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Abstract

Solution-processed approach for the deposition of Cu2ZnSn (S,Se)4 (CZTSSe) absorbing layer offers a route for
fabricating thin film solar cell that is appealing because of simplified and low-cost manufacturing, large-area
coverage, and better compatibility with flexible substrates. In this work, we present a simple solution-based
approach for simultaneously dissolving the low-cost elemental Cu, Zn, Sn, S, and Se powder, forming a
homogeneous CZTSSe precursor solution in a short time. Dense and compact kesterite CZTSSe thin film with high
crystallinity and uniform composition was obtained by selenizing the low-temperature annealed spin-coated
precursor film. Standard CZTSSe thin film solar cell based on the selenized CZTSSe thin film was fabricated and an
efficiency of 6.4 % was achieved.

Keywords: CZTSSe; Thin film; Solar cells; Kesterite; Solution process
Background
Quaternary semiconductor Cu2ZnSnS4 (CZTS) and
Cu2ZnSnSe4 (CZTSe) compounds have received consid-
erable interest as new generations of photovoltaic ab-
sorbing materials, due primarily to their suitable band
gaps, high absorption coefficient, and low material cost
[1]. Recently, various approaches have been developed to
fabricate the absorber layers, briefly including vacuum-
based deposition and non-vacuum-based solution process;
both strategies have yielded a remarkable improvement in
photovoltaic performance [2–8]. Compared to vacuum-
based approaches, non-vacuum technologies such as
electrodeposition approach [9–11], milling dispersion
approach [12], nanoparticle-based approach [13–16],
hydrazine-based approach [17–19], and sol–gel approach
[20–24] are more feasible for industrial production.
Among those solution-based process, the hydrazine-based
deposition has made the great progress, achieving the
power conversion efficiency (PCE) of 12.6 % [25]. How-
ever, as a result of the high toxicity and dangerous in-
stability of explosible hydrazine, the non-hydrazine
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solvent is more desirable for practical application. There-
fore, some non-hydrazine solvents, such as the mixtures
of ethanol and water and amine-thiol mixture, have been
tried presently to dissolve the metallic oxide or metal salt
for preparing the CZTS precursor solution [26–28].
For CZTS (e) thin film solar cell, it is very crucial to

precisely control the elemental composition of quater-
nary compounds, which regulate the band gap of the
semiconductor and further dominate the device per-
formance. From this point of view, the ideal precursor is
prepared using elemental Cu, Zn, Sn, and S (e) rather
than metallic oxide or metal salt to avoid involving im-
purity. Furthermore, the elementary metal powder are
substantially inexpensive and easy industrially available.
Lately, the Pan’s research group has firstly reported an
approach to fabricate CZTSe films which used the mix-
ture of thioglycolic acid and ethanolamine to dissolve
the Cu, Zn, Sn, and Se powder [29]. In order to adjust
the viscosity of the solution for subsequent spin coating,
another organic solvent of 2-methoxyethanol was added
into the mixed solution.
In this paper, we presented a more convenient and

quicker method to fabricate the high-quality CZTSSe
thin film. 1,2-ethanedithiol and 1,2-ethylenediamine
were adopted as a facile and low-toxic solution to
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Fig. 1 TGA curve of CZTSSe precursor with the target ratios (Cu/(Zn
+ Sn) = 0.8 and Zn/Sn = 1.22)
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dissolve the low-cost Cu, Zn, Sn, S, and Se powders as
starting materials. A solar cell efficiency of 6.4 % was ob-
tained using this novel solution deposition and process
procedure of CZTSSe active layer.

Methods
Materials
Cu (99.9 %, Aladdin), Zn (99.9 %, Aladdin), Sn (99.8 %,
Alfa Aesar), Se (99 %, Alfa Aesar), and S (99.9 %, Alad-
din) powders are analytical reagents. 1,2-ethanedithiol
(HSCH2CH2SH, AR), 1,2-ethylenediamine (H2NCH2

CH2NH2,AR), ammonium hydroxide (NH4OH, 25 %),
cadmium sulfate (AR), and thiourea (AR) were pur-
chased from Alfa Aesar. All chemicals and solvents
were commercially available and used as received with-
out further purification.

Preparation of CZTSSe Precursor Solution
Cu (1.10 mmol), Zn (0.76 mmol), Sn (0.62 mmol), S
(1.50 mmol), and Se (1.50 mmol) were added into a 25-
ml round flask. Then, 0.5 ml of 1,2-ethanedithiol and
5 ml of 1,2-ethylenediamine were injected into the flask.
The mixture was magnetically stirred on a 70 °C hot
plate for 1.5 h and a clear orange-colored solution was
obtained.

Fabrication of CZTSSe Thin Film and Solar Cell Device
The CZTSSe precursor solution was spin-coated on a
2 × 2 cm molybdenum-sputtered soda lime glass (SLG)
substrate, followed by heating at 310 °C on a hot plate in
argon atmosphere. This coating and sintering procedure
was repeated several times till the desired film with
thickness of 1.6 μm was obtained. Finally, the thin film
was annealed at 550 °C in a graphite box containing
200 mg of Se powder for 15 min. CZTSSe thin film solar
cells were fabricated using the selenized CZTSSe thin
films by successively depositing the following additional
layers: chemical bath deposition (CBD) of ∼60 nm cad-
mium sulfide (CdS), sputtering of ∼70 nm intrinsic zinc
oxide (ZnO), and ∼200 nm indium-doped tin oxide
(ITO). On the top of the device, Al collection grid elec-
trodes were deposited by thermal evaporation. No anti-
reflection coating was utilized.

Characterizations
Thermogravimetric analysis (TGA) was performed by a
TGA/SDTA851e of Mettler-Toledo. The powder X-ray
diffraction (XRD) patterns were taken with a Bruker D8
Advance X-ray diffractometer. The Raman spectra were
measured by a Renishaw in via Raman microscope using
an excitation laser with a wavelength of 532 nm. The
scanning electron microscope (SEM) images were col-
lected using a Nova NanoSEM 450. Photocurrent
density-voltage curves were recorded under the standard
AM1.5 illumination (100 mW · cm−2) with a Keithley
2400 source meter. The external quantum efficiency
(EQE) spectrum was measured using a Zolix SCS100 QE
system equipped with a 150-W xenon light source and a
lock-in amplifier.

Results and Discussion
Figure 1 presents the thermogravimetric analysis (TGA)
curve for the mixed CZTSSe precursor (Cu/(Zn + Sn) ≈
0.80 and Zn/Sn ≈ 1.22). The TGA sample was prepared
from the CZTSSe precursor solution by preheating at
100 °C for 20 min under N2 atmosphere to remove the
low-boiling-point molecules. It was found that the
CZTSSe precursor exhibited a relatively fast weight loss
between 130 and 300 °C, which may be ascribed that the
extensive N −H · · · S hydrogen bonding existed in the
precursor solution was broken and the CZTSSe nano-
crystal formed at this temperature [30]. Thereby, in our
experiment, CZTSSe nanocrystal thin films were fabri-
cated by spin coating of CZTSSe precursor solution,
followed by heating on a hot plate at 310 °C for 5 min. It
is noteworthy that in order to form a dense CZTSSe ab-
sorbing film, the preheating procedure for removing the
organic solvents after each spin coating was essential.
The representative surface topography and cross-

sectional FESEM images of the as-prepared CZTSSe
films are displayed in Fig. 2a and 2b, respectively. From
which we can see that a flat thin film with a thickness of
1.6 μm was obtained through repeating the coating/sin-
tering procedure. It is obvious that the CZTSSe nano-
crystal thin film was not dense and there were many
holes appearing in the film, which may be resulted from
the volatilization of partly unreacted Se powder. To con-
firm this hypothesis, using S to replace Se, the control
experiment was done to fabricate CZTS thin film. The
corresponding FESEM images are shown in Fig. 2c and



Fig. 2 Top-view (a) and cross-sectional (b) FESEM images of as-prepared CZTSSe thin film, corresponding top-view (c) and cross-sectional (d) FESEM
images of CZTS thin film prepared by using S to replace Se atom
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Fig. 3 XRD patterns of as-prepared CZTSSe and selenized CZTSSe
thin films
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2d. It can be seen that the CZTS nanocrystal films are
more compact and dense compared with the CZTSSe
films, which were fabricated by the same solution
process. Generally speaking, it is undesirable for the ex-
istence of pore in the absorbing layer of thin film solar
cell, however, the porous structure was beneficial to
form well crystallization and large grain CZTSSe thin
films in the following selenization process [31].
To further investigate the phase composition and

phase structure of as-prepared CZTSSe film and sele-
nized CZTSSe film, XRD measurements were carried
out. Figure 3 displays the X-ray diffraction patterns of
the CZTSSe film before and after selenization treatment.
Eliminating the peaks arising from Mo substrate, all the
diffraction peaks in XRD patterns are attributed to the
kesterite phase of CZTSSe (JCPDS no. 52−0868). Com-
paring with the samples of preheated CZTSSe, the (112)
lattice plane of selenized CZTSSe films drifts to lower
degree, indicating that partial S in the CZTSSe precursor
film was replaced by Se after selenization. In addition to
the shifting of diffraction peaks in XRD patterns, the in-
tensity of the diffraction peaks undergoes a significant
increase, which demonstrates that the crystallization of
the CZTSSe films was dramatically improved after
selenization.
The XRD pattern of some binary and ternary selenide,

such as CuxSe, ZnSe, and Cu2SnSe3, are similar to that
of CZTSSe, so it is hard to identify the phase purity of
CZTSSe films just by XRD characterization. The Raman
spectra can be used as an effective measurement to
differentiate these impurities. Raman spectra of the
selenized CZTSSe film is shown in Fig. 4. The peaks at
176, 192, 234, and 329 cm−1 correspond to kesterite
CZTSSe [32].
For kesterite thin film solar cells, the morphology and

crystal size of the absorber layer play an important role
in the finally photovoltaic performance of the devices. In
order to eliminate holes and induce crystallization and
large grain formation, the selenization was performed at
high temperatures under saturated selenium atmosphere
in a graphite box. The morphologies of the selenized
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CZTSSe thin films were shown in Fig. 5. It was observed
that large-grained and densely packed CZTSe thin film
with a rough, highly faceted surface has achieved; the
average in-plane grain size is 0.5–2 μm, which illustrated
that the film converted into a high-crystallinity CZTSSe
thin film after selenization. From the fractured cross-
sectional view of Fig. 5b, the selenized CZTSSe thin film
exhibits a typical bilayer (large-grain layer and fine-grain
Fig. 5 Top-view (a) and cross-sectional (b) SEM images of selenized
CZTSSe thin film
layer) structure with a thickness of 1.64 μm. Both the
thickness of large-grain layer on the top and the fine-
grain layer near the molybdenum substrate is about
800 nm.
Using the selenized CZTSSe thin films, solar cell de-

vices were fabricated through the general substrate-type
configuration (Mo/CZTS/CdS/i-ZnO/n-ZnO/Al). The
current density–voltage (J–V) curves of the best CZTSSe
solar cell in dark and under AM1.5 illumination are
shown in Fig. 6a. The champion device based on an ac-
tive area of 0.19 cm2 yielded a PCE of 6.4 % with short
circuit current density (JSC) of 32 mA cm−2, open circuit
voltage (VOC) of 361 mV, and fill factor (FF) of 0.554.
For further investigation of the device performance, EQE
spectra of the corresponding solar cell were measured
and shown in Fig. 6b. The results revealed that the
photoresponse of the CZTSSe device was stronger in the
visible and near-infrared (NIR) region, which is corre-
sponding well with other high-efficiency CZTSSe solar
cell in the literature [29]. The inset of Fig. 6b shows the
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Fig. 6 a J–V curves of the best CZTSSe solar cell in the dark and
under simulated solar light (AM 1.5 G) illumination. b EQE spectrum
of the corresponding device; inset: the band gap was determined
by plotting [E × ln(1 − EQE)]2 versus E curves
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band gap of CZTSSe thin film by plotting [Eln(1 −
EQE)]2 versus the photon energy (E), which was esti-
mated to be about 1.05 eV.
Compared with hydrazine-based solution method for

CZTSSe thin film, the efficiency of photovoltaic device
present in our study is still limited, which may be mainly
attributed to the existence of small-grained bottom layer
in the selenized CZTSSe thin films. It has been reported
that a thick small-grained bottom layer would increase
the series resistance of devices and further degrade the
photoelectric conversion efficiency of CZTSSe solar cells
[33]. Therefore, in order to further improve the perform-
ance of solar cells, it is necessary to optimize the seleni-
zation conditions for reducing or even completely
eliminating the small-grained bottom layer of CZTSe
films, which is the ongoing research in our laboratory.

Conclusions
In summary, a reproducible and lower-toxicity solution-
based process for the fabrication of the CZTSSe ab-
sorber layer, involving simultaneous dissolution of elem-
ental Cu, Zn, Sn, S, and Se powders in the mixed 1,2-
ethanedithiol and 1,2-ethylenediamine solution followed
by deposition of a precursor solution, has been pre-
sented. After the preheating and post-selenization pro-
cesses, an extremely dense and compact CZTSSe thin
film with high crystallinity has formed. The CZTSSe thin
film solar cells fabricated using this process exhibits an
efficiency of 6.4 %, which is expected to further enhance
by optimizing the composition and selenization of the
CZTSSe film.
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