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Abstract

The present work demonstrates a validation of small-angle X-ray scattering (SAXS) combining with ultra violet
and visible (UV-vis) spectroscopy and quasi-elastic light scattering (QELS) analysis for characterization of silver
sols synthesized in polymer matrices. Polymer matrix internal structure and polymer chemical nature actually
controlled the sol size characteristics. It was shown that for precise analysis of nanoparticle size distribution
these techniques should be used simultaneously. All applied methods were in good agreement for the
characterization of size distribution of small particles (less than 60 nm) in the sols. Some deviations of the
theoretical curves from the experimental ones were observed. The most probable cause is that nanoparticles
were not entirely spherical in form.
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Background
The size of metal nanoparticles determines optical,
catalytic, or biomedical properties of nanosystems
and defines limits for applications [1–4]. Despite the
increasing interest in the applications of functional
nanoparticles, a comprehensive understanding of the
formation of nanosystems as well as their precise
characterization is still a challenge.
Techniques to detect and characterize nanoparticles

fall into two categories: direct, or “real space,” and
indirect, or “reciprocal space.” Direct techniques
include transmission electron microscopy (TEM),
scanning electron microscopy (SEM), and atomic
force microscopy (AFM). These techniques can image
nanoparticles, directly measure sizes, and infer shape
information, but they are limited to studying only a
few particles at a time. There are also significant is-
sues surrounding the sample preparation for electron

microscopy. In general, however, those techniques
can be quite effective for obtaining basic information
about a nanoparticle.
Indirect techniques for nanosystem characterization

are absorption (ultra violet and visible (UV-vis)
spectroscopy) and various scattering methods: quasi-
elastic light scattering (QELS), X-rays, or neutron
scattering. The techniques that become of greatest
relevance to nanoscience are small-angle X-ray scat-
tering (SAXS) and small-angle neutron scattering
(SANS) [5, 6]. The advantage of those techniques is
that they are able to characterize large numbers of
nanoparticles and often do not require any particular
sample preparation.
The main aim of the current research was to compare

the data obtained by the complex of physical methods
for evaluation of various indirect techniques for sol
characterization.

Methods
The silver nanoparticles (AgNPs) were synthesized by
reduction of the AgNO3 salt using sodium borohydride
(NaBH4) as reductant. The synthesis of Ag sols was car-
ried out in situ into an aqueous solution of nonionic
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polymer dextran-graft-polyacrylamide and its anionic
derivative [7–9].
The synthesis of AgNPs was performed at the poly-

mer concentration corresponding to dilute polymer
solutions.
NaBH4 was purchased from “Pharma” (Ukraine).
AgNO3 (Sigma Aldrich) was used without additional

purification.

AgNP Synthesis
Reduction of Ag salt was performed at T = 60 °C.
Molar ratio of AA monomers to Ag+ cations was
equal to 5. The syntheses were carried out in polymer
solutions prepared using deionized water. The pH
value of aqueous solutions of nonionic polymer was
5.5 that corresponds to the pH of deionized water.
pH value of aqueous solutions of anionic polymers
was around 7.33.
Two milliliters of a 0.1 mol L−1 AgNO3 aqueous

solution was added to 5 mL of aqueous polymer solution
(c = 1.10−3 g cm−3) and stirred for 20 min. Then, 2 mL
of 0.1 mol L−1 aqueous solution of NaBH4 was added.
The final aqueous solution was stirred for 30 min. It
turned reddish brown; thus, the formation of AgNPs
was indicated.

Size-Exclusion Chromatography (SEC)
Multidetection size-exclusion chromatography (SEC)
analysis of polymers was carried out by using an experi-
mental setup consisting of a LC-10 AD Shimadzu pump

(throughput 0.5 mL min−1; Nakagyo-ku, Kyoto, Japan), an
automatic injector WISP 717+ from Waters (Milford,
MA, USA), three coupled 30-cm Shodex OH-Pak
columns (803HQ, 804HQ, and 806HQ; Munich,
Germany), a multi-angle light scattering detector DAWN
F from Wyatt Technology (Dernbach, Germany), and a
differential refractometer R410 from Waters. Distilled
water containing 0.1 M NaNO3 was used as eluent. Dilute
polymer solutions (c = 1.10−3 g cm−3 < c* = 1/[η] (Table 1))
were prepared and injected. The intermolecular correla-
tions were then negligible in the analysis of the light scat-
tering measurements. To obtain gyration radii for
macromolecules, static light scattering data was analyzed
by Zimm method [10].

UV-vis Spectroscopy
UV-visible absorption spectra of silver sols were
recorded by Varian Cary 50 scan UV-visible spectropho-
tometer (Palo Alto, CA, USA).

Quasi-Elastic Light Scattering (QELS)
DLS measurements were carried out using Zetasizer
Nano ZS90 (Malvern Instruments Ltd., UK). The appar-
atus contains a 4-mW He-Ne laser with a wavelength of
632.8 nm, and the scattered light is detected at an angle
of 60°.
SAXS experiments were carried out on an instru-

ment with a high-intensity microfocus rotating Cu
anode X-ray generator in the Laboratory for
Advanced Studies of Membrane Proteins (Moscow
Institute of Physics and Technology, Dolgoprudniy,
Russia), using a standard transmission configuration.
An X-ray wavelength of λ = 1.54 Å was used, resulting
in a momentum transfer Q in the range of 0.007–
0.2 Å−1, where Q = (4π/λ) sin(θ/2) and θ is the scat-
tering angle. The samples studied were placed in
borosilicate capillaries of 1.5 mm diameter and
0.01 mm wall thickness (W. Muller, Berlin, Germany).

Table 1 Polymer characteristics determined by SEC and
potentiometry

Sample Mw × 10−6, g mol−1 I =Mw/Mn Rg, Å A, %

D-g-PAA 1.57 1.81 670 –

D-g-PAA(PE) 1.57 1.81 – 37

Fig. 1 Lorenz multiple peak fit (blue line) for Ag NP UV-vis spectra of sol 1 (a) and sol 2 (b). Black circle line experimental spectra, red line peak 1,
light green line peak 2

Bulavin et al. Nanoscale Research Letters  (2016) 11:35 Page 2 of 8



Water was used as a buffer sample. Center of beam
line and conversation channel to value of module q-
vector was done using silver behenate [11].

Results and Discussion
The main characteristics of the polymers used as the
matrices for in situ AgNP syntheses are drawn in
Table 1, where I =Mw/Mn, the polydispersity index; Rg,
the radius of gyration; and A, the chemical charge frac-
tion of polyelectrolytes obtained by alkaline hydrolysis
of polyacrylamide.
SEC analysis indicates that polymer samples possess

relatively low polydispersity index and display in

aqueous solution rather large radii of gyration in agree-
ment with their high average molecular weights. The pe-
culiarities of the molecular structure of the copolymers
dextran-graft-polyacrylamide (D-g-PAA) were discussed
in [12–14]. These copolymers are star-like polymers,
consisting of a compact dextran core and long polyacryl-
amide arms. As it was previously reported, the branched
polymers, due to their more compact internal structure,
have higher local concentration of functional groups
with respect to their linear analogues [13, 14] that is
why they are more efficient matrices for nanosystem fab-
rication [15].
D-g-PAA copolymer was transformed into polyelectro-

lyte, referred as D-g-PAA(PE) by alkaline hydrolysis. The
process of D-g-PAA hydrolysis was not attended by
irrelevant processes (breaking or cross-linking of the
macromolecules) [14].
It is evident that saponified polymers contain two

types of functional groups: carbamide and carboxylate
ones. The pH value of the solutions was equal to 7.33

Fig. 2 Mie fits of Lorenz curves for sol 1 (a—peak 1, b—peak 2) and sol 2 (c—peak 1, d—peak 2). Black circle lines Lorenz curves, red lines Mie fit

Table 2 Size characteristics of sols calculated using Mie theory

Sample Peak 1 Peak 2

R, Å Polydispersity, % R, Å Polydispersity, %

Sol 1 19 51 250 30

Sol 2 15 42 385 21
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after the D-g-PAA(PE) sample dissolved in bi-distilled
water. Thus, carboxylate groups of polymer were par-
tially hydrolyzed in such conditions. Obviously, the
nucleation process occurring just after reductant
addition differs for silver ions interacting with car-
bamide or carboxylate moiety. That could lead to a
different size distribution for nanoparticles synthe-
sized in branched nonionic and polyelectrolyte poly-
mer matrices.
In situ syntheses of AgNPs into dilute aqueous

solutions of both uncharged (nonionic) and polyelec-
trolyte branched polymer matrices resulted in rather
stable colloids. Our previous attempts to synthesize
the stable colloid in anionic linear PAA matrices
were not successful; some precipitation has been
observed [15].
The sols were studied using indirect technique for

nanosystem characterization, namely UV-vis spec-
troscopy and two scattering methods: QELS and
SAXS.

UV-vis Spectroscopy
Surface plasmon resonance peak with well-defined
shoulders were observed in UV-vis spectra of Ag sols
(Fig. 1). For AgNPs (nanosystems-sols) synthesized in

D-g-PAA and D-g-PAA(PE), further sol 1 and sol 2,
respectively, the extinction maxima were observed at
392 and 386 (Fig. 1a, b, curve 1, peak 1) and shoul-
ders on the plasmon bands at 432 and 451 (Fig. 1a,
b, curve 1, peak 2). Such result could be explained by
the existence of two size fractions of AgNPs. Experi-
mental extinction curves have been fitted by Lorenz
multiple peak fit (OriginLab 9.1) (see Fig. 1a, b; curve
2, 3). In light scattering theory, the most famous the-
ory is likely to be the one published by Gustav Mie
in 1908. This theory describes the quasi-elastic inter-
action between an electromagnetic plane wave and a
homogeneous sphere defined by its (arbitrary) diam-
eter and its (arbitrary) complex refractive index. It al-
lows to calculate scattered fields outside the sphere,
internal fields, phase relations, and various cross sec-
tions. Peaks 1 and peaks 2 have been approximated
using MieLab software for spherical homogeneous
particles. The algorithm of mathematical analysis and
source code are described in detail in [16]. The best
fits are represented in Fig. 2. Deviation of theoretical
curve takes place for both samples. For both sols, the
additional maximum on the theoretical curves
(marked as “scattering” on peaks 2) was observed for
the second maximum (Fig. 2b–d). These peaks can
correspond to scattering contribution to extinction
spectra. Absence of this phenomenon on the experi-
mental spectrum for sol 1 and on the Lorenz fit
(Fig. 1a) can be explained by overlap of scattering
maxima with the peak 1 at the similar wavelength
(384 and 386 nm, respectively). A phase retardation
of scattering contribution appeared to be more sig-
nificant for the case of sol 2 (Fig. 2d). It may be re-
lated to the presence of the fraction of larger
particles in sol 2 in comparison with sol 1. As the
result, the shoulder on the experimental spectrum
corresponded to scattering could be observed in the
range of 380 nm (Fig. 1b). Parameters of Mie

Fig. 3 Approximated correlation functions (inserted graphs) and intensity-weighted hydrodynamic radii distributions for sol 1 (a) and sol 2 (b)

Table 3 Statistical analysis of size distribution curves obtained
by QELS data analysis

Sample Peak Rh, Å (at peak maximum) St. error, Å

Sol 1 1 16 0.5

2 95 2.5

3 310 3

Sol 2 1 11 0.2

2 153 1.2

3 603 3.5
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approximation, namely sphere size and polydispersity,
are represented in Table 2.
Some deviations of the theoretical curves from the

experimental ones were observed (Fig. 2). The most
probable cause is that nanoparticles were not entirely
spherical in form, as described in the theoretical
model. But the average diameters of AgNPs estimated
from the theoretical curves proved to be very close
to the ones evaluated from TEM images in our pre-
vious work [13].

QELS Analysis
Regularized inverse Laplace transform of experimental
correlation functions was performed using MathLab
code rilt.m (inserted graphs in Fig. 3) [17]. Hydro-
dynamic radii of particle scatter have been reached from
Stokes-Einstein equation:

Rh ¼ kT
6πηD

ð1Þ

where k—Boltzmann constant, T—absolute temperature,
η—viscosity, and D—diffusion coefficient.
The results of analysis are represented in Fig. 3.

Intensity-weighted distributions for both nanosystems

have a complicated multimodal shape. The existence
of 10–20-Å nanoparticles in sol 1 (peak 1, Fig. 3a)
and 7–15 Å in sol 2 (peak 1, Fig. 3b) is evident. The
fractions of larger AgNPs of 100–150 Å (peaks 2;
Fig. 3a, b) and the aggregates of 200–1000 Å (peaks
3; Fig. 3a, b) are observed in both sols. Statistical
analysis of distribution curves is represented in
Table 3.
The peaks in the range of 200–1000 Å can corres-

pond to the aggregates of AgNPs as well as to the
macromolecules of polymer matrices (Table 1). QELS
results are in good agreement with the UV-vis re-
sults excluding the peak of AgNP aggregates and
macromolecules.

SAXS Data Analysis
The small-angle X-ray scattering curves for sol 1 and sol
2 are represented in Fig. 4. Curves were normalized on
sample transmission; scattering from buffer sample
(water) was subtracted.
For the analysis of experimental data, the following

methods were used: Guinier plot, size distribution
function plot, and fitting of the obtained scattering
curves. For Guinier plot and for the size distribution
function plot, the PRIMUS program from the soft-
ware package ATSAS was applied [18, 19]. Experi-
mental curve fitting was provided using SASVIEW
program [20].
The gyration radii (Rg) of AgNPs in sol 1 and sol 2

were determined using Guinier plot. The influence of
structure factor was taken into account. The results of
analysis are drawn in Table 4. The third column (Table 4)

Fig. 4 SAXS curves of sol 1 (black) and sol 2 (red)

Table 4 The radii of gyration (Rg) of AgNPs from Guinier plot

Sample Rg, Å qRg limits

Sol 1 70 ± 2 0.79–1.28

Sol 2 134 ± 33 0.8–1.3
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is shown for evaluation of applicability of Guinier
approximation.
This function depends both on the particle’s geometry,

expressing numerically the set of distances joining the
volume elements within a particle, and on a particle’s
inner inhomogeneity distribution.
For size distribution function analysis, the program

PRIMUS of the software package ATSAS was used.
The results are represented in Fig. 5a, b for sol 1 and
sol 2, respectively. The gyration radius as well as the
particle size maximum in both sols are shown in
Table 5.
Here, Rmax is the largest distance between the volume

elements within a particle.
Figure 6a, b represents the results of fitting the experi-

mental scattering curves for sol 1 and sol 2, respectively.
Sphere model function with polydispersity as a model
fitting function was used. Scattering intensity formula
for sphere model function is

I qð Þ ¼ scale
V

⋅
3V Δρð Þ sin qRð Þ−qRcos qRð Þð Þ

qRð Þ3
 !2

þ bkg

ð2Þ

where scale is a volume fraction, V is the volume of the
scatterer, R is the radius of the sphere, bkg is the back-
ground level, and Δρ is the contrast [21].
The resulting particle size with a comparison with re-

sults obtained by other methods is shown in Table 6.

Some fitting inaccuracies occurred on Fig. 6a, b in
the range of small q values. It can be caused by the
interaction between scattering particles in the aggre-
gates. The fit model does not take it into account.
However, the dimensions obtained after the fitting of
SAXS results are in good agreement with the size
characteristics derived by other methods. This fact in-
dicates the correction of the fit model.
Table 6 joins all parameters obtained from SAXS

analysis.
SAXS analysis demonstrates monomodal scatterer

size distribution in both sols in contrast to QELS
and UV-vis spectroscopy, where multimodal particle
size distribution is observed. Such contradiction may
be caused by the ability of QELS and UV-vis to
register large particles or aggregates within the range
300–600 Å. SAXS data analysis is accurate in the
limited q-range value, 0.02 Å−1 < q <0.4 Å−1. Thus,
large particles and aggregates are “invisible” for the q
values we used.
Size parameters of the nanoparticles estimated cor-

rectly by UV-vis, QELS, and SAXS have been marked
by italic font within Tables 2, 3, 4, and 5. These
values appeared to be close for all techniques. Three
different indirect methods also reveal the similar dif-
ference in size distribution in nanosystems synthe-
sized in nonionic and anionic branched polymer
matrices. The reason for such distinction is the vari-
ous chemical nature of the polymer template affecting
on the nucleation process in the process of nanoparti-
cle formation.
The TEM investigation of silver sols has shown that

most AgNPs synthesized in the solution of nonionic
branched polymer matrices D-g-PAA had sizes in the
range of 8–15 nm. The small number of aggregates
was observed too. Silver sols synthesized in branched
anionic polymer matrices D-g-PAA(PE) along with
NPs have a size of 10–15 nm, i.e., the same as in the
sols synthesized in the nonionic polymer matrix.

Fig. 5 Size distribution function for sol 1 (a) and sol 2 (b)

Table 5 The gyration radius and maximum particle size in the
sols (from size distribution functions)

Samples Rg, Å Rmax, Å

Sol 1 78 342

Sol 2 166 524
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Nanoparticles with a size of 2–5 nm and some large
aggregates were observed.
Thus, the present work confirmed the validation of

UV-vis spectroscopy and scattering methods for ac-
curate investigation of sols. But UV-vis and SASX are
limited for characterization of polydispersed nanosys-
tems and should be used in combination with QELS
or TEM.

Conclusions
The present study proved the efficiency of using
branched nonionic and anionic polymers as matrices
for the stable silver sols preparation. It was
demonstrated that the chemical nature of polymer
matrix (uncharged or charged) and the polymer in-
ternal structure affect the nanoparticles’ actual con-
trol on the sol size characteristics and nanoparticle
size distribution in the nanosystems. The analysis of
the silver sols was performed using UV-vis spectros-
copy, QELS, and SAXS. All methods used were in
good agreement for the characterization of size
distribution of small particles (less than 60 nm) in
the sols. The polydispersity estimated by various
methods was comparable. It was shown that for pre-
cise analysis of sols synthesized in polymer matrices
all these techniques should be used simultaneously.
It should be noted that nanoparticle aggregates and

macromolecules of the polymer matrix can be char-
acterized only by QELS.
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