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Abstract

We report on the demonstration of substrate-free nanowire/polydimethylsiloxane (PDMS) membrane light-emitting
diodes (LEDs). Metal-organic vapour-phase epitaxy (MOVPE)-grown InGaN/GaN core–shell nanowires were
encapsulated into PDMS layer. After metal deposition to p-GaN, a thick PDMS cap layer was spin-coated and the
membrane was manually peeled from the sapphire substrate, flipped upside down onto a steel holder, and
transparent indium tin oxide (ITO) contact to n-GaN was deposited. The fabricated LEDs demonstrate rectifying
diode characteristics. For the electroluminescence (EL) measurements, the samples were manually bonded using
silver paint. The EL spectra measured at different applied voltages demonstrate a blue shift with the current
increase. This shift is explained by the current injection into the InGaN areas of the active region with different
average indium content.
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Background
Nitride light-emitting diodes (LEDs) have found numer-
ous applications in our everyday life (general lighting,
automotive headlamps, traffic signals, indicator lamps
for electronic devices, etc.). Today, the market is domi-
nated by two-dimensional devices based on thin film
technology. To further boost the LED performance and
to add new functionalities, three-dimensional nanoma-
terials have recently emerged [1, 2]. In particular, nitride
high-aspect-ratio nanocrystals (referred to as nanowires
(NWs)) allow to improve the material quality of the LED
active region and to facilitate the light extraction [3].
The NW LED core–shell structure geometry also allows
growth on non-polar m-planes to avoid undesirable
quantum-confined Stark effect (QCSE).
The attractive feature of the NWs is that they provide

high tolerance for the growth on lattice-mismatched
substrates (e.g. growth of high-quality nitride NWs on
silicon [4, 5] or sapphire). The concept of the ‘NW
substrate independence’ can be further extended by

transferring the NWs to other substrates (including non-
crystalline materials) in either planar [6–9] or vertical
[10–13] architectures. In this way, the NWs are used in-
dependently from their growth substrate, which can po-
tentially be recycled. New functionalities for LEDs can
be imagined. For example, NW LEDs can be mounted
on metallic layers for efficient heat sinking or LEDs of
different colours can be integrated on the same holder.
In particular, flexible NW devices can be fabricated
using this approach [12].
The first demonstration of nanowire flexible LEDs has

been done using ZnO nanowires grown in solution on
plastic substrate [14] demonstrating the electrolumines-
cence in the visible range. However, the direct growth on
the plastic substrate imposes to use a low temperature
and strongly limits the range of accessible materials and
growth techniques. To achieve high-efficiency visible
emission, it is advantageous to make use of InGaN NWs
elaborated at high temperature following standard epitax-
ial methods. The NWs can then be reported to a different
substrate for LED fabrication. Recently, the first substrate-
free nitride NW LED has been demonstrated employing
the NW transfer [15]. The InGaN/GaN NWs were
grown on a non-conventional Si/SiO2/graphene template,
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embedded into a polymer and separated from their
growth substrate by wet etching of a sacrificial SiO2 layer
[15]. In this work, we propose a different fabrication ap-
proach based on a mechanical peel-off of the NWs with
the method described in the literature [10, 16, 17], which
does not require any sacrificial layer and thus facilitates
the fabrication. Self-assembled core/shell NWs containing
seven InGaN/GaN quantum wells (QWs) were grown by
metal-organic vapour-phase epitaxy (MOVPE) on c-
sapphire substrates. The NW structure was probed by
cathodoluminescence evidencing two spectrally shifted
emissions originating from the InGaN/GaN QWs located
on the top polar minus c-plane and on the lateral non-
polar m-plane facets. For the LED fabrication, the NWs
were encapsulated into a polydimethylsiloxane (PDMS)
layer and mechanically peeled from their growth sub-
strate. The obtained NW/PDMS composite membrane
was electrically contacted and fixed on a steel holder.
The electrical characteristics of membrane NW LEDs
presented a rectifying behaviour. The electrolumines-
cence (EL) appeared starting from 5 V forward bias.
The EL spectra exhibited two peaks at 412 and 466 nm,
and the relative peak intensity changed with applied
bias. In agreement with the cathodoluminescence map-
ping, this spectral behaviour is attributed to the current
injection into the areas of the active InGaN/GaN QWs
with different average In content located on the lateral
and on the top NW facets.

Methods
Nanowire Growth and Device Fabrication
The GaN core–shell NWs were grown on 2-in. sapphire
substrates by self-assembled MOVPE, see details in
[18, 19]. The growth started with 10 ± 2-μm-long n-doped
GaN NWs with a diameter in the range 700–1500 nm
(~1020 cm−3 concentration of Si doping atoms). We
note that a SiNx ultrathin layer is spontaneously formed
around this wire part due to the high silane flux passiv-
ating the wire surface. Then, another 7 ± 2-μm GaN seg-
ment was grown without the silane flux, and the
material is unintentionally doped by ~1018 cm−3 Si [20].
The active region (AR) was deposited directly on the
NW surface by switching the growth conditions from
axial growth to radial growth [19, 21]. Due to the pres-
ence of the SiNx layer around the wire base, the radial
growth is inhibited in the lower wire part and the core/
shell heterostructure is only formed around the upper
non-intentionally doped wire part, as described in [21].
The AR consisted of seven periods of 5-nm InGaN
quantum wells delimited by 10-nm-thick GaN barriers
with an indium content in the QWs about 15 % [19].
After growth of the AR, the p-GaN 100-nm shell layer
was deposited, the hole concentration is estimated to be
in the 1016–1017 cm−3 range [20]. The NW density is about

5 × 106 per cm−2. The NW morphology and the internal
structure are illustrated in Fig. 1a–d.
For the fabrication of substrate-free NW LEDs, the

nanowire embedding and lift-off procedure was first
optimized on a series of test samples with a similar
NW density. The samples were spin-coated with PDMS
polymer with a 9:1 (base:cure agent) ratio to bury the
NWs. The PDMS was cured at 80 °C for 50 min, and
then the PDMS/NW composite layer was mechanically
peeled off following the procedure described in the lit-
erature [10–12]. The PDMS/NW membrane was de-
posited on a metallic holder and imaged in a scanning
electron microscope (SEM). Figure 2 shows an SEM
image of the edge of the membrane, where several
NWs can be distinguished. The layer is highly flexible.
Despite the small curvature radius (~70 μm) of the re-
gion imaged in Fig. 2, the embedded NWs preserve
their integrity, validating the possibility to manipulate
and process the composite membranes for substrate-
free device fabrication.
For LED fabrication, the samples were spin-coated

and cured to form a 18 ± 2-μm PDMS layer. To delete
undesirable traces of PDMS on the tops of the NWs,
the samples were etched in the CHF3/O2 plasma for
3 min. Then, they were treated with oxygen plasma for
5 min to modify the PDMS surface state in order to im-
prove the adhesion of the metal contact [22]. The con-
tact to the p-type GaN shell was made by depositing
either 10-nm Ni/200-nm Au [23] or 10-nm Cr/200-nm
Au [24]. Both Ni/Au and Cr/Au metallizations have re-
sulted in similar performance; in the following, we de-
scribe the characterization of the device with Ni/Au
contact. The fabrication process is schematically pre-
sented in Fig. 3a.
Thin free-standing composite membranes are rather

difficult to manipulate since they are fragile and can eas-
ily roll up. Therefore, an additional PDMS cap layer
(~0.5 mm thick, cured at 80 °C for 2 h) was deposited
on the metal contact to be used as a mechanical support.
It helps to peel off the structure from the sapphire sub-
strate and prevents the peeled layer from rolling. After
the mechanical lift-off of the nanowire/PDMS mem-
brane, the sample was flipped upside down and put onto
a steel holder for further processing and easy manipulation.
Then, the second contact was deposited on the n-type
GaN core bases of the NWs, which after the membrane
flipping were located on its top part. The 100-nm-thick in-
dium tin oxide (ITO) layer was deposited by sputtering
through a shadow mask with an array of 0.5-mm-diameter
circular openings [25]. After that, the shadow mask
was slightly shifted and the 5-nm Ti/15-nm Al/5-nm
Ti/100-nm Au metal pads were deposited to achieve a
partial overlap between the metal and ITO (Fig. 3b);
the corresponding work function suits ohmic injection
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in the n-GaN [26]. Thus, we obtain an array of LEDs,
each consisting of a large number of parallel-connected
NWs. The LEDs share the same bottom contact but can
be addressed independently by their top metal pad.
To get access to the metal contact to p-GaN shells,

which is between the 18-μm PDMS encapsulating
layer and the 0.5-mm cap layer, the cap layer was
mechanically released over a small area at the sample
edge and a piece of aluminium foil was attached to
the metallization with silver paint, as schematized in
Fig. 3b. The ITO/metal contact to n-GaN NW base
parts, which is accessible on the sample surface, was
connected using metallic probes for the electrical
characterizations. For EL spectroscopy, copper wires
were manually attached to the metal pads using silver
paint and a sharpened wooden toothpick since the
composite NW/PDMS structure cannot stand the
micro-bonding procedure.

Results and Discussion
The fabricated membrane LEDs were electrically charac-
terized in a Janis probe station coupled to a Keithley
2636 source meter. The electrical potential was applied
to the bottom metal contact connected to the p-doped
GaN shells, while the top transparent contact (ITO
through Ti/Al/Ti/Au) was grounded. Figure 4 displays a
current–voltage (I–V) characteristic at room temperature
for a representative top contact pad. As expected from the
NW structure, the I–V curve has a diode shape. The re-
verse leakage current is ~ 0.1 mA at −8 V compared to the
direct current of ~10 mA at 8 V. As seen from Fig. 4, the
I–V curves exhibit low-magnitude current instabilities for
direct voltages higher than 5 V. These random current
fluctuations are accompanied by LED emission blinking.
The origin of this blinking is not completely understood.
We suspect that these fluctuations may arise from the top
ITO contact instability induced by Joule heating and

Fig 1 The GaN NW core–shell structure. a Cross-sectional SEM image of the as-grown NWs with the average height of ~20 μm. b 45° tilted SEM
image of the NW array. c Top view SEM image of the NWs. d Schematic of the nanowire internal structure
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underlying PDMS deformations. Alternative transparent
contacts will be further optimized to achieve a stable
emission.
The EL spectra of the NW/PDMS membrane LEDs

were measured at room temperature using the HR460
spectrometer equipped with a CCD camera. The EL
spectra under different applied biases are presented in
Fig. 5. The EL spectra exhibit two distinct peaks at
412 nm with a full width at half maximum (FWHM) of
20 nm and at 466 nm with a FWHM of 35 nm. For bet-
ter understanding the origin of these peaks, cathodolu-
minescence (CL) mappings have been performed at 5 K
on dispersed single wires (electron beam acceleration
voltage = 20 kV and current = 1 nA, respectively). CL
maps filtered for different detection wavelengths are dis-
played in Fig. 6(a–e). As it is seen in Fig. 6(b–d), the
short-wavelength peak (380–410 nm) is associated with
the emission of the radial QWs, whereas the long-

wavelength peak (440 nm—Fig. 6(e)) arises from the
axial QWs. Therefore, the two peaks observed in the EL
spectra are attributed to the radial and axial QWs emis-
sion, respectively, as explained in detail in [27]. Based on
the CL peak wavelengths and the confinement modelling
with Silvaco software, we roughly estimate the average
indium content x in the radial (m-plane) and axial
(minus c-plane) InxGa1 − xN QWs to be close to 10 ± 3
and 16 ± 4.5 %, respectively [28]. We conclude that the
polar NW facet is more favourable for In incorporation
than the radial facet in agreement with previous reports
[29, 30].
The LED starts to luminesce at a forward bias of ~5 V

with a working current in the order of 1 mA. This rela-
tively high light-up voltage is attributed to the non-ohmic
nature of the ITO contact to the moderately doped p-
GaN shell. As previously reported in [27] for single NW
LEDs, at low injection. the low energy peak is dominant.
With increasing voltage, the short-wavelength peak in-
creases faster than the long-wavelength peak. The
short-wavelength peak becomes dominant at high injec-
tion (8 V, 10 mA). This relative intensity variation be-
tween the two peaks can be understood in terms of the
redistribution of the injection current in the nanowire.
The saturation current through the active region is ex-
ponentially dependent on the In content, and, for the
mentioned difference in In content by several per cent,
the saturation currents of the axial and radial active re-
gion parts are strongly different [31]. The high satur-
ation current in the In-rich part favours the preferential
injection in this region. However, as the injection in-
creases, the current spreading in the resistive p-GaN
shell part starts to play an important role [27]. The
current is redistributed due to the potential drop in the
shell, and the injection in the radial part of the active re-
gion, which in addition has a larger surface compared to
the axial region, becomes favourable. It should also be
noted that the radial QWs on the m-plane are expected

Fig. 3 Schematic of the processing steps. a Encapsulated NWs with a metal contact to p-doped GaN shells and a PDMS cap layer before peeling.
b Final device consisting of a flipped membrane with a transparent ITO contact to n-doped GaN NW base parts and top metal contact pads. The
PDMS cap is partially released, and aluminium foil is attached to the bottom metal contact

Fig. 2 SEM image of the nanowire/PDMS membrane. Inset shows a
high magnification SEM image of the region marked with a black
rectangle, where single NWs are visible. The NWs are marked with arrows
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to have less defects in comparison to the axial QWs due
to their lower In content. This would also lead to the
lower EL droop at higher currents for the m-plane QWs
and therefore to a domination of the short-wavelength
EL peak at high injection.
The increase of the injection current above 10 mA re-

sulted in the LED failure. We believe that the device deg-
radation is not caused by the NW structural degradation,
but by the top contact failure, for which we observe a
morphology change. This failure at a relatively low current
can be attributed to the mechanical deformations of the
soft PDMS layer and to the Joule heating. The degradation
also can be caused by ion diffusion into polymer layer dur-
ing current spreading in the ITO contact [32]. In the fu-
ture contact optimizations, this effect can be suppressed
by creating a thin metal layer between ITO and PDMS

layers [33]. Alternative transparent contacts based on
CVD-grown graphene layers can also be used [34].
The LED fabrication has been performed on several

membranes showing good process reproducibility. EL
measurements of the LED after 2-week storage in ambi-
ent air have not evidenced any device degradation.

Conclusions
Substrate-free NW LEDs have been fabricated using the
polymer embedding and peel-off procedure. The devices
show rectifying electrical behaviour and emission in the
blue spectral range. Further improvement of the trans-
parent contact would make these LEDs competitive with
the NW LEDs fabricated on rigid crystalline substrates.
The developed fabrication approach allows for sapphire
substrate recycling, which is important for the LED cost
reduction. In addition, the proposed LED architecture
allows for the fabrication of flexible high-brightness
LEDs in the blue spectral range provided that an appro-
priate flexible transparent contact is optimized.
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