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Toxicological effect of TiO2
nanoparticle-induced myocarditis in mice
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Abstract

Currently, impacts of exposure to TiO2 nanoparticles (NPs) on the cardiovascular system are not well understood.
The aim of this study was to investigate whether TiO2 NPs induce myocarditis and its underlying molecular
mechanism in the cardiac inflammation in mice. Mice were exposed to TiO2 NPs for 6 months; biochemical
parameters of serum and expression of Th1-related and Th2-related cytokines in the heart were investigated. The
results showed that TiO2 NP exposure resulted in cardiac lesions coupling with pulmonary inflammation; increases
of aspartate aminotransferase (AST), creatine kinase (CK), C-reaction protein (CRP), lactate dehydrogenase (LDH),
alpha-hydroxybutyrate dehydrogenase (HBDH), adhesion molecule-1 (ICAM-1), and monocyte chemoattractant
protein-1 (MCP-1) levels; and a reduction of nitric oxide (NOx) level in the serum. These were associated with
increases of nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), interleukin (IL)-4, IL-6, transforming growth
factor-β (TGF-β), creatine kinase, CRP, adhesion molecule-1, and monocyte chemoattractant protein-1, interferon-γ
(IFN-γ), signal transducers and activators of transcription (STAT)1, STAT3, or STAT6, GATA-binding domain-3,
GATA-binding domain-4, endothelin-1 expression levels, and T-box expressed in T cells expression level that
is the master regulator of pro-inflammatory cytokines and transcription factors in the heart. These findings
imply that TiO2 NP exposure may increase the occurrence and development of cardiovascular diseases.
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Background
Nanotechnology or nanomaterial applications have
caused large impacts on human daily life. However, the
exposure of workers, consumers, and susceptible
groups should be of high concern due to nanomaterial
production or uses. Especially, cardiovascular effects
due to nanoparticle (NP) exposure may be a possible
health risk [1–3]. The mechanisms of these hazardous ef-
fects are involved in oxidative stress, inflammation, vaso-
motor dysfunction, neuronal signaling, and possible
translocation of NPs from the airways to the circulation
[3]. Inhaled NPs were demonstrated to enter the lungs
where they are translocated to the circulatory system,
leading to cardiovascular lesions [4]. TiO2 NPs are widely
applied in an increasing number of products including
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paints, cosmetics, sunscreen, medicine, food, and tooth-
paste, and in environmental decontamination, etc. [5–10].
However, previous studies demonstrated that TiO2 NP ex-
posure resulted in titanium accumulation in the heart,
myocardium dysfunction, oxidative stress, cardiac inflam-
mation, and atherosclerosis in mice [11–13]; increased
plaque progression in aorta in mice [14]; and induced
endothelial inflammatory response in primary vascular
endothelial cells [15]. Other NP exposure, such as ZnO
NPs, was also suggested to induce cardiac infarction in
rats [16]. However, whether NP exposure is associated
with alterations of cytokine response and immune effec-
tors, and imbalance of Th1-related and Th2-related cyto-
kines in cardiovascular damages remains unclear.
As suggested, myocarditis is closely involved in the

progression of heart failure due to chronically environ-
mental stimuli such as inhaled particles [5, 7]. Studies
showed that inhaled NPs are not reserved in the lung
but enter the blood circulation and distribute to distant
organs including the liver, spleen, kidneys, lungs, and
is distributed under the terms of the Creative Commons Attribution 4.0
ns.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
give appropriate credit to the original author(s) and the source, provide a
ndicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-015-1029-6&domain=pdf
mailto:hfshui666@126.com
http://creativecommons.org/licenses/by/4.0/


Hong et al. Nanoscale Research Letters  (2015) 10:326 Page 2 of 11
heart [17–19]. Therefore, we hypothesized that NP
exposure may give rise to various venenous stimuli that
cause secretion of both leukocyte soluble adhesion mole-
cules, facilitating the attachment of monocytes to endo-
thelial cells, and chemokines, thus resulting in the
monocytes’ migration into the subintimal space. The
transformation of monocytes into macrophages led to
myocarditis in animals and humans. The pathophysio-
logical changes provide potential targets for identifying
and monitoring the NP-induced inflammatory process,
while potential targets are involved in pro-inflammatory
risk factors such as pro-inflammatory cytokines, adhe-
sion molecules, and inflammatory stimuli [20]. Thus, it
is necessary to confirm the mechanism of NP-induced
myocarditis.
In this study, therefore, myocardium parameters and

alterations in the inflammatory cytokines and transcrip-
tion factor expression in mouse heart were investigated
to determine whether TiO2 NP-induced cardiac lesion is
mediated by Th1-related and Th2-related cytokines in
mice.
Methods
Chemicals
For the preparation, characteristics of anatase TiO2 NPs
have been described in our previous work [21–23].
Hydroxypropylmethylcellulose (HPMC) 0.5 % w/v was
employed as an agent for suspending diffusion. TiO2

powder was dispersed onto the surface of 0.5 % w/v
HPMC solution, and then the suspending solutions
containing TiO2 particles were treated ultrasonically
for 15–20 min and mechanically vibrated for 2 or
3 min [22, 23]. The particle sizes of NPs suspended in
0.5 % w/v HPMC solution following incubation (5 mg/L)
were determined using a TecnaiG220 transmission elec-
tron microscope (TEM) (FEI Co., USA) operating at
100 kV, respectively. The surface area of sample was de-
tected by Brunauer–Emmett–Teller (BET) adsorption
measurements on a Micromeritics ASAP 2020M+ C in-
strument (Micromeritics Co., USA). The average aggregate
or agglomerate size of the TiO2 NPs in 0.5 % (w/v) HPMC
solution (5 mg/mL) was determined by dynamic light scat-
tering (DLS) using a Zeta PALS + BI-90 Plus (Brookhaven
Instruments Corp., USA) at a wavelength of 659 nm
[22, 23]. The characteristics were about 5.5 nm for
average particle size, 174.8 m2/g for the surface area,
mainly 294 nm for the mean hydrodynamic diameter,
and 9.28 mV for the ζ potential [21–23].
Ethics Statement
All experiments were approved by the Animal Experimen-
tal Committee of Soochow University (Grant 2111270)
and in accordance with the National Institutes of Health
Guidelines for the Care and Use of Laboratory Animals
(NIH Guidelines).

Animals and Treatment
One hundred sixty 4-week-old CD-1 (ICR) male mice
(20 ± 2 g body weight) were purchased from the Animal
Center of Soochow University (China). Immediately after
arrival, all mice were weighed and randomly allocated
into four subgroups (n = 40), including a control group
treated with 0.5 % w/v HPMC and three experimental
groups treated with 1.25, 2.5, and 5 mg/kg TiO2 NPs
[24], respectively. For dose selection, we consulted a report
of the World Health Organization from 1969. According
to the report, the LD 50 of TiO2 for rats is >12 g/kg body
weight after oral administration. We also consulted that in
November 2005, the United States National Institute for
Occupational Safety and Health (NIOSH) proposed a
recommended exposure limit (REL) for TiO2 NPs at
0.3 mg/m3 (NIOSH). In Japan, the acceptable exposure
concentration of TiO2 NPs was estimated to be 1.2 mg/m3

as a time weighted average (TWA) for an 8-h workday
and a 40-h workweek [25, 26]. In Europe, food-grade TiO2

is approximately 36 % of the TiO2 NPs that are smaller
than 100 nm in at least one dimension, this exposure limit
decreases to approximately 0.1 mg TiO2/person/day of
nanoscale TiO2 [27]. Mice were housed in cages and were
kept under specific pathogen-free (SPF) conditions. Room
environment was set up at 24 ± 2 °C with 60 ± 10 % of
relative humidity and a 12-h light/dark cycle. Distilled
water and sterilized food for mice were available ad libi-
tum. They were acclimatized and quarantined to this en-
vironment for 5 days prior to dosing.
Before the nasal instillation to the mice, TiO2 NP pow-

der was dispersed onto the surface of 0.5 % w/v HPMC
and re-suspended TiO2 NPs were homogenized by a soni-
cator for 30 min and mechanically vibrated for 5 min. The
volume of TiO2 NP suspensions was calculated for each
mouse after weighing mice and was administered to the
mice by nasal administration every other day for 6 months.
After the final exposure to TiO2 NPs (e.g., 24 h following
the last exposure), all the mice were sacrificed after
anesthetization with ether. Blood sera were collected and
stored at −20 °C before use. Every effort was made to
minimize animal suffering in each experiment. All experi-
ments were performed in accordance with the Guiding
Principles in the Use of Animals in Toxicology.

Assay of Pulmonary Inflammation
After blood collection, the lungs from the control and
TiO2 NP-treated groups were immediately lavaged twice
with phosphate buffer saline (PBS). An average of >90 %
of the total instilled PBS volume was retrieved both
times, and the amounts did not differ among the groups.
The resulting fluid was centrifuged at 400×g for 10 min
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at 4 °C to separate the cells from the supernatant con-
taining various surfactants and enzymes. The cell pellet
was used for enumeration of total and differential cell
counts as described by AshaRani et al [28]. Macrophages,
lymphocytes, neutrophils, and eosinophils recovered from
the bronchoalveolar lavage fluid (BALF) were counted
using dark field microscopy to examine the extent of
phagocytosis. The inflammatory cytokines interleukin-6
(IL-6) and tumor necrosis factor alpha (TNF-α) were de-
tected in the primary cell-free BALF by ELISA commercial
kits (R&D Systems, Minneapolis, MN, USA).

Histopathological Examination of Lung and Heart
Lungs or hearts were fixed with 10 % neutral buffered
formalin for 3 days, which were embedded in paraffin
blocks, sliced to 5-μm thickness, placed on separate glass
slides, and were stained with hematoxylin and eosin
(H&E). After H&E staining, the sections were evaluated
by blinding test, using an optical microscope (U-III
Multi-point Sensor System; Nikon, Tokyo, Japan).

Biochemical Assay of Myocardium Function
In the present study, the activities of aminotransferase
(AST), creatine kinase (CK), cross-reaction protein (CRP),
lactate dehydrogenase (LDH), and alpha-hydroxybutyrate
dehydrogenase (HBDH) in the serum were deter-
mined using commercial assay kits (Nanjing Jiancheng
Bioengineering Institute, Jiangsu, China) according to the
manufacturer’s instructions. Levels of eotaxin (ET)-1, total
nitric oxide (nitrite + nitrate, NOx), intercellular adhesion
molecule-1 (ICAM-1), and monocyte chemoattractant
protein-1 (MCP-1) in the serum was assayed for evaluat-
ing myocardium function using commercial kits (R&D
Systems, Minneapolis, MN).

Assay of Cytokine Expression
Total RNA was extracted from individual heart using
Tripure Isolation Reagent (Roche, USA) according to the
manufacturer’s instructions. Probes and cycling condi-
tion were optimized in accordance with MIQE guide-
lines for PCR [29]. cDNA was used for the real-time
PCR by employing primers designed using Primer Ex-
press Software according to the software guidelines. PCR
primers used in the gene expression analysis are listed in
Table 1. Gene expression levels were calculated as a ratio
to the expression of the reference gene, GAPDH, and
data were analyzed using the ΔΔCt method. The probes
for NF-κB, IκB, TNF-α, IL-1β, IL-4, IL-6, CRP, CK, TGF-
β, IFN-γ, VCAM-1, MCP-1, STAT1, STAT3, STAT6,
GATA3, GATA4, T-bet, and VEGF were designed by the
manufacturer and purchased from Shinegene Company
(Shanghai, China). The RT-qPCR data were processed
with the sequence detection software version 1.3.1 fol-
lowing the method of Schefe et al. [30].
To determine protein levels of nuclear factor-κB (NF-
κB), IκB, TNF-α, interleukin (IL)-1β, IL-4, and IL-6, CRP,
CK, transforming growth factor-β (TGF-β), interferon-γ
(IFN-γ), ICAM-1, MCP-1, signal transducers and activa-
tors of transcription factor (STAT)1, STAT3, and
STAT6, GATA3, GATA4, ET-1, T-box expressed in T
cell (T-bet), and vascular endothelial growth factor
(VEGF) in the heart (n = 5 each), total protein from the
frozen heart tissues (n = 5 in each group) from experi-
mental and control mice was extracted using Cell Lysis
Kits (GENMED SCIENTIFICS INC.USA) and quantified
using BCA protein assay kits (GENMED SCIENTIFICS
INC.USA). ELISA was performed using commercial kits
that were selective for each respective protein (R&D Sys-
tems, USA), following the manufacturer’s instructions.

Statistical Analysis
Data were represented as mean ± standard deviation (SD).
Statistical analyses were performed by SPSS 19.0 software
(Chicago, IL, USA), and statistical comparisons were ana-
lyzed using one-way ANOVA followed by Tukey’s HSD
post hoc test. Differences were considered statistically sig-
nificant when the P value was less than 0.05.

Results
Pulmonary or Heart Inflammation
Figure 1 exhibits thickening of the alveolar septae,
bleeding, and infiltration of inflammatory cells in the
TiO2 NP-treated mouse lungs. In addition, significant
black agglomerates were observed in the lung samples
exposed to 5 mg/kg of TiO2 NPs (Fig. 1). Confocal
Raman microscopy further suggested that the black ag-
glomerate was due to the deposition of TiO2 NPs in
the lungs [31]. With increasing TiO2 NP dose, the
numbers of inflammatory cells such as macrophages,
lymphocytes, neutrophils, and eosinophils and the
levels of inflammatory cytokines such as IL-6 and TNF-
α in the BALF were greatly elevated as compared to the
control (Fig. 2, P < 0.05).
The histological examinations of the heart sections are

shown in Fig. 3. Unexposed heart samples exhibited nor-
mal architecture (Fig. 3), whereas those from mice
exposed to increasing TiO2 NP dose presented severe
pathological changes, including infiltration of inflamma-
tory cells, myocardial cells swelling, sparse cardiac muscle
fibers, and disorder of muscle cell array (Fig. 3).

Biochemical Parameters
The changes of biochemical parameters in the serum
induced by TiO2 NP exposure are presented in Fig. 4.
With increasing TiO2 NP dose, inflammatory parameters,
including AST, CK, CRP, LDH, HBDH, ICAM-1, and
MCP-1, increased gradually (P < 0.05). These results indi-
cated that chronic TiO2 NP exposure made serious cardiac



Table 1 Real-time PCR primer pairs. PCR primers used in the gene expression analysis

Gene name Description Primer sequence Primer size (bp)

Refer-GAPDH mGAPDH-F 5′-TGTGTCCGTCGTGGATCTGA-3′

mGAPDH-R 5′-TTGCTGTTGAAGTCGCAGGAG-3′ 150

CK mck-F 5′-GAGATCTTCAAGAAGGCTGGTCA-3′

mck-R 5′-GAGATGTCGAACACGGCG-3′ 227

CRP mcrp-F 5′-GCGGAAAAGTCTG-CACAAGG-3

mcrp-R 5′-GGAGATAGCACAAAGTCCCACAT-3 153

ET-1 mET-1-F 5′-AGACCACAGACCAAGGGAACA-3′

mET-1-R 5′-TCTGCTTGGCAGAAATTCCA-3′ 392

ICAM-1 mICAM-1-F 5′-AGACACAAGCAAGAGAAGAAAAGG-3′

mICAM-1-R 5′-TTGGGAACAAAGGTAGGAATGTAT-3′ 425

MCP-1 mMCP-1-F 5′-GCTGACCCCAAGAAGGAATG-3′

mMCP-1-R 5′-TTGAGGTGGTTGTGGAAAAGG-3′ 184

NF-κB mNF-κB-F 5′-GTGGAGGCATGTTCGGTAGTG-3′

mN-κB-R 5′-TCTTGGCACAATCTTTAGGGC-3′ 195

IκB mIκB-F 5’-GGTGCAGGAGTGTTGGTGG-3′

mIκB-R 5′-TGGCTGGTGTCTGGGGTAC-3′ 173

IL-1β m IL-1β-F 5′-GCTTCAGGCAGGCAGTATCA-3′

mIL-1β-R 5′-TGCAGTTGTCTAATGGGAACG-3′ 196

TNF-α mTNF-α-F 5′-CCCTCCAGAAAAGACACCATG-3′

mTNF-α-R 5′-CACCCCGAAGTTCAGTAGACAG-3′ 183

TGF-β mCcl21a-F 5′-CACGGTCCAACTCACAGGC-3′

mCcl21a-R 5′-TTGAAGCAGGGCAAGGGT-3′ 102

IL-4 mIL-4-F 5′-TGTAGGGCTTCCAAGGTGCT-3′

mIL-4-R 5′-TGATGCTCTTTAGGCTTTCCAG-3′ 199

IL-6 mIL-6-F 5′-GGGACTGATGCTGGTGACAAC-3′

mIL-6-R 5′-CAACTCTTTTCTCATTTCCACGA-3′ 163

STAT1 mSTAT1-F 5′-ACGCTGCCTATGATGTCTCG-3′

mSTAT1-R 5′-ACGGGATCTTCTTGGAAGTTATC-3′ 163

STAT3 mSTAT3-F 5′-TGACCAATAACCCCAAGAACG-3′

mSTAT3-R 5′-TGACACCCTGAGTAGTTCACACC-3′ 181

STAT6 mSTAT6-F 5′-AGCATCTTGCCGCACATCA-3′

mSTAT6-R 5′-GGCAGGTGGCGGAACTCT-3′ 128

GATA3 mGATA3-F 5′-CCACGGGAGCCAGGTATG-3′

mGATA3-R 5′-CGGAGGGTAAACGGACAGAG-3′ 169

GATA 4 mGata4-F 5′-CCTGGAAGACACCCCAATCT-3′

mGata4-R 5′-GGTAGTGTCCCGTCCCATCT-3′ 115

T-bet mT-bet-F 5′-TGGACCCAACTGTCAACTGC-3′

mT-bet-R 5′-CTCGGAACTCCGCTTCATAAC-3′ 173
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inflammation of mice. ET-1 and NOx were determined in
mice to evaluate vascular endothelial function after TiO2

NP exposure. Figure 4 lists the levels of ET-1 and NOx in
the serum, showing an increase of ET-1 level (P < 0.05)
and a decrease of NOx level (P < 0.05). It indicated that
TiO2 NP-exposed mice had an endothelial dysfunction.
Expression of Th1 and Th2 Cytokine mRNA and Proteins
To further confirm whether TiO2 NP exposure resulted
in imbalance of Th1-related and Th2-related cytokines,
including NF-κB, TNF-α, IL-1β, IL-4, IL-6, CK, CRP, ET-
1, TGF-β, IFN-γ, ICAM-1, MCP-1, STAT1, STAT3,
STAT6, T-bet, GATA3, and GATA4, in the TiO2 NP-



Fig. 1 Histopathological observation of lungs of mice after nasal administration of TiO2 NPs for 6 months (n = 5). TiO2 NP-exposed mice show
infiltration of inflammatory cells (green arrow) and bleeding (yellow arrow) in the lung
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induced cardiac injury, changes of the cytokine gene and
protein expression in mouse heart were examined and
are showed in Figs. 5 and 6. Mice with TiO2-NP-induced
cardiac damages presented with a significant, dose-
dependent reduction in the nuclear IκB expression and a
dose-dependent marked increase in expression of these
genes and proteins mentioned above in the cardiac tis-
sue (Figs. 5 and 6, P < 0.05). These findings pointed to
the imbalance of Th1-related and Th2-related cytokines
in mice following exposure to TiO2 NPs.
Fig. 2 Numbers of inflammatory cells and levels of TNF-α and IL-6 in BALF. *P
Discussion
Manufactured NPs have been suggested to increase the
risk and incidence of cardiovascular diseases such as
myocarditis [5, 17, 18, 31, 32]. Occupational and envir-
onmental exposure of TiO2 NPs may be one of risk fac-
tors for increased myocarditis in humans. Air dust
containing TiO2 NPs may result in higher inhalation ab-
sorption and subsequent translocation of TiO2 NPs into
the circulatory system. Seaton et al. indicated that in-
haled particles act as their cardiovascular effects
< 0.05, **P < 0.01, and ***P < 0.001. Values represent means ± SD (n = 5)



Fig. 3 Histopathological observation of hearts after nasal administration of TiO2 NPs for 6 months (n = 5). Black arrow indicates myocardial cells
swelling; green circle indicates infiltration of inflammatory cells; blue arrow indicates hemolysis or bleeding
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indirectly through the passage of inflammatory media-
tors from the lung to the systemic circulation [33]. In
the present study, TiO2 NP exposure led to a severe pul-
monary inflammation characterized by infiltration of
macrophages, lymphocytes, neutrophils, and eosinophils
into the airways (Figs. 1 and 2), especially, there was a
close association with level of pulmonary inflammation
and the cardiac damages such as myocarditis and myo-
cardial cell swelling (Fig. 3). Levels of TNF-α and IL-6
proteins in the BALF were elevated due to TiO2 NP ex-
posure (Fig. 2), which were associated with pulmonary
inflammation (Figs. 1 and 2). It implies that the inflam-
matory pathways may be likely to contribute to the car-
diovascular effects of TiO2 NPs, neither pulmonary nor
systemic inflammation alone can account for the myo-
carditis actions of TiO2 NPs. To confirm mechanism of
the cardiac lesions of mice following exposure to TiO2

NPs, in this study, we examined alterations of different
serum parameters and expression of Th1-related and
Th2-related cytokines, and the results are discussed as
follows.
The cardiac lesions due to TiO2 NP exposure were

reflected to severe myocardium biochemical dysfunction,
marked by significant increases of AST, CK, LDH, CRP,
HBDH, ICAM-1, and MCP-1 levels, and NOx reduction
in the serum (Fig. 4). Our previous study has also indi-
cated that intragastric administration of TiO2 NPs for
90 days resulted in increased CK activity and severe
pathological changes of heart in mice such as inflamma-
tion [12]. Elevated levels of biomarkers involving sys-
temic inflammation, immune function, and ventricular
remodeling, including AST, LDH, CRP, CK, HBDH,
TNF-α, ET-1, ICAM-1, and MCP-1, also have been
related to morbidity and mortality among heart failure
patients [34–37]. The expression of adhesion molecules
such as MCP-1 and ICAM-1 is associated with early
atherosclerotic formation [38]. Importantly, increased
ICAM-1 expression exacerbated the inflammatory process
via facilitating leukocyte adhesion to the endothelium and
releasing activated leukocytes to the inflammatory sites
[39]. In our study, increased levels of AST, LDH, CRP, CK,
HBDH, TNF-α, ICAM-1, and MCP-1 in the serum and
tissue mRNA and protein expression by TiO2 NP expos-
ure may be associated with inflammatory responses in the
heart. Increased AST and CRP were demonstrated to be
closely involved in the liver lesions of mice due to TiO2

NP exposure [13, 23].
As suggested and mentioned above, endothelial dys-

function after exposure to TiO2 NPs may be related to
susceptibility of mice. In the present study, our data



Fig. 4 Effect of TiO2 NPs on biochemical parameters in the serum of myocardium after nasal administration with TiO2 NPs for 6 months. *P < 0.05,
**P < 0.01, and ***P < 0.001. Values represent means ± SD (n = 5)
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showed that the NOx level in the serum in the TiO2 NP-
exposed mice was significantly decreased (Fig. 4), whereas
ET-1 concentration in the serum and ET-1 expression in
the heart were markedly elevated (Figs. 4, 5, and 6). It is
well known that NO is very important for endothelial
function and the dysfunction exacerbated cardiovascular
lesions [40]. In addition, NO is also demonstrated to de-
crease inflammation [41] and platelet adhesion [42, 43].
Excessive endothelium-restricted ET-1 expression in mice
can not only cause endothelial dysfunction but also impair
NOx-dependent vasorelaxation in resistance vessels and
intensify vascular reactive oxygen species (ROS) produc-
tion [44]. Our findings showed that TiO2 NP-exposed
mice exhibited severe inflammation and vascular endothe-
lial dysfunction, implying that the lesions may be involved
in NOx reduction and ET-1 overexpression due to TiO2

NP exposure.
TGF-β can promote the synthesis of various cytokines

and growth factors that are involved in the formation of
cardiac fibrosis and mediate the transition from acute
inflammation to fibrosis in ischemic heart disease [45].
Resolution of inflammation and progressive remodeling
are suggested to be involved in TGF-β overexpression in
the myocardium [46–51]. In our study, therefore, TGF-β
expression was analyzed by RT-PCR and ELISA, show-
ing that TiO2 NP exposure significantly upregulated
expression of TGF-β in mouse heart (Figs. 5 and 6)
coupling with myocardial cell swollen and increased in-
flammatory cells in mice (Fig. 3). It is likely that TiO2

NP-induced hypertrophic myocardium may involve in
TGF-β overexpression in mice.
Myocarditis is suggested to be a T cell-mediated auto-

immune disease. Activated T cells can release numerous
chemokines and cytokines, recruiting and activating
other inflammatory cells (such as macrophages, neutro-
phils, and mast cells) [52]. Overexpression of cytokines
induced by inflammatory stimuli exacerbates the pro-
gression of myocardial damage in patients with myo-
carditis [51]. Immunological and pathophysiological
events remarkably contribute to increase mast cells



Fig. 5 Effect of TiO2 NPs on mRNA expression of myocarditis-related genes in mouse heart by real-time PCR analysis. *P < 0.05, **P < 0.01, and
***P < 0.001. Values represent means ± SD (n = 5)
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[53], resulting in cardiac inflammation and fibrosis
[54]. IL-1 is considered to play a critical role and is
highly expressed in hearts with myocarditis [55].
Therefore, it is important to decrease myocarditis via
decreasing expression of inflammatory cytokines (such
as IL-1β and TNF-α) and a master transcriptional fac-
tor NF-κB that can modulate many genes responsible
for both the innate and adaptive immune response. In
the present study, TiO2 NP exposure resulted in myo-
cardial cells swelling and infiltration of inflammatory
cells in mouse heart (Fig. 3), which were associated with
increased expression of NF-κB, IL-1β, and TNF-α in the
TiO2 NP-exposed heart (Figs. 5 and 6). Furthermore, the
gene and protein expression of Th1- and Th2-related cy-
tokines including IL-4, IL-6, and IFN-γ was significantly
increased in the TiO2 NP-exposed mouse heart (Figs. 5
and 6). Additionally, TiO2 NP exposure induced marked
upregulation of Th2-related transcription factors including
STAT1, STAT3, STAT6, GATA3, and GATA4, and
Th1-related transcription factors such as T-bet in the
heart (Figs. 5 and 6). As known, the immune system is
closely associated with the progression of inflamma-
tion of the cardiovascular system. In regulating im-
mune function and inflammatory response in the
cardiovascular system, the balance between Th1-
related cytokine expression and Th2-related cytokine
expression is demonstrated to be important [56–58].
As suggested, STAT1 is associated with IFN-γ expression

and plays an important role in Th1-specific cytokine ex-
pression [59]. IFN-γ can induce Th1 activation by activat-
ing STAT1, which in turn activates T-bet. The upregulated
T-bet expression is closely related to the mediation of
STAT1. Wei et al. showed that the STAT1-, STAT3-,
STAT6-dependent pathways mediated the activation of T-
bet, GATA3, and GATA4 [60], suggesting that the upregu-
lation of STAT1, STAT3, and STAT6 may be risk factors
for the progression of cardiovascular injuries following ex-
posure to TiO2 NPs. Furthermore, GATA3, GAT4, and



Fig. 6 Effect of TiO2 NPs on protein expression of myocarditis-related genes in mouse heart by ELISA analysis. *P < 0.05, **P < 0.01, and
***P < 0.001. Values represent means ± SD (n = 5)
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STAT6 were suggested to influence Th2 cell differentiation
and induce expression of IL-4 and IL-6 [61, 62]. GATA3
and GATA4 can drive differentiation of Th2 cells,
whereas T-bet can promote expansion of Th1 cells [63].
Wojakowski et al. observed that GATA-4 expression in
patients with acute myocardial infarction related to the
increased levels of inflammatory cytokines was signifi-
cantly upregulated [64]. The balance between GATAs/
T-bet may be related to the fate of T cell polarization
during the immune response. Szabo et al. demonstrated
that T-bet can drive chromatin remodeling of the IFN-
γ locus and plays a key role in Th1 cell development
and regulation [65]. Increased level of STAT1, STAT3,
STAT6, GATA3, GATA4, IL-4, IL-6, IFN-γ, and T-bet
expression (Figs. 5 and 6) demonstrated that TiO2 NP
exposure could alter the expression of Th1- and Th2-
related transcription factors, suggesting that chronic
exposure to TiO2 NPs impaired the balance of Th1 and
Th2 at the transcriptional levels. Because the Th1/Th2
imbalance could promote the progression of allergy or in-
fection [66], our results partly explained that TiO2 NPs
may impair balance of Th1 and Th2 cytokines and alter
the immune response toward the allergy-related Th2 cyto-
kines. IL-6 is a vital procoagulant cytokine, and it contrib-
utes to enhance plasma CRP concentration, which
exacerbates inflammatory and procoagulant responses
[67]. Inflammatory cytokines, including IL-1β, TNF-α, and
CRP, have been suggested to induce the expression of cel-
lular adhesion molecules, which promote adhesion of
leukocytes to the vascular endothelium [68, 69]. CRP can
also activate monocytes to express a glycoprotein tissue
factor that plays a critical role in coagulation [70]. Import-
antly, endothelium-derived NOx production is decreased
at the damaged vascular site. Therefore, a reduction in
NOx activity exacerbates a pro-inflammatory and pro-
thrombotic milieu. CRP may itself play an important role
in decreasing NOx production and bioavailability [71].
Therefore, cardiac lesion caused by TiO2 NP exposure
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may be associated with alterations of cytokine expression
and immunological function in myocardium and the im-
balance of Th1 and Th2 cytokines.

Conclusions
TiO2 NP exposure resulted in cardiac inflammation
coupling with pulmonary inflammation, which may be
associated with immune dysfunction and imbalance of
Th1-related cytokine expression and Th2-related cyto-
kine expression in mouse heart. The finding exhibits
new insight into the mechanisms of the TiO2 NP-
induced cardiovascular damage. However, the inter-
action of other Th1/Th2-related cytokines associated
with TiO2 NP-induced cardiovascular injury will be fur-
ther investigated in future.
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