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Abstract

Structural transformations caused by coarse-grained powdering and fine-grained mechanochemical milling in a dry
mode were probed in high-temperature modification of tetra-arsenic tetra-sulfide known as β-As4S4. In respect to
X-ray diffraction analysis, the characteristic sizes of β-As4S4 crystallites in these coarse- and fine-grained powdered
pellets were 90 and 40 nm, respectively. Positron annihilation lifetime spectroscopy was employed to characterize
transformations occurred in free-volume structure of these nanoarsenicals. Experimentally measured positron lifetime
spectra were parameterized in respect to three- or two-term fitting procedures and respectively compared with those
accumulated for single crystalline realgar α-As4S4 polymorph. The effect of coarse-grained powdering was found to
result in generation of large amount of positron and positronium Ps trapping sites inside arsenicals in addition to
existing ones. In fine-grained powdered β-As4S4 pellets, the positron trapping sites with characteristic free volumes
close to bi- and tri-atomic vacancies were evidently dominated. These defects were supposed to originate from grain
boundary regions and interfacial free volumes near aggregated β-As4S4 crystallites. Thus, the cumulative production of
different positron traps with lifetimes close to defect-related lifetimes in realgar α-As4S4 polymorph was detected in
fine-grained milled samples.
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Background
Positron annihilation lifetime (PAL) spectroscopy is high-
informative tool in studying sub-atomistic free-volume
imperfections in solids affected by different nanostructuri-
zation routes [1–5]. With complementary mathematical
algorithms allowing correct parameterization of mixed
positron-electron annihilation paths in structurally com-
plicated substances, this method (the positronics [6]) can
be successfully motivated as a nanoscale alternative for
conventional micro-meso-scale porosimetry exemplified
by such well-approbated techniques as gas (nitrogen)
sorption, mercury intrusion, and small-angle X-ray scat-
tering [7–9]. Undoubtedly, further progress in this field re-
lies on stretching possibilities for positronics to be applied
for a great diversity of known nanomaterials. In this work,

we track this for principally different nanostructurized
objects, these being coarse- and fine-grained powdered
pellets of the same high-temperature polymorph of tetra-
arsenic tetra-sulfide β-As4S4 extensively studied recently
in view of promising anticancer functionality [10–14].

Methods
The preliminary melt-quenched As50S50 alloy was used
for further powdering, the known high-temperature
modification of tetra-arsenic tetra-sulfide β-As4S4 being
dominated in this precursor.
Firstly, the small bulk pieces of this arsenical were sub-

jected to coarse-grained powdering and sieved under
200 μm. Then, the obtained powder was compressed by
compacting inside a stainless steel die under a pressure
of ~0.7 GPa to produce pellets having near 6 mm in a
diameter and 1 mm in a thickness. This batch of pellets
composed of coarse-grained powdered (CGP) β-As4S4
polymorph was conditionally termed as β-CGP.
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Other part of the prepared β-CGP was subjected to
high-energy milling, which is a very effective mode of
treatment of solids [15, 16]. Dry mode of treatment using
planetary ball mill Pulverisette 6 (Fritsch, Germany) under
a protective argon atmosphere has been applied. The
preliminary powdered substance (3 g) was put into
tungsten carbide WC chamber with 50 milling balls
(each of d = 10 mm in a diameter) made of the same
WC material. The ball-to-powder weigh ratio was
120:1, and total duration of milling performed under
rotation speed of 500 rpm was 60 min. After this milling
route, the fine-grained powder (FGP) marked as β-FGP was
pelletized under the same conditions as described above.
The crystallographical specificity of the pellets was

identified with X-ray powder diffraction (XRPD), the ex-
perimental data being collected in a transmission mode
using STOE STADI P diffractometer (STOE & Cie
GmbH, Darmstadt, Germany) with Cu Kα1-radiation as
was described in more details elsewhere [14]. The crystal
structures of the phases were refined by the Rietveld
method with the FullProf.2 k (v.5.40) program [17]. The
microstructure properties of the revealed phases (average
apparent crystallite size D, e.g., size of coherently diffract-
ing domains, average maximum strain S) were defined
during the Rietveld refinement procedure by isotropic line
broadening analysis implemented in this program [18].
The PAL measurements were performed for pelletized

β-CGP and β-FGP samples using fast-fast coincidence
system ORTEC of 230 ps resolution (the full width at
half maximum) based on two Photonis XP2020/Q pho-
tomultiplier tubes coupled to BaF2 scintillator 25.4A10/
2M-Q-BaF-X-N detectors (Scionix, Bunnik, Holland)
and ORTEC® electronics (ORTEC, Oak Ridge, TN, USA).
The radioactive 22Na isotope of low activity (~50 kBq)
wrapped by the Kapton® foil (DuPont™, Circleville, OH,
USA) and sealed was used as positron source sandwiched
between two identical pellets. The normal-measurement
statistics arranged for near 1 M elemental positron annihi-
lation events collected at high-stabilized temperature of
22 °C and relative humidity of 35 % was employed to en-
sure reliable PAL measurements. The channel width of
6.15 ps allows a total number of available channels to be
8000. Three separate measurements ensure a good repro-
ducibility of this research, the source contribution being
evidenced at the level of 15 % allowing practically full
compensation of input from positrons annihilated in the
Kapton® foil with a lifetime of 0.372 ns.
The obtained PAL data were fitted by two (×2-decom-

position) or three (×3-decomposition) single exponents
under unity-normalized intensities using LT 9.0 program
[19], the accuracies in lifetimes τi and intensities Ii being
not worse ±0.005 ns and 0.5 %, respectively. Positron
trapping formalism developed in terms of known two-
state model with only one kind of defects [1–3, 20, 21]

was utilized to parameterize mean τav and defect-free
bulk τb lifetimes, as well as trapping rate in defects κd,
which was determined under above measurement condi-
tions with ±0.01 ns−1 accuracy. In addition, the differ-
ence between defect-related τd = τ2 and defect-free
positron lifetimes (τ2–τb) was taken as a signature of size
of extended positron traps in terms of equivalent num-
ber of vacancies, whereas τ2/τb ratio was ascribed to the
nature of these defects [1]. In loosely packed media like
polymers or molecular substances, the positrons can also
annihilate from bound positron-electron (positronium
(Ps)) states through pick-up an electron from an envir-
onment [1, 2, 20, 22]. In respect to known Tao-Eldrup
formalism [1, 2], the localized Ps gives an indication on
corresponding free-volume void radius R in terms of
long-lived τ3 lifetime.

Results and Discussion
The XRPD patterns of β-CGP and β-FGP pellets are
shown in Fig. 1, top and bottom, respectively. The same
β-As4S4 phase of C2/c space group was obviously domi-
nated in both pellets (β-CGP and β-FGP), giving two dif-
ferent sets of crystallographic lattice parameters:

a = 9.9200(2), b = 9.3946(2), c = 8.9505(2) Å, and
β = 101.968(2)° for β-CGP and
a = 9.9047(5), b = 9.4173(5), c = 9.0133(5) Å, and
β = 101.246(4)° for β-FGP.

The lattice parameters of synthetic β-As4S4 are known
to differ essentially in dependence on the preparation
conditions [23]. The above lattice parameters are close
to those observed in one of synthetic β-As4S4 prepared
by Roland [24]. It is worth mentioning that effect of
nanomilling in its crystallographic appearance occurs to
be identical with light-induced alteration of β-As4S4 in
pararealgar [23]. In both cases, the lattice parameters
show similar tendencies revealing decrease in {a, β} and
increase in {b, c} values. We are far from a mind on full
identity between nanostructural transformations caused
by light exposure and mechanochemical milling, but this
result undoubtedly testifies that initial stages of both
processes, connected with introducing structural disor-
dering in a crystalline network, are indeed very similar.
The average apparent crystallite sizes D estimated for

main reflexes of β-As4S4 phase (Fig. 1) approach 90.5
and 40.2 nm, while average maximum strains S achieve
0.0030 and 0.0063 for β-CGP and β-FGP, respectively.
Thus, the nanomilling does not change preferential
crystalline state of this arsenical but produce an obvi-
ous effect consistent with essential decrease in a size
of β-As4S4 crystallites with an accompanied increase in
inner strains.
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Fig. 1 Observed (circles) and calculated (solid line through circles) XRPD profiles for β-CGP (a) and β-FGP (b) pellets given with calculated Bragg
positions (vertical ticks) for β-realgar As4S4; the difference curve is given at the bottom (solid line)
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Such changes in atomistic structure caused by high-
energy mechanochemical milling are apparently con-
comitant with generation of structural defects acting as
eventual positron and Ps traps in a bulk source material
[4]. So, in the analysis of PAL data reflecting these pos-
sible positron-Ps traps, it is reasonably to refer the
previous PAL study for monolith prototype of these
pellets, such as mineral realgar α-As4S4, the known
room-temperature polymorph of arsenic sulfide As4S4
[25]. Both these crystallographic modifications (α-As4S4
and β-As4S4) are substantially identical from point of
their main structural fragments (the elementary cage-
type As4S4 molecules possessing D2d symmetry); they
differ only by molecular packing leading to two different
monoclinic lattices [26]. So, both polymorphs occur to
be very similar in terms of their volume-per-atom de-
termination. Indeed, the calculated crystallographic
densities are 3.56 and 3.52 g ⋅ cm−3 for α-As4S4 and β-
As4S4, respectively [27], giving nearly the same free
volume averaged per one atom (~25.0 Å3).
As was shown previously [25], positron annihilation in

the medium filled with cage-like As4S4 molecules (as in
α-As4S4) is defined by extended free-volume positron
trapping centers in the form of outer overlapped spaces
attached to neighboring S atoms forming rectangular by-
pass line around As4S4 molecule. Such spaces possess
effective negative charges (in view of electronegativity of
S atoms in heteronuclear As–S bond), which makes
them preferential traps due to attractive potential for
positrons [3, 28]. Similar free-volume configurations are
supposed to be characteristic for many other arsenic
sulfide compounds such as crystalline pararealgar As4S4,
orpiment As2S3, or even near-stoichiometric glassy As–S,
ensuring close similarity in their defect-related lifetimes in
0.34–0.37 ns domain [3, 25, 28–30]. An alternative chan-
nel of positron annihilation is expected in realgar α-
As4S4 for Ps decaying in free volumes derivative from
crystallographic-specific packing of cage-like As4S4 mole-
cules. However, overall Ps yield in realgar is rather small

(2–3 %) [25]; thus, the detected PAL spectra are domi-
nated by preferential positron trapping.
The experimental PAL spectra of bulk realgar α-As4S4

can be well fitted with three single exponents evolving
inputs from positron and Ps trapping, the corresponding
trapping modes for ×3-deconvolution procedure being
gathered in Table 1 [25]. This crystal demonstrates high
enough defect-related lifetime τ2 = 0.346 ns, τ2/τb ratio
approaching 1.54 and (τ2-τb) difference near 0.12 ns, which
can be evidently attributed to relatively large ~80 Å3 free-
volume voids (compared to bi- and tri-atomic vacancies)
as it follows from known analytical correlations for this
type of chemical environment [30–32]. The calculated
defect-free bulk lifetime τb = 0.224 ns correlates well with
this parameter in similar crystalline arsenicals, such as or-
piment As2S3 (τb = 0.242 ns) [3], but is substantially smaller
than τb ≅ 0.28–0.29 ns in glassy As2S3 with higher content
of free volumes [3, 28]. However, in contrast to these com-
pounds, the channel of o-Ps decaying with τ3 ≅ 1.873 ns
lifetime is more pronounced in mineral realgar α-As4S4,
while the corresponding intensity is still no more 2.6 %.
Unambiguous identification of Ps-decaying channel in the
reconstructed PAL spectra under such low I3 is problem-
atic, since this component can be admixed with uncon-
trolled contribution from a source [1, 2]. By inserting
whole input from o-Ps decaying directly to the source, this
task can be removed to other ×2-decomposition (Table 1),
which results in definitely smallest defect-free bulk lifetime
τb because of uncompensated input from p-Ps decaying in
the first channel. This procedure leads to nearly the same
τb ≈ 0.223 ns, which can be accepted as a lower limit of
defect-free bulk positron lifetime in realgar α-As4S4. The
maximal value of τb for α-As4S4 can be obtained by trans-
ferring to generalized ×2-decomposition (×2-gen. row in
Table 1), where all trapping channels (originated from posi-
tron, o-Ps and p-Ps decaying) contribute to one defect-
related component [4, 6].
The raw PAL spectrum of β-CGP pellets recon-

structed from ×3-fitting procedure is shown in Fig. 2,

Table 1 Fitting parameters and corresponding PAL trapping modes describing positron annihilation in bulk mineral α-As4S4 and
powdered β-As4S4
Sample, fitting Fitting parameters PAL trapping modes

τ1 I1 τ2 I2 τ3 I3 τb κd τ2-τb τ2/τb
ns a.u. ns a.u. ns a.u. ns ns−1 ns a.u.

α-As4S4, ×3 0.193 0.666 0.346 0.308 1.873 0.026 0.224 0.72 0.12 1.54

α-As4S4, ×2 0.193 0.685 0.339 0.315 – – 0.223 0.70 0.12 1.52

α-As4S4, ×2-gen. 0.194 0.656 0.456 0.343 – – 0.241 1.02 0.22 1.89

β-CGP, ×3 0.207 0.745 0.432 0.222 2.337 0.033 0.235 0.58 0.20 1.84

β-CGP, ×2 0.206 0.793 0.439 0.207 – – 0.232 0.53 0.21 1.89

β-CGP, ×2-gen. 0.208 0.734 0.656 0.266 – – 0.254 0.87 0.40 2.58

β-FGP, ×2 0.193 0.607 0.344 0.393 – – 0.233 0.90 0.11 1.48
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and corresponding trapping modes are given in Table 1.
As compared to realgar α-As4S4, the positron annihilation
essentially changes in this nanostructurized arsenical, es-
pecially in respect to positron trapping channel. For a
more detailed analysis, the PAL spectra of both arsenicals
(the mineral realgar α-As4S4 [25] and pelletized β-CGP)
are compared on Fig. 3. It is obvious that the main
changes occurred in β-CGP are related to depressed peak
and increased slope in the histogram of annihilation
counts. This tendency respectively inhibits positron trap-
ping in β-CGP, as it follows from over 30 % reduction in I2
intensity, and nearly the same increase in defect-related τ2
lifetime. The channel of o-Ps decaying in β-CGP is also
under significant modification, demonstrating slight in-
crease in both τ3 lifetime and I3 intensity (Table 1). The
calculated values of defect-free bulk lifetime τb = 0.235 ns
is slightly enhanced as in realgar but still in a framework
of above deviation for arsenicals 0.223 < τb < 0.241 ns. By
inserting the o-Ps input directly to the source contribu-
tion, we obtained ×2-decomposition, where above posi-
tron trapping tendency was further enhanced (increase
in τ2 and decrease in I2). It probably means that both
positron and Ps trapping channels contribute to PAL
spectra cumulatively, producing overall changes due to
more stretched row of enlarged positron-Ps traps. Signifi-
cant role of Ps decaying also follows from long-lived posi-
tron lifetime τ2 exceeding characteristic level of intrinsic
vacuum Ps decaying (0.5 ns) [1, 2] obtained under general-
ized ×2-decomposition procedure (marked as ×2-gen. in

Table 1). With reference to nanostructurization processes
in similar substances [4, 21, 22], we can reasonably specu-
late that these trapping centers in the pelletized β-CGP
can be identified as grain boundaries and intergranular
voids originated directly from coarse powdering.
With transition to mechanochemically milled arsenical

(β-FGP), the void structure of pelletized β-CGP is sub-
jected to more substantial modification. The raw PAL
spectrum of β-FGP (see Fig. 4) can be satisfactorily re-
constructed only from ×2-fitting procedure, the corre-
sponding fitting parameters and trapping modes being
gathered in Table 1. Such changes are concomitant, in
the first hand, with disappearing of some Ps-related
traps, which were more efficient in coarse-grained β-
CGP pellets. Surprisingly, the bulk defect-free positron
lifetime is not changed (τb = 0.233 ns), and both τ1 and τ2
lifetimes approach very close those in realgar α-As4S4
(so only component intensities I1 and I2 are subjects to
more essential changes). Such behavior testifies that most
rough positron-Ps trapping centers of β-CGP disappear
under high-energy ball milling, so that the remaining ones
contribute along with native realgar-type positron traps
(both with nearly the same bulk positron lifetime τb =
0.233 ns) to cumulative positron trapping in β-FGP.

Conclusions
Method of PAL spectroscopy employing conventional
three- and two-term fitting was utilized to study free-
volume structure of β-As4S4 arsenical subjected to coarse-

Fig. 2 Raw PAL spectrum of β-CGP pellet reconstructed from ×3-fitting procedure at the general background of standard source contribution
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and fine-grained powdering. The pelletized samples of
coarse-grained powdered β-As4S4 demonstrate a great
variety of possible positron and Ps trapping sites. Transi-
tion to fine-grained powdered β-As4S4 due to high-energy
mechanochemical milling results in cumulative production

of preferential positron traps with characteristic lifetimes
close to defect-related lifetimes in crystalline realgar α-
As4S4 polymorph. These positron traps were supposed to
originate from grain boundaries and interfacial free
volumes appeared near aggregated β-As4S4 crystallites.

Fig. 3 Comparison of raw PAL spectra for mineral realgar α-As4S4 [25] and pelletized β-CGP, the inset shows depressed peak intensity in β-CGP as
compared to realgar (see text for details)

Fig. 4 Raw PAL spectrum of β-FGP pellet reconstructed from ×2-fitting procedure at the general background of standard source contribution
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