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Enhanced non-volatile memory characteristics
with quattro-layer graphene nanoplatelets vs.
2.85-nm Si nanoparticles with asymmetric
Al2O3/HfO2 tunnel oxide
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Abstract

In this work, we demonstrate a non-volatile metal-oxide semiconductor (MOS) memory with Quattro-layer graphene
nanoplatelets as charge storage layer with asymmetric Al2O3/HfO2 tunnel oxide and we compare it to the same
memory structure with 2.85-nm Si nanoparticles charge trapping layer. The results show that graphene nanoplatelets
with Al2O3/HfO2 tunnel oxide allow for larger memory windows at the same operating voltages, enhanced retention,
and endurance characteristics. The measurements are further confirmed by plotting the energy band diagram of the
structures, calculating the quantum tunneling probabilities, and analyzing the charge transport mechanism. Also, the
required program time of the memory with ultra-thin asymmetric Al2O3/HfO2 tunnel oxide with graphene nanoplatelets
storage layer is calculated under Fowler-Nordheim tunneling regime and found to be 4.1 ns making it the fastest fully
programmed MOS memory due to the observed pure electrons storage in the graphene nanoplatelets. With Si
nanoparticles, however, the program time is larger due to the mixed charge storage. The results confirm that
band-engineering of both tunnel oxide and charge trapping layer is required to enhance the current non-volatile
memory characteristics.

Keywords: Charge trapping memory devices; Graphene nanoplatelets; Silicon nanoparticles; Aluminum oxide;
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Background
The demand for low-power, high-speed, and high-
density non-volatile memory devices has increased dras-
tically over the past decade due to the growing market
of consumer electronics. However, current flash memory
devices are expected to face two major challenges in the
near future: density and voltage scaling. The density of
the memory is related to the gate length scaling which is
constrained by the gate stack, precisely, the tunnel oxide
thickness. In fact, the gate length is required to be ad-
equate with the gate stack in order to maintain a good
gate control and to avoid short channel effects. However,
in conventional flash memories, the tunnel oxide thick-
ness has a lower limit of 6–8 nm (depending on NOR or
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NAND structure) in order to avoid back-tunneling and
thus leakage of charges which destroys the necessary re-
tention characteristic of the memory (>10 years). The
second problem which needs to be solved is the high
program and erase operating voltages. Once again, the
limitation to operating voltage scaling is the inability to
reduce gate stack thickness. In addition to the trade-off
relationship between tunnel oxide thickness and reten-
tion characteristic of the memory where the retention of
charges is exponentially degraded as the tunnel oxide
thickness is scaled down, there exists another trade-off
relationship between the tunnel oxide thickness and the
resulting program time, where a thicker tunnel oxide
causes the extension of the time needed for the charges
to be transported from the channel to the charge trap-
ping layer and vice-versa. Therefore, it is imperative to
find novel structures and materials to be incorporated in
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the memory cells which would allow tunnel oxide and
voltage scaling.
Since its first discovery in 2004 [1], graphene has attracted

major attention and is currently considered as a promising
material in next-generation information-processing devices
due to its outstanding electronic properties [2]. However,
the sole use of pristine graphene as the charge storage layer
is not enough to enhance the current non-volatile memory
characteristics [3]. The choice of the tunnel oxide material
of the memory has a significant impact on the memory per-
formance [4]. On the other hand, Si-nanoparticle-based
memory has been extensively investigated, and on the in-
dustry side, it was considered as a viable memory system
due to the larger retention time, lower power consumption,
and faster operation than conventional polysilicon-based
flash memory [5, 6]. Freescale demonstrated a 4-Mbit flash
memory device as early as 2003 and has most recently
(2006) demonstrated a 24-Mbit flash memory device using
Si nanoparticle materials.
In this work, we demonstrate a non-volatile metal-

oxide semiconductor (MOS) memory with Quattro-
layer graphene-nanoplatelets as charge storage layer
with asymmetric Al2O3/HfO2 tunnel oxide and we com-
pare it to the same memory structure with 2.85-nm Si
nanoparticles charge trapping layer. TEM images, elec-
trical characterization, construction of the energy band
diagrams of the MOS memory devices, and quantum
mechanical calculations are provided to confirm the im-
portance of the band-engineering of both tunnel oxide
and charge trapping layer of non-volatile memory de-
vices. In addition, the results show that MOS memory
devices with Quattro-layer graphene-nanoplatelets as
charge storage layer with asymmetric Al2O3/HfO2 tun-
nel oxide has potential in future low-power and fast
non-volatile memory devices.

Methods
The MOS memory devices are fabricated on low-
resistivity n-type Si(111) substrate (Antimony-doped,
15–20 mΩ/cm). A 4-nm Al2O3 tunnel oxide is first de-
posited by thermal atomic layer deposition (ALD) at 250
°C using a Cambridge Nanotech Savannah-100 atomic
layer deposition system followed by 1.1 nm HfO2 depos-
ited by plasma-assisted ALD (PA-ALD) at 195 °C using
an Oxford FlexAL system. Next, the sample is placed on
a hot plate at 110 °C, and 2–2.5 ml of pristine graphene
nanoplatelets (Quattro-layer, 0.05 mg/ml) with an aver-
age size of 4.4 nm (see Additional file 1: Figure S1) are
drop-casted on the sample. Then, 1.1 nm HfO2 is depos-
ited by PA-ALD at 195 °C followed by 6.5-nm Al2O3

blocking oxide deposited at 250 °C by ALD. Finally, a
shadow mask with feature size down to 10 μm is used to
pattern the 400-nm Al gate contact deposited by e-beam
evaporation. The same process is repeated to fabricate
the MOS memory with 2.85-nm Si nanoparticles [7] (see
Additional file 1: Figure S2), where Si nanoparticles are
spin-coated on the sample at a speed of 2000 rpm and
acceleration of 500 rpm/s for 45 s. TEM cross-section of
the MOS memory with graphene nanoplatelets is shown
in Fig. 1a where an interfacial 1 nm SiO2 is observed
(see Additional file 1: Figure S3 also). A cross-section il-
lustration of the fabricated memory with graphene nano-
platelets is also shown in Fig. 1b.
The electrical measurements are done using an Agi-

lent B1505A semiconductor device analyzer.

Results and Discussion
To analyze the memory performance, high-frequency
(1 MHz) C-Vgate measurements are conducted. The gate
voltage is first swept from −7 to 7 V which resulted in the
erased-state, then from 7 to −7 V resulting in the pro-
grammed state. The obtained memory hysteresis is 3.1 V
with graphene nanoplatelets while 2.9 V with Si nanoparti-
cles. The measurements are repeated at different gate volt-
ages as shown in Fig. 2a, b for the memory with graphene
nanoplatelets and Si nanoparticles, respectively. It is ob-
served that the memory with Si nanoparticles is pro-
grammed by storing electrons and erased by storing holes
as shown by the positive and negative shifts in the pro-
grammed and erased states of Fig. 2b, respectively. It is also
shown in Fig. 2b that additional charging is due to holes at
large erasing voltages of −8 V corresponding to an electric
field across the tunnel oxide Al2O3 (Eox) of 10.6 MV/cm
whereas the memory with graphene nanoplatelets is pro-
grammed by storing electrons and erased through back-
tunneling of electrons which is shown by the shift of the
programmed state in Fig. 2a. The threshold voltage (Vt) shift
achieved with graphene nanoplatelets is higher than the Vt

shift achieved with Si nanoparticles at different gate voltages
as shown in Fig. 2c.
The memory endurance characteristic is studied by plot-

ting the Vt shift vs. the number of program/erase cycles at
8/−8 V as depicted in Fig. 2d. Non-volatile memories can
be programmed/erased frequently at the expense of intro-
ducing permanent gate-oxide damage such as the trapping
of electrons/holes in the available trapping states in the
oxide [8]. These trapped charges change the injection
fields and, thus, the amount of charge transferred to and
from the charge storage layer during programming. The
lower endurance with Si nanoparticles after 104 cycles
(33.3 % degradation) than the memory endurance with
graphene (20 %) can be due to two reasons: first, the larger
accumulation capacitance (Cacc) of the memory with Si
nanoparticles and the similar ΔVt at 8 V results in a larger
trapped charge density (ΔQ = Cacc × ΔVt) in the Si nano-
particles (ΔQ in Si nanoparticles ~8.3 × 1013 cm−2>ΔQ in
graphene nanoplatelets ~7.3 × 1013 cm−2) which means
that more charges are tunneling through the tunnel oxide



Fig. 1 Fabricated memory devices; a TEM cross-section of the memory with graphene nanoplatelets. b Cross-section illustration of the fabricated
memory cells with graphene nanoplatelets. The memory with Si nanoparticles has the same cross-section illustration
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of the memory with Si nanoparticles which might increase
the degradation of the oxide. Second, with Si nanoparti-
cles, both electrons and holes are tunneling through the
tunnel oxide during program/erase cycles. As a result,
both electrons and holes will be trapped in the available
trapping states in the oxide further degrading the endur-
ance characteristic with respect to the memory with gra-
phene nanoplatelets where only electrons are tunneling.
Moreover, the retention of the memory cells is charac-

terized by first programming/erasing the memory at 8/−8
V and observing the change in Vt shift in time as shown in
Fig. 3a, b for the memory devices with graphene nanopla-
telets and Si nanoparticles, respectively. The enhanced re-
tention with graphene (28.8 % loss of initial stored charge)
at 10 years with respect to the retention of the memory
Fig. 2 Electrical characterization of the memory devices; a High-frequency
lets. b High-frequency (1 MHz) C-V measurements of the memory with Si n
sweeping voltages. d Endurance characteristic of the memory devices prog
with Si nanoparticles (35.5 %) is due to the larger electron
affinity of graphene [9] (4.6 eV) than 2.85-nm Si nanopar-
ticles [10] (2.9 eV) which increases the conduction band
offset (CBO) between charge storage layer and tunnel
oxide, and therefore exponentially reduces the back-
tunneling of electrons.
The energy band diagrams of the memory structures with

graphene and Si nanoparticles are plotted in Fig. 4a, b, re-
spectively [11–22]. The smaller CBO than valence band off-
set (VBO) between the substrate and Al2O3 confirms the
observed electrons storage during programming of both
memories. In order to analyze the charge emission mech-
anism, the electric field across Al2O3 is calculated using
Gauss’s law [17], and the Vt shift vs. (Eox)

2 is plotted in
Fig. 5a, and the linear region suggests that phonon-assisted
(1 MHz) C-V measurements of the memory with graphene nanoplate-
anoparticles. c Plot showing the measured Vt shifts at different gate
rammed/erased at 8/−8 V at room temperature



Fig. 3 Memory retention characteristics measured by first programming/
erasing the memory at 8/−8 V at room temperature a with graphene
nanoplatelets and b with Si nanoparticles

Fig. 4 Energy band diagram of the memory a with graphene nanoplatelets a
with Si nanoparticles takes into consideration the changes due to quantizatio
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tunneling (PAT) [17] is the main emission mechanism at
Eox < 5.6 MV/cm. The plot of the natural logarithm of the
Vt shift divided by the square of the electric field vs. the re-

ciprocal of the electric field ( J ¼ C1E2
ox2e

−C2
Eox ) depicted in

Fig. 5b shows a linear region at Eox>5.6 MeV/cm confirming
that Fowler-Nordheim tunneling [17] becomes dominant at
higher electric fields. In this case, electrons tunnel through
the Al2O3 triangular energy barrier and are swept by the
electric field into the conduction band of HfO2 then into
the conduction band of the graphene nanoplatelets as
shown in Fig. 5c.
Also, the larger CBO between graphene and Al2O3 com-

pared to the CBO between Si nanoparticles and Al2O3 con-
firms the enhanced retention with graphene. The trap
lifetime of the electrons and holes in the memory devices is
calculated by first finding the back-tunneling probability (T)
[17, 23]:

T ¼ 16� E0

V 0

� �
� 1−

E0

V 0

� �
� e−2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m0 V0−E0ð Þ

p
ℏ ð1Þ

where V0 is the potential energy of the barrier, d is the
thickness of the barrier, m0 is the effective mass in the
oxide, and E0 is the ground state energy of the electron
trapped in a 4.4-nm quantum well (in the case of the

graphene nanoplatelets) and is equal to E0 ¼ ℏ2π2

2m0L2
where

ћ is the reduced Plank’s constant and L is the thickness
of the storage layer [24–34]. Since in the demonstrated
memory devices there are three barriers (HfO2, Al2O3,
and interfacial SiO2) that the electron must tunnel
nd b with Si nanoparticles. The energy band diagram of the memory
n and coulomb charging energy of the 2.85 nm Si nanoparticles



Fig. 5 Charge transport mechanism; a Plot showing the Vt shift vs. the square of the electric field across the Al2O3 for both memories. b Plot
showing the natural logarithm of the Vt shift divided by the square of the electric field vs. the reciprocal of the electric field across Al2O3. c
Energy band diagram of the memory with graphene nanoplatelets under positive gate voltage. d Energy band diagram near the Si interface of
the memory with graphene nanoplatelets. e Plot showing the accumulation electron charge density vs. the distance from the Si interface
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through to leak-out, the total transmission probability is
thus found by multiplying the transmission probabilities
through each oxide and total T is found equal to ~2 ×
10−23 for the memory with graphene nanoplatelets. The
electron trap lifetime can be then estimated by τe =
(υT)−1 = 7.14 × 108 s~23.7 years where the attempt fre-
quency υ in a quantum well [25] is E0

2πℏ ¼ 7� 1013s−1 .
Similar calculations are performed for the case of the
memory with Si nanoparticles, and the electron trap life-
time is found to be τe~15.7 years while the holes trap
lifetime is τh~30 years which is expected to be much lar-
ger due to the very large VBO between Si nanoparticles
and Al2O3 (ΔEV = 3.81 eV). The calculated results sup-
port the measured memory retention characteristic.
Furthermore, the program times for both memories

are calculated. Since during the program operation, the
electron tunnels through Al2O3 by Fowler-Nordheim
tunneling and is swept by the electric field to the charge
trapping layer, then the program speed can be found by
multiplying the probability of Fowler-Nordheim tunnel-
ing through the Al2O3 layer (TFN) by the attempt-to-
escape frequency (υp). TFN can be estimated from Eq. (2)
[25, 26]:

TFN ¼ e−
4
3

ffiffiffiffiffi
2m0

p
h

f
3
2

eEox ð2Þ

where Φ is the CBO between substrate and Al2O3, Eox
is the electric field across Al2O3, and e is the elementary
charge. Since during the program operation, there will
be band-bending of the Si substrate near the interface
with Al2O3, a triangular barrier is formed as shown in
Fig. 5c, d, and the attempt-to-escape frequency in a tri-
angular barrier is [26]:

υp ¼
ffiffiffiffiffiffiffiffiffiffi
2E1q
m0

r
1
2w

ð3Þ

where E1 ¼ 2:34� qEoxℏð Þ2
2m0

h in o2
3
and w is the thickness

of the triangular barrier which can be estimated very
well by the accumulation region thickness. The electron
concentration in the substrate during accumulation is
plotted vs. the distance from surface as shown in Fig. 5e.
At a program voltage of 8 V, the charge density in the
accumulation region can be estimated from [17] Q =
(Vp–Vt) × Ci where Vp is the program voltage and Ci is
the oxide capacitance per unit area. The corresponding
volume charge density is Qacc = 3.05 × 1019 cm–3 with
graphene nanoplatelets which corresponds to an accu-
mulation region thickness of w = 6 A0 as shown in
Fig. 5e. Therefore, the program time is calculated by div-
iding the stored charge Q given by Q ¼ V t shift

q�Ci
where Ci is

the oxide capacitance, by the program speed, and it is
found to be equal to 4.1 ns at 8 V with graphene nano-
platelets which is much faster than reported non-volatile
memory program times in literature (32 ns at 12 V [34],
100 ns at 10 V [35], 1 μs at 10 V [36]). With Si nanopar-
ticles, the time needed for the electrons to tunnel
through Al2O3 is similarly calculated and found 5.6 ns
which is larger than the write time of the memory with
graphene nanoplatelets mainly due to the lower electric



El-Atab et al. Nanoscale Research Letters  (2015) 10:248 Page 6 of 7
field across the tunnel oxide in the memory with Si nano-
particles. However, in the case of Si nanoparticles, the
time needed to program the memory is found by adding
the time needed for the holes to tunnel back to the sub-
strate as well (since mixed charging is observed in this
memory) which results in a program time >>5.6 ns.

Conclusions
In conclusion, memory devices with Quattro-layer gra-
phene nanoplatelets and 2.85-nm Si nanoparticles with
Al2O3/HfO2 tunnel oxide are demonstrated. The results
show that graphene nanoplatelets provide a larger charge
trapping state density revealed by the larger memory win-
dow, enhanced memory endurance due to the pure elec-
trons storage, and enhanced retention due to the larger
conduction band offset between storage layer and Al2O3.
Also, the graphene nanoplatelet memory showed a faster
program speed compared to Si nanoparticle memory. Fi-
nally, the results confirm that band-engineering of both
tunnel oxide and charge trapping layer is essential to en-
hance the memory characteristics. Also, the results high-
light that such memory structures have potential in next-
generation non-volatile memory devices.

Additional file

Additional file 1: Supplementary information. The supplemental
information include an AFM image of the graphene nanoplatelets, a TEM
image of the Si nanoparticles, and a high-angle annular dark-field
(HAADF) STEM image of the cross-section of the memory with graphene,
in addition to calculations of the accumulation charge concentrations.
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