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Vertical-Injection AlGaInP LEDs with n-AlGaInP
Nanopillars Fabricated by Self-Assembled
ITO-Based Nanodots
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Abstract

The light output power of AlGaInP-based vertical-injection light-emitting diodes (VI-LEDs) can be enhanced
significantly using n-AlGaInP nanopillars. n-AlGaInP nanopillars, ~200 nm in diameter, were produced using SiO2

nanopillars as an etching mask, which were fabricated from self-assembled tin-doped indium oxide (ITO)-based
nanodots formed by the wet etching of as-deposited ITO films. The AlGaInP-based VI-LEDs with the n-AlGaInP
nanopillars provided 25 % light output power enhancement compared to VI-LEDs with a surface-roughened
n-AlGaInP because of the reduced total internal reflection by the nanopillars at the n-AlGaInP/air interface
with a large refractive index difference of 1.9.
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Background
Given the recent strong interest in the epitaxial quality
of AlGaInP-based materials, the application of AlGaInP-
based light-emitting diodes (LEDs) has been extended to
automotive lighting, full-color displays, and visible light
communications, which require high-brightness and
high-power operation [1–4]. A vertical-injection geom-
etry through wafer-bonded Si conductive substrates with
a reflective electrode has been suggested as a solution to
increase the light output power of AlGaInP-based LEDs
because vertical-injection LEDs (VI-LEDs) yield better
current spreading, good heat dissipation, and simple
packaging [5, 6]. On the other hand, the light extraction
efficiency (LEE) of AlGaInP VI-LEDs is limited by the
total internal reflection because of the large difference in
refractive index between the n-AlGaInP (n ∼ 2.9) and air
(n = 1.0) [7].
Several beneficial methods that can enhance the LEE

of AlGaInP LEDs have been reported. AlGaInP LEDs
with a roughened surface, textured surface, and trun-
cated pyramid geometry were reported to enhance the

LEE by increasing the critical angle and the probability
of escape of emitted light from an air/semiconductor
interface [8–10]. Omni-directional reflectors as a p-type
electrode and an air-hybrid distributed Bragg reflector
structure were also reported to improve the LEE of
AlGaInP LEDs significantly [11, 12]. Recently, Wenjing
et al. suggested that the fabrication of AlGaInP-based
nanorod LEDs using self-assembly metal layer nano-
masks can enhance the probability of emitted light es-
caping from nanorod LEDs [13]. Although the nanorods
fabricated using Au metal clusters as nanomasks im-
proved the LEE of AlInGaP LEDs greatly by enhancing
the probability of escape of emitted light, this approach
cannot be implemented in high-power AlGaInP-based
VI-LEDs with wafer-bonded Si conductive substrates,
because the formation of Au metal clusters requires high
temperature annealing (>400 °C), which is significantly
higher than that of wafer bonding between the Si con-
ductive wafer and AlGaInP LED wafer.
The present study focused on improving the LEE of

high-power AlGaInP-based VI-LEDs with wafer-bonded
Si conductive substrates. For this purpose, n-AlGaInP
nanopillars with a diameter of ~200 nm were fabricated
using self-assembled ITO-based nanodots as etching
nanomasks. This approach is a promising method for
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producing high-power AlGaInP-based VI-LEDs with
wafer-bonded Si conductive substrates because ITO-
based nanodots can be produced by the wet etching of
as-deposited ITO films without an annealing process.
The results show that the light output power of
AlGaInP-based VI-LEDs with n-AlGaInP nanopillars can
be improved considerably compared to that of the VI-
LEDs with surface-roughened n-AlGaInP, which is a
widely implemented method for increasing the LEE of
AlGaInP-based VI-LEDs.

Methods
AlGaInP-based LEDs emitting a 610-nm wavelength
were grown on 2-in. (100) GaAs substrates by metal-
organic vapor phase epitaxy (MOVPE). The AlGaInP-
based LED structure consisted of a GaInP etching stop
layer and an n-GaAs contact layer grown on an n-GaAs
buffer layer, a 2-μm-thick Si-doped n-AlGaInP cladding
layer, an undoped active layer with 20 period AlGaInP/
GaInP multiple quantum wells (MQWs), a Mg-doped p-
AlGaInP layer, and a thick p+-GaP window layer.
To fabricate the AlGaInP-based VI-LEDs with a chip

size of 1 mm2, Ni/Ag/Ni reflectors were deposited onto
the p+-GaP contact layer and annealed at 350 °C for
1 min to ensure ohmic contact. Adhesive/barrier/bonding
layers consisting of Ni/Cr/Ni/Au/Sn/Au were then depos-
ited onto the Ni/Ag/Ni reflectors, and the AlGaInP-based
LEDs on the GaAs substrates were bonded to the p-Si

conductive substrates at 350 °C for 1 min in a nitrogen en-
vironment. After wafer bonding, the GaAs substrate and
GaInP etching stop layer were removed using a NH4OH-
based chemical etching solution. The Ni/Ge/Au contacts
were then deposited on the n-GaAs contact layer, and Ti/
Au boding pad metals were deposited on n-AlGaInP and
the back side of the p-Si conducting substrate. Finally, n-
AlGaInP nanopillars, ~200 nm in diameter, were pro-
duced using SiO2 nanopillars as an etching mask, which
were fabricated by self-assembled ITO-based nanodots
formed by wet etching of the as-deposited ITO films. For
comparison, surface-roughened n-AlGaInP was also fabri-
cated by wet etching of the n-AlGaInP layer using a
H3PO4-based solution.
After fabricating the AlGaInP-based VI-LEDs with n-

AlGaInP nanopillars or surface-roughened n-AlGaInP,
the wafers were diced and the AlGaInP-based VI-LED
chips were mounted onto the TO-18 headers with no
epoxy encapsulation. All subsequent measurements were
carried out using a conventional integration sphere. The
n-AlGaInP nanopillars and ITO-based nanodots were
examined by scanning electron microscopy (SEM).

Results and Discussion
Figure 1 presents schematic diagrams of the fabrication
process for the n-AlGaInP nanopillars and SEM images
for each fabrication step. After depositing the ITO layer
on top of the SiO2 layer, as shown in Fig. 1a, b, the ITO

Fig. 1 a, c, e, g Schematic diagrams of the fabrication process for n-AlGaInP nanopillars. b, d, f, h SEM images for each fabrication step
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layer yielded a rough surface and low transparency, sug-
gesting that an oxygen-poor metallic phase was domin-
ant at the as-deposited ITO layer by electron-beam
evaporation. The VI-LED samples with the ITO layer
were dipped into a chemical solution containing HCl,
which resulted in the formation of nanodots from the
ITO films, as shown in Fig. 1c, d. The mean diameter of
the ITO-based nanodots was 200 nm. The formation of
self-assembled ITO-based nanodots by wet etching of
the as-deposited ITO films can be explained by the for-
mation of a small crystalline ITO phase imbedded in a
metallic amorphous matrix in the as-deposited ITO
films, followed by the selective etching of a metallic
amorphous matrix during wet etching [14]. After the
formation of the self-assembled ITO-based nanodots, re-
active ion etching was then performed to produce SiO2

nanopillars using the ITO-based nanodots as an etching
mask, which transferred the island pattern of the nano-
dots to the SiO2, as shown in Fig. 1e, f. Finally, to pro-
duce the n-AlGaInP nanopillars, the n-AlGaInP layer
was etched by inductively coupled plasma (ICP) using
the SiO2 nanopillars as an etching mask, as shown in
Fig. 1g, h. ICP etching of the n-AlGaInP was performed
using a HBr and Ar gas mixture at a flow rate of 24 and
12 sccm, respectively. The residual SiO2 nanopillar mask
was removed by a buffered oxide etchant solution.
In this study, to examine the effects of the height of

the n-AlGaInP nanopillars on the output power of the
AlGaInP-based VI-LEDs, the processing time for the
ICP etching of the n-AlGaInP was varied from 40 to
80 s, and as shown in Fig. 2, the height of the n-
AlGaInP nanopillars was varied from 350 to 900 nm by
increasing the ICP etch time. The diameter and density
of the n-AlGaInP nanopillars were not changed signifi-
cantly as the ICP etch time was increased, indicating
that ICP etching with a HBr and Ar gas mixture did not
etch the sidewalls of the nanopillars significantly. Figure 3
shows the light emission images at an operating current
of 1 and 10 mA for the AlGaInP-based VI-LEDs with/
without the n-AlGaInP nanopillars with different heights.
The light emission images of the AlGaInP-based VI-LEDs
with the n-AlGaInP nanopillars were much brighter than
those of the VI-LEDs without nanopillars at both 1 and
10 mA. This suggests that the n-AlGaInP nanopillars can
enhance the LEE of the AlGaInP-based VI-LEDs. In
addition, the height of the n-AlGaInP nanopillars has little
influence on the light emission images of the
AlGaInP-based VI-LEDs, as shown in Fig. 3, indicat-
ing that the n-AlGaInP nanopillars with a height of
350 nm are insufficient to increase the probability of
emitted light escaping from the air/semiconductor
interface.
Figure 4a shows the variation of the light output power

as a function of the applied current for the AlGaInP-based

VI-LEDs with/without the n-AlGaInP nanopillars with dif-
ferent heights. The output power of the AlGaInP-based
VI-LEDs with nanopillars with a height of 350, 650, and
900 nm was 4.1, 4.0, and 3.8 mW at 80 mA, respectively.
In contrast, that of the VI-LEDs without the nanopillars
was only 2.3 mW at 80 mA, which clearly shows that the
nanopillars can improve the LEE of the VI-LEDs consider-
ably. The far-field emission patterns of the VI-LEDs with/
without the nanopillars, as shown in Fig. 4b, confirmed

Fig. 2 SEM images of the n-AlGaInP nanopillars fabricated with a
process time for ICP etching of a 40, b 60, and c 80 s
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the improvement of the LEE for the VI-LEDs with the
nanopillars. The emission angle of the VI-LEDs with the
nanopillars (129°) was wider than that of the VI-LEDs
without the nanopillars (124°). In addition, the emission
intensity of the VI-LEDs with the nanopillars was much
higher than that of the VI-LEDs without the nanopillars at
emission angles ranging from −90° to 90°. The AlGaInP-
based VI-LEDs with/without the nanopillars yielded a
marginal difference in the operating voltage, as shown in
the inset of Fig. 4a. This suggests that the formation of the
n-AlGaInP nanopillars using the SiO2 nanopillars as an
etch mask during the ICP etch process caused little dam-
age to the VI-LEDs. This clearly shows that the LEE of the
AlGaInP VI-LEDs was improved by the formation of n-
AlGaInP nanopillars.
The improvement in the output power of the

AlGaInP-based VI-LEDs with the nanopillars can be ex-
plained as follows. As shown in Fig. 5a, the LEE of
AlGaInP VI-LEDs without the nanopillars is limited by
the large difference in refractive index between the n-
AlGaInP (n ∼ 2.9) and air (n = 1.0), resulting in a small
critical angle of ~20° for the total internal reflection
from a flat surface according to Snell’s law, followed by
only 11 % extraction of input power [15]. On the
other hand, as shown in Fig. 5b, the LEE of the
AlGaInP VI-LEDs with the n-AlGaInP nanopillars
was enhanced significantly because the nanopillars
can increase the critical angle and the probability of
photons escaping from the semiconductor-to-air inter-
face [16].
Finally, light output power of the AlGaInP-based VI-

LEDs with n-AlGaInP nanopillars was compared with
that of the VI-LEDs with the surface-roughened n-
AlGaInP, which is a widely implemented method to in-
crease the LEE of the AlGaInP-based VI-LEDs. For this
purpose, AlGaInP-based VI-LEDs with n-AlGaInP nano-
pillars as well as the VI-LEDs with the surface-

Fig. 3 Light emission images at an operating current of 1 and 10 mA for the AlGaInP-based VI-LEDs with/without the n-AlGaInP nanopillars with
different heights

Fig. 4 a Variation of the light output power as a function of the
applied current for the AlGaInP-based VI-LEDs with/without the
n-AlGaInP nanopillars having different heights. The inset shows the
current-voltage curves of the AlGaInP-based VI-LEDs with/without
the nanopillars with different heights. b Far-field emission patterns
for the VI-LEDs with/without the nanopillars with different heights
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roughened n-AlGaInP were fabricated, as shown in Fig. 6.
The n-AlGaInP nanopillars with a height of 350 nm
were fabricated using the same procedure shown in
Fig. 6a, c. The surface-roughened n-AlGaInP was pro-
duced by wet etching of the n-AlGaInP layer using the
HCl- and H3PO4-based solution for 400 s. As shown in
Fig. 6b, d, a triangle-like morphology roughness with a
height of ~90 nm was produced, which was tilted to-
wards a specific direction. This is believed to be related to
the surface polarity of the n-AlGaInPs [17, 18]. Figure 7a
shows the variation of the light output power as a function
of the applied current for the AlGaInP-based VI-LEDs

with the n-AlGaInP nanopillars and the VI-LEDS with the
surface-roughened n-AlGaInP. For comparison, the light
output power of the AlGaInP-based VI-LEDs without
patterning is also shown. As presented in Fig. 7a, the
AlGaInP-based VI-LEDs with the surface-roughened
n-AlGaInP yielded 20 % light output power enhancement
at 350 mA compared to the VI-LEDs without patterning,
due to the reduced total internal reflection by the triangle-
like morphology roughness at the n-AlGaInP/air interface.
On the other hand, the output power of the VI-LEDs with
the n-AlGaInP nanopillars was 11.5 mW at 350 mA,
which is a 25 % improvement in output power compared
to the VI-LEDs with the surface-roughened n-AlGaInP.
This can be attributed to the height of the n-AlGaInP
nanopillars (~350 nm) being four times higher than that
of the triangle-like-roughened n-AlGaInP (~90 nm),
followed by an increase in the probability of escape for the
light emitted from an air/semiconductor interface. The

Fig. 6 Schematic diagrams and SEM images of a, c the AlGaInP-
based VI-LEDs with the n-AlGaInP nanopillars and b, d the VI-LEDs
with the surface-roughened n-AlGaInP
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Fig. 7 a Variation of the output power as a function of current for
the AlGaInP-based VI-LEDs with n-AlGaInP nanopillars, for the VI-LEDS
with the surface-roughened n-AlGaInP, and for VI-LEDs without
patterning. The inset shows the emission profile at 50 mA for
the VI-LEDs with nanopillars and for the VI-LEDs with the
surface-roughened n-AlGaInP. b EL spectra for the VI-LEDs with
n-AlGaInP nanopillars, for the VI-LEDS with the surface-roughened
n-AlGaInP, and for VI-LEDs without patterning

Fig. 5 a Schematic diagrams of the AlGaInP-based VI-LEDs without
the n-AlGaInP nanopillars. b Schematic diagrams of the AlGaInP-based
VI-LEDs with the n-AlGaInP nanopillars, which shows the reduced total
internal reflection by the nanopillars
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height of the nanopillars is close to half of the emitted
wavelength, which can further enhance the extraction of
the light generated at the MQWs. The light intensity in
the emission profile at 50 mA for the VI-LEDs with the n-
AlGaInP nanopillars was much higher than that for the
VI-LEDs with the surface-roughened n-AlGaInP, as shown
in the inset of Fig. 7a. Furthermore, the electrolumines-
cence (EL) spectra at 150 mA for the VI-LEDs with the n-
AlGaInP nanopillars revealed a higher EL intensity than
that of the VI-LEDs with the surface-roughened n-
AlGaInP, as shown in Fig. 7b. This strongly suggests that
the LEE of the AlGaInP-based LEDs can be improved fur-
ther using the n-AlGaInP nanopillars compared to that of
the AlGaInP-based LEDs with the conventional surface-
roughened n-AlGaInP.

Conclusions
This paper reports an improvement of the LEE of the
AlGaInP-based VI-LEDs with wafer-bonded Si conduct-
ive substrates using the n-AlGaInP nanopillars. Nanopil-
lars with a diameter of ~200 nm were produced using
SiO2 nanopillars as an etching mask, which were fabri-
cated by self-assembled ITO-based nanodots formed by
the wet etching of as-deposited ITO films without an
annealing process. The height of the n-AlGaInP nanopil-
lars were varied from 350 to 900 nm, and n-AlGaInP
nanopillars with a height of 350 nm were sufficient to
increase in the probability of emitted light escaping from
the air/semiconductor interface. The AlGaInP-based VI-
LEDs with the n-AlGaInP nanopillars provided 25 %
light output power enhancement compared to the VI-
LEDs with the surface-roughened n-AlGaInP because
the height of the n-AlGaInP nanopillars was four times
higher than that of the triangle-like-roughened n-
AlGaInP.
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