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Abstract

In this work, one-step glancing angle deposition is utilized to fabricate gold and silver nanohelix arrays (NHAs) on
smooth glass substrates. During deposition, the substrate is cooled using liquid nitrogen and rotated with a tunable
spin rate. The substrate spin rate is tuned to match the deposition rate to yield a spiral-like helix structure. The
morphologies and optical properties of spiral-like Ag and Au NHAs are measured and compared. The polarization-
dependent reflectance of Au NHA leads to a strong g-factor. The three-dimensional nanohelical structures are
demonstrated to be a highly sensitive surface-enhanced Raman scattering (SERS) substrate.
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Background
Helical plasmonic structures have attracted considerable
attention owing to their extraordinary optical properties,
such as negative refraction [1], and strong circular dichro-
ism; they can potentially be used in broadband circular
polarizers [2] and biosensing [3]. The strong chirality is in-
duced from a metal helix array that supports different
plasmonic modes for left-handed circular polarized (LCP)
and right-handed circular polarized (RCP) incident waves
[4]. In 2009, a gold helix array was for the first time
formed by direct laser writing [2]; it had a radius of
curvature of approximately 0.7 μm and an arm width of
around 1 μm. Such a gold helix array can act as a circu-
lar polarizer at terahertz frequencies. Unfortunately, it
currently has insufficient resolution to make three-
dimensional features that are smaller than 100 nm to
provide chiroptical activity in the visible range. Recent
progress has been made in reducing the feature size of
plasmonic structures using glancing angle deposition
(GLAD) [5], which is easy to implement and widely used
to fabricate various nanostructured thin films [6–10].
The main advantage of GLAD is that it allows for

one-step fabrication over a large area. Various metallic
nanostructures can be grown on a smooth surface by
the shadowing effect [11] in the initial stage of film
growth. However, the main challenge in depositing

metal nanostructures is that silver and gold adatoms
have high mobilities, causing surface diffusion that pre-
cludes the self-shadowing effect. In some works, slanted
silver nanorod arrays have been grown with extremely
high deposition angles [12] from 86° to 89°, but more
complicated three-dimensional structures remain diffi-
cult to grow. Recently, substrate cooling was conducted
to reduce the surface mobilities of adatoms to enable
the growth of a gold nanohelix array on a patterned sub-
strate [6]. Such a gold helix array exhibits circular di-
chroism in the visible regime. However, the formation of
a patterned substrate on whose surface seeds are regularly
distributed requires a complicated and expensive litho-
graphic procedure. One strategy to obliquely deposit
three-dimensional plasmonic helices is to co-deposit two
metals to form alloy plasmonic helices [13, 14]. The co-
deposition changed the film growth state in the structure
zone model to reach an equivalent condition correspond-
ing to substrate cooling. Pure metal helices on a smooth
surface without patterning are desired to be developed
with a one-step procedure for deposition.
In this work, silver and gold nanohelix arrays (NHAs)

are fabricated on non-seeded glass substrates with
GLAD in a substrate cooling system. Self-shadowing de-
position is achieved by ensuring the high directivity of
the vapor flux. During deposition, the substrate is tilted
with respect to the direction of incident flux and spins
with a rate of ω that is optimized to the formation of
spiral-like NHAs. Silver and gold spiral-like NHAs were
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successfully deposited on non-seeded glass substrates. At
the corners of the metal NHAs were “hot spots” where
the electric fields were stronger than the field along a
straight metal nanorod. Additionally, the extension of a
SERS substrate from a two-dimensional nanostructure to
this three-dimensional nanostructure increases its overall
surface area [15], enabling the adsorption and detection of
more target molecules; therefore, a three-dimensional
NHA is expected to exhibit a stronger SERS response than
straight nanorod arrays. Here, the SERS from these NHAs
are measured and compared with that of a silver nanorod
array that has been demonstrated to be highly sensitive in
the identification of viruses and bacteria.

Methods
Nanohelices were deposited in an electron evaporation
system; during this process, the substrate normal was
tilted at an angle of 89° from the direction of incidence of
the vapor. The center of the substrate and the evaporation
source were vertically separated by 350 mm. Liquid nitro-
gen was passed through a loop under the substrate to cool
the substrate holder to −140 °C. Pumping yielded a back-
ground pressure of 4 × 10− 6 Torr before evaporation. The
deposition rate was maintained at 0.3 nm/s. The rate of
rotation of the substrate was varied from 0.017 to
0.035 rpm to match the deposition rate and thereby
optimize the helical nanostructure.
Figure 1a–d presents the top-view and cross-section

scanning electron microscopic (SEM) images of 1.5-turn
Ag NHAs that were deposited at spin rates ω of 0.017,
0.023, 0.029, and 0.035 rpm. A spiral-like Ag NHA was
grown with ω = 0.017 rpm. Substrate spin rates of 0.023,
0.029, and 0.035 rpm yielded screw-like Ag NHAs. A
higher spin rate of 0.035 rpm caused the Ag nanostruc-
tures to grow almost as an upright nanorod array. NHAs
were grown on a smooth substrate under suitable depos-
ition conditions. For Ag NHAs, the optimum growth
conditions are the spin rate of ω = 0.017 rpm and depos-
ition rate of 0.3 nm/s. The average diameter of the arms
of the spiral-like Ag NHAs was 66 nm. The average
pitch and radius of curvature were 153 and 88 nm, re-
spectively. In the top-view SEM image in Fig. 1a, helices
with pitch numbers from 0.5 to 1.5 are randomly distrib-
uted on the substrate surface.
For Au NHAs, the optimum growth conditions are the

spin rate of ω = 0.029 rpm and deposition rate of
0.3 nm/s to have a spiral-like NHA. Figure 1e shows the
cross-section and top-view SEM images of the 1.5-turn
Au NHA. The average diameter of the arms was 58 nm.
The average pitch and radius of curvature were 162 and
78 nm, respectively. Most of the gold helices had a pitch
number of 1.5. The pitch angle, defined as the angle be-
tween the initial direction of growth of the rods and the
substrate surface, was 29° for Au NHA and 27° for Ag

NHA. The top views of the Ag and Au NHAs reveal that
effects of competition during atomic self-shadowing
growth are different between them. The surfaces of the
substrates were populated randomly with nanohelices of
different sizes and pitch numbers. The 1.5-pitch nanohelix
densities of the two spiral-like NHAs were σAg = 29 μm− 2

and σAu = 48 μm− 2. The fraction of complete nanohelices
with a pitch number of 1.5 on the Au NHA was relatively
high.

Results and Discussion
The transmittance and reflectance spectra of the two
spiral-like NHAs deposited at ω = 0.017 rpm and ω = 0.029
rpm were measured with LCP incident light and RCP inci-
dent light, respectively, as shown in Fig. 2. Each LCP or
RCP spectrum exhibits a transmittance minimum at a vis-
ible wavelength. For the Ag NHA, the LCP and RCP
transmittance minima are 1.71 % at a wavelength of
471 nm (λ = 471 nm) and 3.8 % at a wavelength of
533 nm (λ = 533 nm), respectively. Both LCP and
RCP transmittance spectra raise from their minima to
approximately 28 % at λ = 1200 nm. The difference
between LCP transmittance and RCP transmittance
ΔT = TLCP − TRCP is below 3.13 % over wavelengths
from 400 to 1200 nm. Both LCP and RCP reflectance
spectra have localized maxima values of 9.3 % and
16.66 % at λ = 553 nm and λ = 575 nm, respectively.
The maximum reflectance difference between LCP
and RCP is 7.4 % at λ = 579 nm.
For the Au NHA, both LCP and RCP transmittance

spectra are below 9.34 % and the transmittance differ-
ence ΔT = TLCP − TRCP is less than 1.73 % over the wave-
lengths from 400 to 1200 nm. However, the RCP and
LCP reflectance spectra are higher than those of the Ag
NHA. Both RCP and LCP reflectance spectra have peak
values of 37.14 % and 25.54 % at λ = 755 nm and λ =
719 nm, respectively. The reflectance difference ΔR =
RRCP − RLCP for Au NHA is significant: ΔR increases
from −0.01 % at λ = 506 nm to the maximum value of
12.11 % at λ = 779 nm and then decays to 6.26 % at λ =
1200 nm.
Even though Au and Ag NHAs have similar pitch

length and arm diameter, the polarization dependence of
reflectance is significant for the Au NHA. Therefore, the
g-factor is calculated for the Au NHA, as shown in
Fig. 2c. The g-factor is the difference between the
extinctance under LCP illumination and that under
RCP illumination, ΔE, divided by the average extinc-
tance E: g = ΔE/E. The g-factor of Au NHA remains
around 0.03 from λ = 400 nm to λ = 510 nm, increases to
0.382 at λ = 763 nm, and then decreases to 0.144 at λ =
1200 nm. The strong g-factor of the Au NHA comes from
the density of gold helices with a pitch number of 1.5 that
exceeds that of the silver helices.
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Fig. 1 Top-view and cross-section SEM images of 1.5-turn Ag NHAs deposited at spin rates of a 0.017, b 0.023, c 0.029, and d 0.035 rpm and e
1.5-turn Au NHA deposited at a spin rate of 0.029 rpm
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To perform SERS characterization, the Raman probe
molecule, 1,2-di(4-pyridyl)ethylene (BPE, TCI), was used,
and a 4-μL droplet of BPE methanol solution with a con-
centration of 5.5 × 10−5 M was dispersed on the surfaces
of the three spiral-like metal NHAs. After the droplet
had dried, the area over which it had spread on each of
the substrates was observed to be approximately 5 mm2.
The Raman spectra were obtained using a Stroker 785L
Raman Spectrometer from Wasatch Photonics, with an
excitation wavelength of 785 nm, a power of 100 mW, a
laser spot with a diameter of less than 50 μm, and a col-
lection time of 30 ms. The SERS spectra of the three
metal NHAs were measured and compared with those
of a slanted Ag nanorod array (NRA) that had been pre-
viously developed as a highly sensitive SERS substrate
[16]. The Ag NRA was obliquely deposited by electron
beam evaporation at a deposition angle of 89°. The average
length of the Ag NRA was 211 nm. The normal Raman
spectrum that was obtained from the BPE methanol bulk
solution with a concentration of 10− 2M, and the SERS
spectrum of the glancing-deposited Ag NRA were

measured. The SERS intensity relative to the Raman in-
tensity yielded an enhancement factor, EF [17], of
around 104, which matches a previously obtained re-
sult [16]. Figure 3 shows the experimentally obtained
normal Raman spectrum and SERS spectra of BPE
herein. All of the spectra include the following Raman
characteristic peaks of BPE: Δν = 1200 cm(−1) (C=C
stretching mode) and Δν = 1610 cm− 1 (aromatic ring
stretching mode) and Δν = 1640 cm− 1 (in-plane ring
mode). At Δν = 1200 cm(−1), the enhancement factors
of the Ag NRA, Ag NHA, and Au NHA are EF1200AgNHA =

3 × 104, EF1200AgNHA = 1 × 105, and EF1200AuNHA = 1.8 × 106, re-

spectively. At Δv = 1610 cm− 1, the enhancement fac-
tors of the three samples are EF1610AgNRA = 3.6 × 104,

EF1610AgNHA = 4.7 × 104, and EF1610AuNHA = 1.4 × 106. The in-

tensities of the peaks of the Ag NHA are only approxi-
mately 2.9 times those of the Ag NRA. However, the
intensities of the peaks of the Au NHA are at least 40
times higher than those of the Ag NRA. The Au NHA
yielded the strongest SERS signal of the three NHAs

Fig. 2 Circularly polarized transmittance and reflectance spectra of a Ag NHA and b Au NHA. c g-factor spectra of Au NHA
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samples. Since most of the Au nanohelices were devel-
oped with 1.5 turns, they were expected to exhibit many
more hot spots than the other two samples.

Conclusions
In conclusion, metal NHAs were successfully fabricated
on a smooth substrate by GLAD. The substrate was
cooled during deposition, and Ag and Au nanohelices
were well formed using a deposition rate that matched
the substrate spinning rate. Even under fixed deposition
conditions, the morphologies of nanohelices varied with
the metal used. A dense distribution of 1.5-pitch gold
nanohelices exhibits strong circular dichroism and yields
a SERS signal in the detection of an analyte with an
ultra-low concentration. We envisage that the devel-
oped one-step self-shadowing deposition will provide a
general route for the mass production of various metal
nanohelices that involves the proper use of two-axis
rotation stages in a cooling system. Such three-
dimensional structured nanohelices have potential for
biosensing applications.
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