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Abstract
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A facile and efficient hard-templating strategy is reported for the preparation of porous nickel microspheres with
excellent uniformity and strong magnetism. The strategy involves impregnation of porous polymer microspheres
with nickel precursors, calcination to remove the template, followed by thermal reduction. The morphology,
structure, and the property of the Ni microspheres were characterized by scanning electron microscopy, X-ray
powder diffraction, N, adsorption-desorption isotherms, thermogravimetric analysis, and magnetic hysteresis
measurement. The obtained porous nickel microspheres were monodispersed with a particle size of 0.91 um and
crystallite size of 52 nm. Their saturation magnetization was much higher than that of Ni nanoparticles. The unique
porous nanostructured Ni microspheres possess catalytic activity and excellent recyclability, as demonstrated in the
catalytic reduction of 4-nitrophenol to 4-aminophenol. The micropherical Ni catalysts could be easily separated
either by an external magnetic field or by simple filtration.
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Background

The development of nanoscience and nanotechnology
has put forward a higher requirement to fabricate novel
nanostructured catalysts with specific morphologies and
functions [1-9]. A broad range of nanostructured metals
such as Au, Ag, Fe, Cu, Pt, Pd, and Ni have shown en-
hanced catalytic properties for applications in organic
synthesis [10-12]. Among different morphologies of
metals, hierarchically porous spheres have attracted
great research interests. Several reports demonstrated
that assembling metal nanoparticles into porous hier-
archical spheres led to improved properties over
multiple-length scales [13-17]. Microspheres possess
higher flowability and would not tend to agglomerate,
which is inevitable for their nanoparticle counterparts.
They also showed high catalytic efficiency derived from
a high surface-to-volume ratio and maximized transport
efficiency [18-22].
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Porous nickel (Ni) catalysts have long been success-
fully employed in hydrogenation reactions, chemo-
selective oxidative coupling of thiols, and Hantzsch
condensation etc. [23-27]. Another important feature of
Ni catalysts is their ferromagnetic properties. This offers
possibility to easily remove the spent catalysts by mag-
netic field for the next reaction cycle.

The intrinsic properties of the Ni catalysts, such as cata-
lytic activity and distinctive magnetic property, are deeply
affected by their size, crystallinity, composition, and
morphology [28-32]. Extensive efforts [33—40] have been
devoted to fabricate various structures of porous Ni cata-
lysts, making use of template synthesis, self-assembly,
electro/chemical bath deposition, sol-gel method, and so
on. The traditional RANEY” Ni, one of the most widely
used Ni catalysts in industry, is prepared by chemical
leaching and consists essentially of a porous skeletal struc-
ture exhibiting high catalytic activity. However, the fine
powder nature of RANEY® Ni results in difficult catalyst
separation from liquid phase reactions or plugging and
pressure build-up in the fixed bed systems [41-45]. Re-
cently, Fow’s group [46—48] prepared gauze-supported
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skeletal Ni catalysts which may be adapted to various re-
actor configurations by folding or stacking. However, sup-
ported catalysts are quite complex, and their fabrication
approaches are time-consuming. For free standing Ni cat-
alysts, Wu’s group [49] demonstrated a facile template-
and surfactant-free method to prepare porous hierarchical
Ni nanostructures by directly calcining the Ni-based
flower-like precursor in Ar. Zhu et al. [50] developed a
novel precursor hydrothermal redox method to fabricate
the hierarchically porous structure of Ni hollow micro-
spheres consisting of Ni nanoparticles on the shell. Yuan
et al [40] self-assembled synthesized porous Ni phos-
phate/phosphonate hybrid microspheres to combine the
merits of organic and inorganic components. The hybrids
showed catalytic activity for the reduction of 4-nitrophe-
nol (4-NP) to 4-aminophenol (4-AP) due to the pres-
ence of Ni active sites on the pore surface. However,
the Ni nanostructures produced from these soft-
templating or template-free approaches were typically
not uniform due to the undirected nucleation sites in
the homogenous system.

In our previous works, we developed a hard-
templating method utilizing monodisperse polymer
microspheres to prepare uniform porous inorganic
microspheres consisting of metal or metal oxide
nanoparticles [51-54]. In this report, we applied the
same principle to fabricate monodisperse porous Ni
oxide microspheres by impregnation of porous poly-
mer microspheres with Ni precursors followed by cal-
cination to remove the template. Subsequent thermal
reduction led to Ni microspheres. Different analysis
techniques, such as scanning electron microscopy
(SEM), X-ray powder diffraction, N, adsorption-
desorption isotherms, and magnetization curves were
adopted to characterize the size, morphology, and
magnetic property of the obtained microspheres.
Their catalytic properties were also primarily studied.

Methods

Materials

The Ni precursor nickel acetate (Ni(Ac),-4H,O) was
purchased from Alfa Aesar. Ethylenediamine (EDA)
was purchased from Sigma-Aldrich. The hard tem-
plate porous polymer microsphere named poly(GMA-
co-EGDMA) is a polymer of glycidyl methacrylate
(GMA) cross-linked with ethylene glycol dimethacry-
late (EGDMA) supplied by Nano-Micro Technology
Company, China. 4-NP and NaBH, used in the cata-
lytic study of porous Ni microspheres were purchased
from Sigma-Aldrich. Water was purified by distillation
followed by deionization using ion exchange resins.
Other chemicals were analytical grade and used with-
out further purification.
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Preparation of Porous Nickel Oxide (NiO) and Ni
Microspheres

Monodisperse porous NiO microspheres were fabri-
cated by impregnation of porous poly(GMA-co-
EGDMA) microspheres with Ni precursors followed by
calcination to remove the template. In a typical synthe-
sis, the poly(GMA-co-EGDMA) microspheres were
firstly functionalized by EDA following our previous
protocol [51]. Poly(GMA-co-EGDMA) microspheres of
10 g were dispersed in 240 ml water and sonicated for
0.5 h before 10 g of EDA was added, and the mixture
was mechanically stirred at 80 °C for 13 h. The result-
ing EDA-functionalized poly(GMA-co-EGDMA) micro-
spheres were washed repeatedly with distilled water till
the filtrate was neutral, and the filter cake was dried at
50 °C. Afterwards, the EDA-functionalized poly(GMA-
co-EGDMA) microspheres of 1 g were mixed with 0.5 g
of Ni(Ac), - 4H,0O, 6 ml of ethanol, and 4 ml of water.
The mixture was then sonicated for 10 min and dried
at 90 °C. Finally, the obtained composite microspheres
were calcined at 600 °C for 12 h to form monodisperse
porous NiO microspheres, which were subsequently re-
duced in a 95 % N, / 5 % H, atmosphere at 500 °C for
10 h to form porous Ni microspheres.

Catalytic Study of Porous Ni Microspheres

The reduction of 4-NP by NaBH, was chosen as a model
reaction for investigating the catalytic performance of
porous Ni microspheres. In a typical reaction, aqueous
solution of 4-NP (5 mM, 1 ml) was mixed with fresh
aqueous solution of NaBH, (0.1 M, 5 ml) at room
temperature. The microspheres (1.0 mg) were rapidly
added into the reaction system. Subsequently, 1 ml of
aqueous suspension was sampled at a given interval and
filtered through a 0.45-pm membrane. The UV-visible
absorption spectra of the filtrates were recorded at room
temperature to monitor the reaction progress.

Characterizations

Powder X-ray diffraction (XRD) of the synthesized
microspheres was recorded using a Rigaku D/Max-
2200PC diffractometer with Cu Ka at 40 KV,
200 mA. The crystallite size of the microspheres de-
termined by XRD was calculated by the Williamson-
Hall method. A field emission scanning electron
microscope (SEM) Hitachi S4800 was used for the de-
termination of the morphology and structure of the
microspheres. The particle size of the microspheres
was measured by a Beckman Coulter Counter size
analyzer Multisizer 3. N, adsorption-desorption iso-
therms were performed at 77 K on a Micromeritics
Tristar 3020. The magnetic measurement of porous
Ni microspheres was carried out at room temperature
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with a vibrating sample magnetometer under a vary-
ing magnetic field (ISOM, UPM, Madrid, Spain).

Results and Discussion

Preparation and Characterization of Porous Ni
Microspheres

In our previous work, monodisperse porous silica, magnetic
nanoparticle-embedded silica microspheres, carbon micro-
spheres, and zirconia microspheres have been successfully
prepared using porous polymer microspheres as the hard
template [51-55]. Notably, the unique pore structure and
well-defined morphology of the parent polymer micro-
spheres were inversely replicated into the obtained inor-
ganic microspheres with similar monodispersity, which led
to desired properties. This promising hard-templating
method, as shown in Scheme 1, was used in this work to
fabricate porous Ni microspheres. Porous poly(GMA-co-
EGDMA) microspheres were chosen as the parent because
of their easy functionalization due to the existence of sur-
face epoxy groups. Functionalization by EDA introduced
amino group to the porous poly(GMA-co-EGDMA) micro-
spheres, which aided the impregnation of Ni precursor
Ni(Ac), - 4H,O into the pore space. During the impregna-
tion and drying process, the Ni precursors penetrated into
the pores and incorporated into polymer microspheres to
form composite microspheres. Calcination at 600 °C re-
moved the polymer template, and at the same time oxi-
dized the Ni precursor to NiO microspheres. Afterwards,
the porous NiO microspheres were reduced in a hydrogen
atmosphere to form porous Ni microspheres. Attempts to
directly decompose the polymer in the Ni composite mi-
crospheres in a reducing hydrogen atmosphere to avert the
step of forming NiO failed as the spherical structure
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collapsed due to the huge property differences between the
polymer template and Ni.

SEM images displayed in Fig. 1 demonstrate that the
structured three-dimensional network of the parent poly-
mer microspheres was well preserved in the synthesized
porous NiO microspheres and porous Ni microspheres.
Therefore, Ni precursors entered into the pores and inter-
acted closely with the polymer skeleton. After reduction,
the obtained porous Ni microspheres kept excellent mono-
dispersity and well-defined spherical morphology. Due to
the crystallite transformation at high temperature during
reduction, the nanoparticles in Ni microspheres are larger
than that of the NiO microspheres. As seen from the par-
ticle size of the polymer template and the synthesized mi-
crospheres in Table 1, the composite microspheres show
similar size and monodispersity to the original polymer mi-
crospheres indicating that Ni precursor penetration did not
cause structure deformation. Compared with the template
microspheres (Fig. la—c), the porous NiO microspheres
(Fig. 1d—f) were smaller probably due to shrinkage of the
skeleton, high density of NiO, and growth of NiO crystallite
size during calcination. High-temperature reduction further
reduced the size of the formed Ni metal microspheres
(Fig. 1g—i). All these as-prepared microspheres are in excel-
lent independent spherical morphology. Agglomeration for
the Ni microspheres, typically observed for molecular self-
assembled ones (Zhu et al, solid state sciences
2011;12:438—-43), was not observed in our study. This dem-
onstrated the strong templating power of our hard polymer
microspheres, which counteract the surface chain-forming
force caused by the magneto-static energy of ferromagnetic
particles. The size distribution analyzed by the size analyzer
confirmed the SEM observations (Table 1). The size of the
original polymer microspheres and the polymer composite

Porous PGMA/EGDMA
microsphere

Ni(Ac),-4H,0
—_—

Impregnation

Composite Microsphere

O  Polymer

B Nisource

Porous NiO microsphere

Scheme 1 Schematic illustration of synthetic procedure for the porous Ni microspheres

Porous Ni Microsphere

O NiO nanoparticle
Q Ni nanoparticle
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Fig. 1 SEM images of (a—c) polymer microspheres, (d-f) NiO microspheres, and (g-i) Ni microspheres under different magnification

was very close, of 4.44 and 4.49 pm, respectively. Burning
out the polymer template decreased the NiO microspheres
to an average size of 1.83 um, and further reductive process
reduced the Ni microspheres to 0.91 um. All microspheres
were exceptionally uniform, and the coefficient of variation
for particle size of NiO and Ni metal microspheres was 4.9
and 7.7 %, respectively.

The crystalline phases and the crystallite sizes of the
powders were confirmed by XRD measurements. Powder
X-ray diffraction patterns revealed that the obtained por-
ous NiO microspheres and Ni microspheres are all crys-
talline. The reflection peaks of NiO microspheres (shown
in Fig. 2), indexed to (111), (200), (220), (311), and (222),
can be well-assigned to the cubic phase of NiO (JCPDS
card no. 47-1049). The average crystallite size of porous
NiO microspheres, calculated based on the Williamson-
Hall method, was ca. 29 nm, consistent with the SEM

Table 1 Properties of template and as-prepared microspheres®

Microspheres  Particle size (mean +SD)  Surface area Pore size
(Hm) (m’/g) (nm)

Polymer 444 +0.11 7533 21

Polymer/Ni 449+0.11 5826 21

NiO 1.83 £0.09 13.74 34

Ni 091 £0.07 2.55 42

?Particle sizes were determined by Coulter counter for polymer, polymer/Ni
and NiO microspheres, and SEM for Ni microspheres; surface areas were
determined using the Barrett-Emmett-Teller (BET) method, and average pore
sizes were calculated using the Barrett-Joyner-Halenda (BJH) method

observation (Fig. 1f). Reduction of porous NiO micro-
spheres at 300 °C converted most of the microspheres into
Ni as the diffraction peaks of the face-centered cubic (fcc)
phase of crystalline Ni (JCPDS card no. 04—0850) with 20
of 44.4°, 51.7°, 76.3°, corresponding to (111), (200), and
(220) planes of crystalline Ni, becoming highly intense.
However, the NiO peaks were still present. Increasing the
reduction temperature to 400 °C reduced the impurity
amount of NiO, and only with a reduction temperature of

-t NiO(200)
3 .
© NiO(111)
~ L NiO(220)
-"? NiO(311) NiO(222)
2
L (@)
£ - 4 (b)
- A L____.J . . (C)
L JL J (d)
Ni(111) Ni(200)| Ni(220)|
30 40 50 60 70 80 90

2 theta (degree)

Fig. 2 Wide-angle powder XRD patterns of porous NiO
microspheres and Ni microspheres reduced at 300 °C, 400 °C, and
500 °C. The violet lines show the standard diffractions of Ni (JCPDS
No. 04-0850)
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Fig. 3 TGA curve of the polymer template and polymer/Ni precursor
composite microspheres

500 °C, no NiO could be seen. The crystallite size of pure
Ni microspheres was calculated to be ca. 52 nm according
to the Williamson-Hall method, larger than that of the
NiO microspheres. Obviously, high-temperature reduction
gave rise to extensive sintering due to surface condensa-
tion. The sintering behavior could also be seen in the
SEM images. Although reduction at 500 °C was essential
for converting NiO to Ni thoroughly, this high thermal re-
duction temperature created a slightly higher degree of
crystallite growth and more bicontinous interpenetration
of the metallic particles. Fortunately, the Ni microspheres
were still separated showing smooth surfaces and clearly
discernable spherical interfaces.

The nitrogen adsorption-desorption results of the mi-
crospheres are presented in Table 1, and an additional file
shows the curves of N, adsorption-desorption isotherms
and pore size distributions in more detail [see Additional
file 1]. The template microspheres have a specific surface
area of 75 m*- g and pore volume of 0.38 cm®-g~! with
a BJH pore size of 21 nm. The composite microspheres
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exhibited a lower surface area of 58 m”- g~* indicating that
Ni precursors successfully occupied the pore voids of the
polymer microspheres. After calcination, the polymer part
of the composite microspheres was removed. The
complete removal of the polymer template was confirmed
by thermogravimetric analysis (TGA) of the composite
microspheres (Fig. 3). The polymer/Ni precursor compos-
ite microspheres underwent three stages of weight loss,
25-250, 250-450, and 450-600 °C. The weight loss of
11.8 % below 250 °C could be ascribed to the gasification of
small molecules such as adsorbed water and ethanol. Be-
tween 250 and 450 °C, the decomposition of polymer chain,
decomposition/dehydration of nickel acetate, and crystallite
formation in the composite microspheres led to a weight
loss of 71.4 %, obviously lower than the 92.7 % of template
polymer microspheres, due to the remaining of NiO species.
Little weight loss (2.8 wt %) was observed for calcination
above 450 to 600 °C. Therefore, calcination at 600 °C could
assure thorough burning away of the polymer skeleton.
Porous NiO microspheres containing both mesopores
and macropores were obtained with a specific surface area
of 14 m*.g™' and a pore volume of 0.1 cm®.g'. The
lower surface area and pore volume of porous NiO micro-
spheres compared to the template microspheres were
probably due to the shrinkage of the skeleton and the con-
current growth of NiO crystallites during calcination, as
well as the higher density of NiO. Thermal reduction
process further reduced the as-synthesized porous Ni mi-
crospheres. The Ni microspheres obtained by 500 °C ther-
mal reduction possessed a specific surface area of 2.6 m?-
g ' and a pore volume of 0.01 cm®-g™! with BJH meso-
pores of 42 nm. In contrast to porous NiO microspheres,
porous Ni microspheres showed lower surface area and
pore volume but larger pore size owing to phase trans-
formation upon high-temperature reduction. To confirm
the magnetic property of porous Ni microspheres, its hys-
teresis curve was measured at room temperature and dis-
played in Fig. 4. The saturation magnetization (Ms),

Moment (emu/g)

H (kOe)

external magnetic field within 10 s

Fig. 4 a Magnetic hysteresis curves of the porous Ni microspheres. b Photograph of microspheres before (NiO) and after (Ni) reduction under an
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remnant magnetization (Mr), and coercivity (H,) were
measured to be 50.26 emu-g ', 4.58 emu-g ", and 65 Oe,
respectively, indicating the excellent magnetic property of
porous Ni microspheres, as shown in Table 2 in compari-
son with other reported Ni nanostructures. The Ni micro-
spheres prepared in this work exhibited much enhanced
saturation magnetization than other reported Ni nanopar-
ticles, suggesting better resistance to surface oxidation
which are known to decrease the effective magnetic mo-
ment of Ni. The saturation magnetization of Ni micro-
spheres is very close to that of bulk Ni, and the coercivity
(He) value is much lower, probably resulting from the
shape anisotropy.

Catalytic Reduction of 4-NP by Porous Ni Microspheres
As one of the most common pollutants, 4-NP has
attracted widespread attention. Many noble metal cata-
lysts were devoted to catalyze the hydrogenation of 4-NP
to obtain 4-AP which is a valuable intermediate for manu-
facturing anticorrosion drugs, antipyretic drugs, and anal-
gesic. Herein, the catalytic performance of the fabricated
monodisperse porous Ni microspheres for the hydrogen-
ation of 4-NP was investigated. The reaction process was
monitored by UV—vis absorbance at 400 nm.

After addition of NaBH, to the 4-NP solution, UV-vis
absorbance changed from 317 to 400 nm due to the for-
mation of 4-NPate. If no porous Ni catalyst was added,
the absorbance at 400 nm remain unchanged revealing no
reduction of 4-NP. When our porous Ni microspheres
were added, the absorbance at 400 nm gradually de-
creased until no absorbance after 6 h, indicating complete
reduction of 4-NP (Fig. 5). The initial bright yellow solu-
tion became colorless during the reaction course. The Ni
microspheres can be easily recovered with a sand-core fil-
ter. When applying an external magnetic field, the Ni mi-
crospheres promptly transported to the wall of the
reaction flask (Fig. 4), and the solution became transpar-
ent and easily separable.

Conclusions

Uniform porous NiO and Ni microspheres were fabricated
by employing porous polymer microspheres as the hard
template. Both NiO and Ni microspheres exhibited well-
defined morphology, excellent monodispersity, mesoporos-
ity, and high crystallinity. Calcination to remove the

Table 2 Magnetism properties of Ni microspheres prepared in
this study in comparison to other Ni structures

Sample Ms/emug™'  Mr/emug™" Hc/Oe Size/nm

Ni microspheres 50.26 458 6499 910 nm
Hollow Ni NPs [56] 211 0.69 323 300~450 nm
Ni nanoparticles [57] 32 50 40 12 nm

Bulk Ni [58] 55 27 100 -
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Fig. 5 Time-dependent UV-vis spectrum of the reaction mixture for
the 4-NP reduction reaction using the porous Ni microsphere as
a catalyst

polymer template for NiO microspheres and thermal re-
duction to produce Ni microspheres grew their crystallite
sizes to 29 and 52 nm, respectively. The spherical particles
were instilled in the micro-size range and no inter-particle
agglomeration was observed. The Ni microspheres dis-
played outstanding magnetism with coercivity of 64.99 Oe,
saturation magnetization of 50.26 emu-g ', and remnant
magnetization 4.58 emu-g ', which are superior to other
Ni nanoparticles. The Ni microspheres were catalytically
active in the reduction of 4-NP, and the unique morphology
and strong magnetism ensured convenient separation from
the reaction mixture either by simple filtration or with an
external magnetic field. The general strategy presented here
holds potential to be applied to the design and fabrication
of more metal or metal oxide materials with better physical
or chemical properties for various applications.

Additional file

Additional file 1: Figure S1. Data curves of N, adsorption-desorption
isotherms and pore size distributions. N, adsorption-desorption isotherms
(A) and pore size distributions (B) for polymer template, Polymer/EDA, Ni
precursor, NiO and Ni microspheres. (PDF 168 kb)
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