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Textures on the surface of BSA films with
different concentrations of sodium halides and
water state in solution
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Abstract

The formation of the textures on the surface of the films from the solutions of bovine serum albumin (BSA) with
sodium halides (NaF, NaCl, and NaBr) of various concentrations was studied. The formation of symmetric zigzag
textures on the surface of BSA films (Cryst Eng 3:173-194, 2000) in the presence of sodium halides depends on the
conformational state of the protein globule. Thermal denaturation of BSA also did not allow to form zigzag textures
on the surface of the films.
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Background
The structure of the solid phase of a drying biopolymer
fluid characterizes the interaction between the sub-
stances in the solution [1,2]. On the surface of the films
obtained from the solutions of biopolymers, fractal tex-
tures are formed; it is assumed that such structures ap-
pear due to the formation of complex crystalline hydrate
of proteins and salts [3,4]. Theoretical models of the
processes leading to the formation of such textures are
presented in [5,6].
It is assumed that these structures are formed in the

process of self-organization of DNA on the film surface,
when the biopolymer is in the appropriate conformational
state and the corresponding hydration environment.
The area of textures decreases as the result of DNA

denaturation caused by the presence of silver ions in the
solution [7].
In [8], it is shown that chlorine ions promote the

condensation of sodium ions around the DNA, and Na+

permeates into the DNA double helix, which facili-
tates the assembly of DNA molecules into compact
structures.
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The area of textures on a film decreases [9] with the
decrease of NaCl concentration in the source solution.
It is shown that zigzag (Z) structures are formed on

films produced from solutions of DNA with NaCl at
relative humidity (RH) levels of 11% to 45% [10].
Solutions containing bovine serum albumin (BSA) and

potassium chloride result in similar structures under
such conditions [11]. These conditions are likely to be
closely related to the nature of electrostatic interactions
in the water-biopolymer-ions system, as these interactions
cause the formation of supramolecular structures (dynamic
biopolymer complexes) in a certain range of concentra-
tions of biopolymer and salt [12]. The ability to create such
complexes may underlie the formation of a particular type
of textures on the films during the water-biopolymer-ions
system’s desiccation. The change in the nature of electro-
static interactions in such systems (for example, as a result
of adding heavy metal ions, even in small amounts) hinders
the formation of Z-structures on films from the solutions
of BSA and NaCl [13].
In [14], it is shown that, in lysozyme solution with

NaCl, protein aggregates are formed at the stage of
evaporation.
In [15], it is shown that cations and anions are bound to

the surface of BSA globule. The calculation of surface
charge that promotes the formation of a layer of counter-
ions is presented in [16]. Structure formation in drying
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drops of saline solutions of protein is discussed in the
paper [17]. There, it was shown that these complex struc-
tures are formed from salt.
In the paper [18], the conclusion was made that the

adhesion of protein molecules to the surface of a nascent
crystal leads to the formation of dendrite.
On the other hand, [19,20] describe a thermodynamic

instability in the protein solution at salt concentrations
above physiological, which leads to the formation of
various unstable supramolecular structures, such as pro-
tein fractal clusters and the nuclei of the crystalline
phase.
The general patterns of interaction between water, ions

and biomacromolecules are not yet fully understood; the
role of the state of water, which can adjust the balance
in such systems, has not been established. Also, the role
of conformation of the biopolymer during the formation
of fractal textures on the surface of desiccating films is
not yet clarified.
Therefore, the aim of this work is to study the forma-

tion of textures on the surface of films from solutions
containing BSA and sodium halide salts (NaF, NaCl, and
NaBr), as well as to study the state of water in the
water-BSA-salt system and the change in the BSA con-
formation. Microwave dielectrometry was used to study
the structure of water [21], and the conformational state
of the BSA was studied by UV and fluorescence
spectroscopy.

Methods
Preparation of aqueous solutions of BSA containing
sodium halides
In the experiment, BSA preparations (DiaM, USA) and
sodium halide salts (NaF, NaCl, and NaBr, xv grade)
were used. Aqueous solutions of the protein and salts
were prepared in distilled water.
For the production of films, solutions of BSA (at a

concentration of 0.5 mg/ml) containing sodium halide
salts (NaF, NaCl, and NaBr) at a concentration of
20 mM were used.
For microwave dielectrometry measurements, as well

as UV and fluorescence spectroscopy, samples were pre-
pared with a greater concentration of BSA (10 mg/ml)
and salt (0.4 M); the BSA/salt ratio remained the same
as in the samples from which the films were obtained.
The solutions were prepared as follows. Initially, the
source solutions of 20 mg/ml of BSA and 0.8 M of each
salt were prepared. For this, the required amount of dis-
tilled water was added to the corresponding weigh of salt
or BSA. After BSA and salts had dissolved, the solutions
were mixed in the volume ratio of 1:1; then, the samples
were stirred continuously for 2 h with a magnetic stirrer
at a room temperature (about 20°C). The control sam-
ples of BSA and salt solutions were prepared by mixing
the source solutions of BSA and salts with distilled water
in the 1:1 ratio.
To investigate the effect of BSA conformation on the

formation of textures, a denaturation of BSA solution
with NaCl was carried out at 70°C and 95°C for 10 and
15 min, respectively.
The fluorescence emission intensity of BSA at λ =

345 nm is known to be quenched as a result of thermal
denaturation [22] and gamma irradiation [23]. The fluor-
escence spectra of the samples we studied exhibit a simi-
lar behavior, with the 70°C and 95°C heated solutions
having 28% to 35% lower fluorescence intensity than
non-heated ones.

Preparation of films
The formation of textures on BSA films was performed
using the setup described in [7,9]. Of the corresponding
solutions, 0.5 ml is poured into cells made of quartz
glass. The area of a cell is 20 × 21 mm2, and the height
of the cell walls is 1 mm. The cell is placed in a sealed
container which has entries for pumping air with a spe-
cific relative humidity (RH), as well as temperature and
humidity sensors. The container is placed in a water
bath. The accuracy of temperature stabilization is 0.5°C,
and the accuracy of moisture determination is 2% to 3%.

Analysis of the distribution of textures on films
This paper considers the numerical criterion that is
based on the recognition of a specific type of texture,
and analyzes the nature of texture change when the con-
centration of ions changes. The specific length of zigzags
�L is proposed as a numerical characteristic of the above-
mentioned textures. The calculation of this parameter
was carried out as follows: 1) n micrographs were taken
at positions that are uniformly distributed over the area
of the cell; 2) for each photo, the zigzag texture elements
were manually marked; and 3) the final value of �L was
determined as:

�L ¼
Xn

i
Li
Si

n
;

where Li is the total length of zigzags in a single photo-
graph, Si is the spot area of the microscope for the
photo, and n is the number of photos.
For taking the micrographs, a Meopta microscope

(Meopta - optika, s. r. o., Prerov, Czech Republic) with
Logicfox LF-PC011 web-camera and custom capturing
software were used.

UV and fluorescence spectroscopy
UV absorption spectra of the BSA solutions containing
sodium halide salts were obtained in the 250- to 300-nm
wavelength range using a UV spectrophotometer Hitachi



Figure 1 Film from BSA + 20 mM NaCl solution; T = 40°C,
RH = 0%, central part.

Figure 2 Film from BSA + 20 mM NaCl solution; T = 40°C,
RH = 0%, peripheral part.
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U2310 (Hitachi, Ltd, Chiyoda-ku, Japan). The fluores-
cence spectra of the water-BSA-salt solutions and the
films corresponding to these solutions were obtained in
the 290- to 460-nm wavelength range using a spectroflu-
orometer Hitachi 850 (Hitachi, Ltd, Chiyoda-ku, Japan).
The relative fluorescence intensities of the samples were
approximately evaluated via comparing the values ob-
tained by dividing the fluorescence intensity at the max-
imum of BSA emission band by the optical density at
the maximum of BSA absorption band at λ = 280 nm.

Microwave dielectrometry
The real ε′ and imaginary ε″ parts of complex permittiv-
ity of the BSA solution (10 mg/ml), solutions of sodium
halides NaF, NaCl, and NaBr (0.4 M), and water-BSA-
salt systems (10 mg/ml BSA and 0.4 M salt) were mea-
sured using the microwave dielectric method [21] at a
frequency of 9.2 GHz and a temperature of 22.9°C ± 0.1°C.
Corrections for the presence of inorganic ions were made
on the basis of conductivity measurements at a frequency
of 1 kHz. The dielectric relaxation frequency fd (fd = 1/
(2πτ), where τ is the relaxation time) of water molecules
in solutions, and the static dielectric constant εs (permit-
tivity of the solution in the low-frequency region of water
relaxation) were calculated from the obtained ε′ and ε″
values using the expressions derived from the Debye equa-
tion [24]:

f d ¼ f ε
0
−ε∞

� �
ε 00 ;

εs ¼ ε
0 þ ε

00 2
= ε

0
−ε∞

� �
;

where f is the frequency of the microwave field and
ε∞ = 5.6 is water permittivity in the infrared frequency
range [25].

Results and discussion
The textures of the films of BSA solutions with NaF,
NaCl and NaBr are shown in Figures 1, 2, 3, 4, 5, and 6.
The distribution of Z-structures and the value of specific
length �L varied with the concentration of Cl− in the
source solutions decreasing from 20 to 0 mM and the
concentration of fluorine and bromine ions increasing
from 0 to 20 mM. The distribution of textures on the
films’ surface is shown in Figures 7 and 8 in the form of
three-dimensional graphs.
As can be seen, the number of Z-structures decreases

when the concentration of Cl− decreases, and F− or Br−

is present in the starting solution (Figures 1, 2, 3, 4, 5, 6,
7, and 8). The calculations of Z-structures’ density distri-
bution (Figure 9) suggest that a decrease in the specific
length of zigzags �L correlates with a decrease in the
concentration of Cl− in the solution. From this, we can
conclude that it is the presence of Cl− in the solution
that creates conditions under which the fractal structures
are formed during the films’ desiccation. On the other
hand, the presence of F− or Br− in the solution reduces
the amount of Z-structures in the film.
The photos of the films obtained from solutions con-

taining BSA + 20 mM NaCl at T = 70°C and T = 95°C are
provided in Figures 10 and 11. The value of �L for 70°C
is 2.26 ± 0.40 mm−1, and for 95°C, it is 0 mm−1.



Figure 3 Film from BSA + 12 mM NaCl + 8 mM NaF solution;
T = 40°C, RH = 0%.

Figure 5 Film from BSA + 20 mM NaF solution; T = 40°C,
RH = 0%.
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As can be seen from Figure 12, Z-structures are not
formed in the case of salt solutions without BSA. Z-
structures also do not form in the case of solution con-
taining denatured BSA.
It is known that interactions between biopolymers and

salts cause the displacement of water molecules from
the hydration shell of protein molecules, as well as the
alteration of the spatial conformation of the resultant
structure. Certain salts destabilize and others stabilize
the structure of biopolymers and influence their degree
Figure 4 Film from BSA + 12 mM NaCl + 8 mM NaBr solution;
T = 40°C, RH = 0%.
of hydration [26]. The difference in halides’ effect on
BSA is, possibly, due to the changes in the degree of hy-
dration and the conformation of BSA, as well as the na-
ture of electrostatic interactions in the BSA-ion [27].
Indeed, Figures 5 and 6 show that there are no fractal
structures on the surface of BSA films in the presence of
F− and Br−.
To clarify the nature of influence of F−, Cl−, and Br−

on the conformation of BSA globules, we have con-
ducted a study of UV spectra and fluorescence spectra of
Figure 6 Film from BSA + 20 mM NaBr solution; T = 40°C,
RH = 0%.
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Figure 7 Distribution of densities of Z-structures in BSA films (12 мМ NaCl; 8 мМ NaBr).
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BSA solutions in the presence of sodium halide salts
(NaF, NaCl, and NaBr). Figure 13 shows the absorption
spectra of BSA near the λ ~ 280 nm absorption band,
which is known to be sensitive to the conformational
state of protein. It can be seen that, in the presence of
F− and Br−, the absorption band intensity increases by
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Figure 8 Distribution of densities of Z-structures in BSA films (12 мМ
about 8% (±2%). This suggests that these ions modify
not just the surface environment of a protein globule,
but also its conformation.
Figure 14 shows the fluorescence spectra of BSA solu-

tions in the presence of sodium halides. As was mentioned
above, the samples’ emission bands were compared by
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their ‘effective’ fluorescence intensity: the ratio I
0 ¼ I flmax

Aexc
of

intensity I flmax at the band’s emission maximum to the op-
tical density Aexc at the point of excitation (280 nm).
Table 1 shows that, in the presence of NaCl, I′ increases,
whereas in the presence of NaF and NaBr, I′ decreases (by
a similar amount in both cases). It is known that the lumi-
nescence of BSA is primarily due to tryptophan (BSA mol-
ecule contains two tryptophan residues that contribute
significantly to the protein’s fluorescence: Trp-134, which
Figure 10 Photo of the film obtained from solution containing
BSA + 20 mM NaCl; T = 70°C.
is localized near the surface of the IB domain and Trp-
212, which is immersed in a hydrophobic pocket in the
inner part of the IIA domain [28]). The fluorescence in-
tensity may decrease (fluorescence quenching) or increase
as a result of BSA interaction with ions. For instance,
negative charges lower the fluorescence intensity, while
positive charges have the opposite effect [29,30]. Only
Trp-214 may be quenched by iodide, whereas Trp-134 is
normally protected [31]. In addition, increasing the ionic
strength of the solution with 2 M of NaCl reduced the
Figure 11 Photo of the film obtained from solution containing
BSA + 20 mM NaCl; T = 95°C.



Figure 12 Photo of the film obtained from solution containing
20 mM NaCl.
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quenching effect of iodide; this is explained as the result
of reduced electrostatic attraction and, possibly, of the F−

and Br− competition for the same binding sites in BSA
[32]. Thus, the change in fluorescence intensity indicates
the changes in the microenvironment around the chromo-
phore molecule. In our case, a decrease in fluorescence in-
tensity in the presence of NaF and NaBr salts can,
apparently, be attributed to the same effects as iodide
quenching - i.e., the fluorescence quenching by F− and Br−

of Trp-134, which is located on the protein’s surface.
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Figure 13 Absorption spectra.
We have investigated the state of water molecules sur-
rounding BSA using microwave dielectrometry, which is
known to be sensitive to water molecules in solution.
Figure 15 shows the values of the test samples’ static di-
electric constant εs and the dielectric relaxation fre-
quency fd of water molecules in them. In protein or salt
solutions, εs is determined by the amount of free water.
fd characterizes the mobility of water molecules in the
solution, which, in turn, is determined by the nature of
intermolecular interactions. By considering both factors,
we can obtain information about the state of the pro-
tein’s hydration shell in the samples. For instance, a
0.4 M solution of NaF has the maximum value of εs and
the minimum value of fd compared to other salt solu-
tions. From this, we can conclude that the hydration
number of F− is less than the hydration numbers of Cl−

and Br−. The calculations of minimal hydration numbers
by the method described in [33] have shown that NaF
binds 10.5 water molecules, NaCl - 12.6, NaBr - 11.8.
According to the method of molecular dynamics, the
sum of average hydration numbers of the first hydration
shell is 12.3 for Na+ and F−, 13.3 for Na+ and Cl−, and
13.1 for Na+ and Br− [34].
Thus, the hydration numbers we obtained are below

the average given by molecular dynamics. In our case,
these are the water molecules that do not participate in
the process of dipole relaxation. Their lifetimes are evi-
dently above the average lifetimes (reported in [34]) of
the water molecules in the ions’ first hydration shell.
The dielectric relaxation frequency of the free water
molecules in the salts’ solutions is less than in pure
water.
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This indicates that ions reduce the mobility of free
water molecules in the solutions. In the F−, Cl−, Br−

series, the mobility of free water molecules increases,
which is in agreement with the size and the surface
charge of the ions. The difference in molecular mobility
of free water is due to the different average number of
H-bonds per water molecule at a given temperature.
Indeed, it is well known that Na+ and F− increase and

Cl− and Br− decrease the number of hydrogen bonds
(in relation to pure water at the same temperature),
with Br− having a greater effect than Cl− [35]. Our data
is consistent with these facts. All this is also valid for
solutions of BSA with NaF, NaCl, and NaBr.
In general, protein molecules and salts contribute ad-

ditively to the εs and fd values of BSA-salt solutions. It
should also be noted that BSA solution with 0.4 M NaCl
has the smallest value of εs compared to the other salts.
This is associated with the greatest amount of bound
water in this sample, which may play a key role in the
formation of textures. After the evaporation of all the
free water, the samples with different salts will contain
different amounts of bound water. BSA molecules and
ions likely compete for this water, with the nature of the
competition depending on the amount of bound water
Table 1 The ‘effective’ fluorescence intensity of the
samples

Sample I
0¼ Imax

fl

Aexc

BSA 10 mg/ml 0.33

BSA 10 mg/ml + NaBr 0.4 M 0.25

BSA 10 mg/ml + NaCl 0.4 M 0.44

BSA 10 mg/ml + NaF 0.4 M 0.25
in the system. This, in turn, will determine the nature of
electrostatic interactions in the system and the nature of
the interaction between its components. Ultimately,
these interactions manifest at the macro level in the
form of various types of textures growing on the surface
of desiccating films.
After analyzing of the experiment results, it is impos-

sible to reliably determine the mechanisms of interaction
of BSA with salt during the evaporation process and the
formation of textures.
However, it can be assumed that the formation of tex-

tures is in accordance with the model proposed by Tara-
sevich [18], wherein the growing salt crystal formation
in the dendrite form is described as the result of adhe-
sion of the protein molecules to the crystal surface.
In this case, various forms of dendrites (Z-form in par-

ticular) may appear due to the conformational differ-
ences of protein.
Since protein globule contains Na+ and Cl− [15], we

can also assume that fractal Z-textures appear due to the
formation of protein-water-salt complex at a certain ra-
tio of protein-salt, as demonstrated in [19,20].

Conclusions
The study of the effect of different halides (NaF, NaCl,
NaBr) on the formation of textures on the surface of
BSA films has been conducted. It is shown that NaCl
organizes the texture on the film surface by forming
zigzag patterns, whereas NaF and NaBr hinder the
formation of ordered Z-structures on the film. UV and
fluorescence spectroscopies indicate that F− and Br− change
the structural and the state of BSA globule, as opposed to
Cl−. Thermal denaturation of protein prevented the
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appearance of symmetric (ordered) Z-structures on films.
Thus, the formation of texture on the surface of BSA films
in the presence of sodium halides depends on the con-
formational state of the protein globule. The question of
the protein-salt or salt nature of the structure formation
by NaCl crystals yet remains controversial.
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RH: relative humidity.
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