical forces
exerted on SNP of r = 30 nm versus gap dg induced by a
45°-incident plane wave of 593 nm, where the size of SI
is (70, 70, 35) nm or (60, 60, 35) nm. These curves in
Fig. 8 indicate that the performance of the optical force
is attraction; the optical force drives SNP toward SI. In
addition, the smaller the gap the larger the attractive
force is. Here, the fluence of the light is assumed
25 MW/cm2. Actually, the amplitude of the optical force
is linearly proportional to the fluence of the incident

plane wave. Our finding demonstrates that the induced
optical force could gradually make the gap between SNP
and SI smaller. As a result, the EF of the hybrid nano-
structure will increase as the irradiance time and fluence
of laser beam increase. Of course, the optical force needs
to be large enough to overcome the Brownian motion;
otherwise, the attraction phenomenon cannot be ob-
served. Our finding is in agreement with the previous
report that SERS signal was increased dramatically by
using optical tweezers to aggregate SNPs [57].

Conclusions
The wavelength-dependent MEF of a hybrid nanostruc-
ture, a SI associated with a SNP, upon a molecule
located in the gap zone was studied theoretically by
MMP method, where the SI was modeled as an equiva-
lent oblate spheroid. The excitation rate and the appar-
ent quantum yield of the molecule affected by the
hybrid nanostructure were analyzed quantitatively. In
terms of the two factors, the EF of the hybrid nanostruc-
ture, depending on the excitation and emission wave-
lengths, was evaluated quantitatively. Numerical results
illustrate that the excitation rate for a molecule, immobi-
lized on SNP and located in the gap zone between SI and
SNP, at the excitation stage very depends on the gap size
and the distance from SNP; the smaller the gap and dis-
tance, the larger the excitation rate. In the excitation stage,
the hybrid nanostructure performs as a nanolens to focus
the incident plane wave into the gap zone to induce a hot
spot. In addition, the excitation-rate spectrum is a broad-
band one, because the hybrid nanostructure’s plasmon

Figure 7 EF versus emission wavelength for a SI of (70, 70, 35) nm
associated with SNP of r = 25 nm or 30 nm on an emitter with θ= 31°
and a distance d = 15 nm from SNP, where ϕ= 45°, α= 45°, dg = 30 nm,
and λex = 488 nm (dash line) or 593 nm (solid lines)

Fig. 8 The z-component of optical force driving SNP of r = 30 nm
toward SI of (70, 70, 35) nm or (60, 60, 35) nm versus gap dg induced
by a 45°-incident plane wave of 593 nm
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band is wide; the plasmon band of the structure can be
red-shifted and broadened by increasing the AR of SI. On
the other hand, the hybrid nanostructure performs as a
low-pass filter for the emission of an emitter (an excited
molecule), with a cutoff wavelength of 400 nm. As a
result, the EF of the hybrid nanostructure on a fluorescent
molecule is also broadband. If the excitation spectrum of
a specific molecule is within the range of 400 to 650 nm,
this hybrid nanostructure can perform a remarkable MEF.
Based on these properties, this hybrid nanostructure can
be tailored to obtain the optimal enhancement factor on a
specific molecule according to its excitation spectrum. For
example, when the gap dg between SI and SNP is 30 nm
and the distance d between SNP and molecule is 15 nm,
the EF is 6.74 for the fluorescence of a specific molecule
(e.g., Texas Red) excited at 593 nm and emitting at
618 nm. For another molecule (e.g., FITC), the EF is 14 as
it is excited at 488 nm and emits at 520 nm. Our study
also indicates that to raise the EF, we need to decrease the
distance between molecule and SNP as well as to reduce
the gap between SNP and SI. For example, if the gap dg is
reduced to 10 nm and d = 5 nm, the EF can be raised to
69 for λex = 593 nm and λem = 618 nm and to 128 for
λex = 488 nm and λem = 520 nm. The EF of the hybrid
nanostructure is also dependent on the location of the
molecule. In general, as the molecule is close to the
center line of SNP and SI as well as close to the surface
of SNP, the EF is increased. In addition, the hybrid
nanostructure plays another important role of a nano-
antenna to guide the directionality of the molecular
emission. Moreover, we found that the optical force in-
duced by the incident light can drive the SNP approach
SI to reduce the gap for obtaining a stronger MEF ef-
fect. Our finding might pay a way to the applications of
using the sandwiched hybrid nanostructure for MEF on
single molecular fluorescence. Recently, using thermal
annealing to transform AgOx thin film into a SIF was pro-
posed, where two adjacent SIs form a dimer with a small
gap to provide the hotspot for the SERS of R6G and MEF
of different dyes due to the broadband performance [58].
Hence, it is prospective to combine of this SIF with addi-
tive SNPs for the applications in MEF and SERS.
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