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Magnetically Separable Fe3O4/AgBr Hybrid
Materials: Highly Efficient Photocatalytic
Activity and Good Stability
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Abstract

Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared
by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in
photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was
0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached
85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid
materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could
facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase
structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM),
X-ray diffraction (XRD), UV–visible diffuse reflectance spectra (UV–vis DRS), and photoluminescence (PL) techniques.

Keywords: AgBr; Fe3O4; Magnetic separation; Visible light; Photocatalysis
Background
Up to now, most of the silver oxide and silver halide
have attracted much attention because of their strong
visible light absorption performance [1–7]. Particularly,
AgBr, which has a band gap of 2.6 eV, is well known as a
photosensitive material and has been extensively applied
to photographic films, which demonstrated excellent per-
formance in degradation of dye pollutants and decompos-
ition of water [8–10]. For example, Ag/AgBr/TiO2 [11],
Ag–AgBr/TiO2/RGO [12], AgBr(I)@Ag [13], Fe(III)/AgBr
[14], and Ag/AgBr/ZnO [15] have been successfully fabri-
cated by diverse techniques, and their novel and unique
photocatalytic properties have been extensively explored.
For the nanosized or microsized photocatalysts, effect-

ive separation from the mixed system and recycle using
are important problems to restrain their real applications
[16, 17]. Immobilizing catalysts on magnetic substrates by
feasible methods is proven to be an effective approach for
removing and recycling particles [18–21]. Moreover,
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Fe3O4 has excellent conductivity, so it could act as an
electron transfer channel and acceptor, which could sup-
press the photo-generated carrier recombination. For
instance, Ye et al. reported that the hierarchical core–
shell-structured Fe3O4/WO3 has a more effective photo-
conversion capability than pure WO3 or Fe3O4 [22]. The
Ag halides such as AgBr and AgI are photoactive to visible
light. When they were immobilized on SiO2@Fe3O4 mag-
netic supports, they exhibited faster degradation rates for
4-chlorophenol than N-TiO2 [23]. However, the Ag ha-
lides were easily photoreduced and losed their stability
quickly.
The motivation of the present research originated from

the idea that Fe3O4 has high conductivity and its CB level
(1 V vs. NHE) makes it become a good candidate for
coupling with AgBr. Based on the above reason, we pro-
spect their combination could improve the photocatalytic
performance by enhancing charge transport. Herein, con-
ductive Fe3O4 particles and visible light active AgBr were
coupled together to prepare the magnetically recyclable
Fe3O4/AgBr composites with visible light activity. Studies
of their photocatalytic performance in the decomposition
of methyl orange (MO) indicated that Fe3O4/AgBr photo-
catalysts exhibited excellent catalytic activity under visible
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light illumination. Meanwhile, the stability of AgBr was
improved when it was coupled with Fe3O4.

Methods
Preparation of the Photocatalyst
Synthesis of Fe3O4 Nanospheres
The Fe3O4 nanospheres were prepared according to the
literature reported previously [24]. In a typical synthesis,
0.5 g of 1 g FeCl3 · 3H2O, 3.0 g NaAc, and 10 mL oleic acid
were added to 30 mL ethylene glycol into a three-necked
flask, and then a red solution was formed. The mixture
was stirred vigorously at 50 °C for 20 min until all re-
agents were dissolved completely. Then, the mixture was
transferred into a Teflon-lined autoclave and heated at
200 °C for 20 h. The products were cooled down to room
temperature, washed with ethanol for several times, and
dried under vacuum to give a black solid.

Synthesis of Fe3O4/AgBr Hybrid Materials
Fe3O4 nanospheres (0.01 g) were dispersed in 20 mL de-
ionized water and then ultrasonically dispersed evenly.
AgNO3 (1.18 g) was added into the solution, and then
NaBr (0.1 mol/L) was added dropwise slowly. The result-
ing suspensions were filtered, washed several times with
distilled water, and finally dried in vacuum. Different
Fe3O4/AgBr samples were obtained by adjusting the mass
ratio of Fe3O4 and AgBr, and the sample was denoted as
Fe3O4/AgBr-x (x means the percentage of Fe3O4).

Characterization
X-ray diffraction (XRD) patterns were measured on an
X’Pert Philips diffractometer (Cu Kα radiation, 2θ range
10°–90°, step size 0.08°, accelerating voltage 40 kV, applied
current 40 mA). The morphology of the samples was
taken on a Hitachi S-4800 scanning electron microscope
(SEM). UV–visible diffuse reflectance spectra (UV–vis
DRS) were obtained on a Shimadzu U-3010 spectrometer,
using BaSO4 as a reference. The photoluminescence (PL)
spectra were recorded on a F-7000 FL spectrophotometer.

Evaluation of the Photocatalytic Activity
MO was selected as the model pollutant to evaluate the
photocatalytic activity of the Fe3O4/AgBr hybrid mate-
rials. In a typical experiment, 0.1 g of the photocatalyst
was put into a 120 mL quartz reactor containing 100 mL
MO aqueous suspension (20 mg/L, pH = 7). Prior to ir-
radiation, the suspension was magnetically stirred in the
dark for 30 min to establish an adsorption–desorption
equilibrium. A 300-W Xe arc lamp with a 420 cutoff filter
was used as the light source (λ ≥ 420 nm, I420 = 8.0 mW/
cm2). At 2-min intervals, 5 mL of the suspension was col-
lected and centrifuged for 3 min to remove the catalyst
particulates for analysis. The residual MO concentration
was detected at 464 nm using a UV–vis spectrophotom-
eter (722, Shanghai Jingke Instrument Plant, China).

Results and Discussion
Phase Structure and Morphology of the Samples
Figure 1a shows that the size of Fe3O4 nanospheres was
about 100 ~ 200 nm. The surface of Fe3O4 particles was
rough, and each magnetic microsphere was constructed
with many small magnetic grains. From Fig. 1b, we can
clearly see that the obtained AgBr particles by the pre-
cipitation method easily agglomerate to large particles
and their size was more than 300 nm. Figure 1c displays
that when Fe3O4 was coupled with AgBr, the particle
size of the composite increased apparently than the pure
AgBr particles. The magnetic property of the surface
Fe3O4 would result in the agglomeration of the particles.
The EDS spectrum of Fe3O4/AgBr-0.5 hybrid materials
indicates that the atomic ratio of Fe and Ag is approxi-
mately 1:134, which is a little larger than the designed
value.
Figure 2 shows the typical XRD patterns of the as-

prepared Fe3O4/AgBr hybrid materials with different
Fe3O4 contents, which matched well with those of Fe3O4

(magnetite, JCPDS 85-1436) [22]. The diffraction peaks
of pure AgBr at 26.8°, 30.9°, 44.3°, 55.0°, and 64.5° were
assigned to the (111), (200), (220), (222), and (400) crys-
tal planes of AgBr (JCPDS 06-4308) [14]. With increas-
ing Fe3O4 content, no characteristic peaks were ascribed
to Fe3O4 emerging with AgBr phase, which should be
due to the lower content of Fe3O4.

Optical Properties of the Photocatalysts
The UV–vis spectra of Fe3O4/AgBr hybrid materials are
illustrated in Fig. 3. The pure Fe3O4 particles show
strong absorption both in ultraviolet and visible light re-
gions, which may be attributed to its small band gap.
The absorption band edge of AgBr was about 470 nm,
so the calculated band gap was 2.64 eV. AgBr was often
used as a good visible light sensitizer because it exhib-
ited a strong absorption in the visible light. After loading
Fe3O4 on AgBr particles, the visible light absorption
increased significantly. And as the increase with the load-
ing content of Fe3O4, the visible absorption of the
composites enhanced gradually, indicating that the ex-
istence of Fe3O4 could promote visible light absorp-
tion effectively.

Photocatalytic Activity for MO Degradation on Fe3O4/AgBr
Hybrid Materials
The photocatalytic performances of the photocatalysts
were evaluated by photoinduced decolorization of MO
aqueous solution, as shown in Fig. 4. Prior to irradiation,
the mixed solution of MO and photocatalyst was kept in
the dark for 30 min to obtain an adsorption/desorption



Fig. 1 SEM images of the Fe3O4/AgBr hybrid materials obtained. a Fe3O4. b AgBr. c Fe3O4/AgBr-0.5. d EDS images of Fe3O4/AgBr-0.5
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equilibrium. For comparison, the photocatalytic activity of
the pure AgBr was tested and the degradation yield reached
approximately 55 % in 12 min. When Fe3O4 nanospheres
were loaded on AgBr particles, the photocatalytic activity
increased apparently than the pure AgBr. The photocata-
lytic mechanism of Fe3O4/AgBr composites for MO deg-
radation under visible light is illustrated in Fig. 5. The
CB level of Fe3O4 (1 V vs. NHE) is much lower than that
of AgBr (−1.1 V vs. NHE) [22–25], so the photo-excited
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Fig. 2 XRD pattern of the photocatalysts obtained. (a) Fe3O4. (b) AgBr.
(c) Fe3O4/AgBr-0.1. (d) Fe3O4/AgBr-0.5. (e) Fe3O4/AgBr-1
electrons on the conduction band (CB) of AgBr can trans-
fer to the CB of Fe3O4. And the conductivity of Fe3O4 is
as high as 1.9 × 106 S m−1; the electrons on Fe3O4 particles
would transfer out quickly and react with the surface pol-
lutants. Meanwhile, Ag nanoparticles on the surface of
AgBr can act as electron capture traps to improve the sep-
aration efficiency of the charge carriers and thereby im-
proving the photocatalytic efficiency. These should be the
main reason for the enhancement of the photocatalytic
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Fig. 3 UV–vis diffuse reflectance spectra (DRS) of Fe3O4/AgBr hybrid
materials obtained. (a) Fe3O4. (b) AgBr. (c) Fe3O4/AgBr-0.1. (d) Fe3O4/
AgBr-0.5. (e) Fe3O4/AgBr-1



0 2 4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

C
/C

0

Irradiation Time/min

a-Fe
3
O

4

 b-AgBr
 c-Fe

3
O

4
-AgBr-0.1%

d-Fe
3
O

4
-AgBr-0.5%

e-Fe
3
O

4
-AgBr-1%

a

b

c

e

d

Fig. 4 Visible light responded photodegradation of MO on the series
of photocatalysts obtained. (a) Fe3O4. (b) AgBr. (c) Fe3O4/AgBr-0.1.
(d) Fe3O4/AgBr-0.5. (e) Fe3O4/AgBr-1

Fig. 6 Detection of the active species of electrons, holes, and
hydroxyl radicals
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activity for Fe3O4/AgBr composites. In addition, the load-
ing amount of Fe3O4 particles has an effect on the activity
of the composites. The sample Fe3O4/AgBr-0.5 has the
best photocatalytic activity; the degradation yield of MO
reached nearly 85 % within 12 min. In order to clarify the
reasons for this result, the active species in photodegrada-
tion process of MO were detected. Methanol, silver ni-
trate, and terephthalic acid solution were added into MO
dye solution to capture electrons, holes, and · OH, respect-
ively. As can be seen from Fig. 6, when the active species
of electrons, holes, and · OH were captured, the degrad-
ation yield of MO decreased from 85 % to 68 %, 74 %,
and 51 %, respectively. That indicated · OH and electrons
played more important roles comparing the holes in the
photodegradation of MO.
Fig. 5 Photocatalytic mechanism of MO degradation on Fe3O4/AgBr
hybrid materials under visible light illumination
As well known, AgBr is not stable, and it often suffers
photo-corrosion. So, the stability of AgBr and Fe3O4/
AgBr-0.5 was evaluated. As shown in Fig. 7, the photo-
catalytic activity on the pure AgBr decreased sharply in
the consecutive three cycles. The degradation yield of
MO on the pure AgBr particles in the tree cycles was
0.52, 0.33, and 0.12, respectively. The photo-excited elec-
trons on AgBr would reduce Ag+ to the metallic Ag, and
the small Ag nanoparticles would cover on the surface
of AgBr. And the surface Ag nanoparticles would pro-
hibit the photo-absorption of the inner AgBr. When the
amount of Ag was enough, the photo-excitation of the
inner AgBr would be hold back, and as a result, the
photocatalytic activity decreased remarkably as the reac-
tion proceeding. However, for the Fe3O4/AgBr hybrid
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Fig. 7 The stability of the pure AgBr and Fe3O4/AgBr-0.5 hybrid
materials on MO photodegradation in the consecutive three cycles.
The inset shows that Fe3O4/AgBr-0.5 composites have a certain
magnetic response to an applied magnetic field
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Fig. 8 Photoluminescence (PL) spectra obtained. (a) Fe3O4. (b) AgBr.
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materials, the stability was much better. The degradation
yield of MO on Fe3O4/AgBr composites was 0.83, 0.78,
and 0.71 in the consecutive cycles, respectively. The
Fe3O4 particles on the surface could transfer the photo-
excited electrons out quickly, which inhibit the self-
reduction of AgBr. So, the long-term stability of Fe3O4/
AgBr composites was obtained than the pure AgBr. In
the photocatalytic application, effective recycling of cata-
lyst is very important. Thanks to the existence of Fe3O4,
the catalyst has magnetism, which is favorable for re-
cycling. As shown in the inset of Fig. 7, Fe3O4/AgBr-0.5
composites could be easily separated from the suspen-
sion by an external magnetic field. As expected, the as-
prepared Fe3O4/AgBr composites exhibited a certain
magnetic response.

Photoluminescence of the Series of Photocatalysts
The fluorescence spectrum can provide much more in-
formation about carrier capture, migration, conversion,
separation, etc., so it has been used for measuring the sep-
aration of the photo-generated electron–hole pairs [26].
The emission signals in the fluorescence spectrum are
mainly from the recombination of the photo-generated
electron–hole pairs, and the lower fluorescence intensity
often implies the higher separation efficiency of the charge
carriers. Figure 8 shows the fluorescence spectra of the
samples in a wavelength range of 400–700 nm. It can be
seen that the peaks were similar except Fe3O4. No charac-
teristic peaks were ascribed to Fe3O4 emerging with
Fe3O4/AgBr composites, which should be due to the lower
content of Fe3O4. Moreover, Fig. 8 also shows a decrease
in emission intensity from AgBr to Fe3O4/AgBr samples,
indicating that an appropriate amount of Fe3O4 could sig-
nificantly reduce the recombination rate of photo-
generated electrons and holes of AgBr. The PL intensity of
the Fe3O4/AgBr-0.5 sample was the lowest, which indi-
cated that the separation efficiency of charge carriers was
the highest. That was in accord with the photocatalytic ac-
tivity result very well.

Conclusions
Fe3O4/AgBr hybrid materials with high photocatalytic ef-
ficiency under visible light were prepared through the
precipitation method. The Fe3O4/AgBr samples showed
much higher photocatalytic activity than the pure AgBr,
which was due to the matched band structure of two com-
ponents and the higher conductivity of Fe3O4. When the
loading amount of Fe3O4 was 0.5 %, the highest photoac-
tivity was obtained, and the degradation yield of MO
reached 85 % within 12 min. The PL spectra indicated that
Fe3O4/AgBr hybrid materials had the higher separation
efficiency of the photo-excited charge carriers, and that
was in accordance with the photocatalytic activity very
well. In addition, the stability of Fe3O4/AgBr composites
was improved comparing with the pure AgBr. The photo-
excited electrons would transfer out quickly from the sur-
face Fe3O4, so the self-reduction of AgBr to metallic Ag
was prohibited, and as a result, the long-term stability of
Fe3O4/AgBr was obtained.
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