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Abstract

Resistive switching memory cross-point arrays with TiN/HfOx/AlOy/Pt structure were fabricated. The bi-layered resistive
switching films of 5-nm HfOx and 3-nm AlOy were deposited by atomic layer deposition (ALD). Excellent device
performances such as low switching voltage, large resistance ratio, good cycle-to-cycle and device-to-device uniformity,
and high yield were demonstrated in the fabricated 24 by 24 arrays. In addition, multi-level data storage capability
and robust reliability characteristics were also presented. The achievements demonstrated the great potential of
ALD-fabricated HfOx/AlOy bi-layers for the application of next-generation nonvolatile memory.
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Background
Metal oxide-based resistive random access memory
(RRAM) has been extensively studied as one of the
most promising candidates for next-generation nonvol-
atile memory due to the great performances such as
fast switching speed, low operating voltage, 3D integra-
tion, and good compatibility with CMOS fabrication
processes [1-5]. For high-density integration of RRAM
array, a cross-point structure with the smallest cell
area of 4 F2 is needed [6,7]. However, the metal oxide-
based RRAM devices usually have a large variability
[8-10], which hinders application in industries. Thus, it
is imperative to seek an effectively technical solution
to minimize the variability of RRAM devices.
Various transitional metal oxides such as HfOx [11-13],

TaOx [14-16], TiOx [17-19], and ZrOx [20-22] have been
reported as resistive switching materials. Among them,
HfOx is a superior resistive switching material, which has
stable electrical properties, good process repeatability, and
small leakage current [23,24]. Based on a previous work
[25], an additional buffer oxide layer of AlOy which has
a larger oxygen ion migration barrier (Em) will confine
the switching in the active oxide, which can improve
the uniformity in HfOx-based RRAM devices. Both
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physical vapor deposition (PVD) and atomic layer de-
position (ALD) have been applied to fabricate resistive
switching layers. Compared to PVD, the ALD technique
has more advantages at constructing uniform, conformal,
and ultrathin films, which is a central component for
high-density and 3D integration.
In this paper, the bi-layered HfOx/AlOy films are de-

posited by ALD as the resistive switching layer of cross-
point RRAM array, which shows the precise control of
the resistive switching layer in thickness, uniformity,
and conformity. The fabricated TiN/HfOx/AlOy/Pt RRAM
devices in the cross-point array show excellent perfor-
mances including low operation voltage (+2/−2 V), suf-
ficient resistance ratio (>10), smaller cycle-to-cycle and
device-to-device variations, and high yield (>95%). Mean-
while, multi-level data storage capability, good direct
current (DC) endurance (>1,000 cycles), and retention
(>104 s at 85°C) properties are demonstrated in the devices.

Methods
The fabrication flow of the HfOx/AlOy-based cross-point
RRAM array is schematically shown in Figure 1. Firstly,
both the 20-nm Ti adhesion layer and 100-nm Pt bot-
tom electrode (BE) layers were deposited on a SiO2/Si
substrate by physical vapor deposition (PVD). Then, the
Pt bottom electrode bars were formed by photolitho-
graphy and lift-off. After that, the 20-nm SiO2 film was
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Figure 1 Process flow of the fabrication of HfOx/AlOy-based cross-point RRAM array.
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deposited by plasma-enhanced chemical vapor depos-
ition (PECVD) to serve as the isolation layer. Different
sizes of via holes through the SiO2 isolation layer from
1 × 1 μm2 to 10 × 10 μm2 were formed by reactive ion
etching (RIE). Then, 3-nm AlOy and 5-nm HfOx layers
were deposited by ALD (Picosun, Masala, Finland) at
300°C, using H2O and trimethylaluminum (TMA)/
tetrakis[ethylmethylamino]hafnium (TEMAH) as pre-
cursors, followed by a furnace annealing in O2 ambient at
500°C for 30 min. After the 40-nm TiN was sputtered and
Figure 2 Current–voltage curves of the two-step forming
process. The blue line is the first step, corresponding to the soft
breakdown of the AlOy layer, and the red line is the second step,
referring to the soft breakdown of the HfOx layer.
patterned by photolithography and dry etching to define
the top electrode (TE) bars, the contact holes to the pad
of the bottom electrode Pt were formed by dry etching.
The fabricated array size is 24 × 24, with cross-bar width
of 10 μm and pitch along the x and y directions of 20 μm.
The pad area of the electrodes is 100 × 100 μm2.
Electrical characterizations were performed using an Agi-

lent B1500A semiconductor parameter analyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA). During the
measurements, voltage was applied on the TE, while the
BE was grounded.
Figure 3 Typical DC current–voltage curve. Measured DC I-V
characteristics of the HfOx/AlOy-based RRAM device for 100
consecutive cycles. Good cycle-to-cycle uniformity can be observed.
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Results and discussion
The resistance values of the fresh devices were usually
higher than that of the high-resistance state (HRS) after
a RESET process. A two-step forming process was re-
quired to activate the RRAM devices and achieve stable
resistive switching behaviors. The current–voltage (I-V)
curve of the forming process using voltage sweeping is
shown in Figure 2. This two-step forming behavior can
be attributed to the inhomogeneous distribution of the
electric field in HfOx/AlOy layers, which corresponds to
the breakdown of HfOx and AlOy layers, respectively.
The TE, resistive switching layer, and BE comprise a
metal-insulator-metal (MIM) structure, which can be
Figure 4 Distributions of switching voltages and HRS/LRS resistances
extracted from the 100 consecutive cycles. The resistances were read at 0.1
regarded as a plate capacitor with two kinds of dielec-
trics. According to Gauss’s law, when a voltage is ap-
plied across the TE and BE, the electric field intensity
in the HfOx layer and AlOy layer can be obtained by
the following equations:

εHfOxEHfOx ¼ εAlOyEAlOy ð1Þ
EHfOxdHfOx þ EAlOydAlOy ¼ V ð2Þ

Here, εHfOx/εAlOy refers to the dielectric constant
of HfOx/AlOy, EHfOx/EAlOy is the electric field inten-
sity in the HfOx/AlOy layer, dHfOx/dAlOy is the thick-
ness of the HfOx/AlOy layer, and V is the value of the
. (a) Distribution of switching voltages. (b) Distribution of HRS and LRS
V.
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applied voltage. By calculating the above equations, the
electric field intensity in the AlOy layer is found to be
stronger than that in the HfOx layer. Therefore, the di-
electric breakdown happens firstly in the AlOy layer at
a lower voltage, and then it happens in the HfOx layer
at a higher voltage.
A typical DC I-V curve is shown in Figure 3. During

SET/RESET operation, bias voltage was applied to the
top electrode from 0 to +2/−2 V and then swept back
to 0 V, while the bottom electrode was kept grounded.
The devices show typical bipolar resistive switching be-
haviors, with the 1st/50th/100th DC I-V characteristics
shown in the figure. The good consistency between the
Figure 5 Multi-level RRAM cell. Multi-level resistance states achieved in t
current compliance, and (b) for the RESET process by modulating stop volt
1st, 50th, and 100th cycles reveals excellent switching
cycle uniformity of the RRAM device. Moreover, both
switching voltages and HRS/low-resistance state (LRS)
distributions were obtained from 100 consecutive DC
sweep cycles as shown in Figure 4a,b, respectively. In
DC sweep mode, Vset means the voltage at which the
current abruptly increases to the compliance current
during the set process, and Vreset refers to the voltage
at which the current begins decreasing during the reset
process. The good cycle-to-cycle uniformity may be at-
tributed to the interfacial effect of the HfOx/AlOy layer
[25]. The additional buffer oxide layer of AlOy has a larger
oxygen ion migration barrier (Em) and can confine the
he HfOx/AlOy-based RRAM (a) for the SET process by modulating
age.
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switching in the active oxide. Among the measured 150
uniformly distributed cells having one 24 × 24 array,
only seven RRAM devices cannot switch, which shows
the high yield (>95%) of the cross-point array.
A multi-level cell in RRAM is a desirable capability for

high-density memory and neuromorphic computing sys-
tem applications. The multi-level resistive switching be-
havior of the HfOx/AlOy-based devices can be achieved
by adjusting both current compliance during the SET
operation and stop voltage during the RESET process, as
shown in Figure 5. The LRS resistance can be modulated
by SET current compliance possibly due to the modula-
tion of the diameter or number of conductive filament
Figure 6 Device-to-device variation. (a) Measured device-to-device varia
variation of switching voltage distribution.
(CF), while the HRS resistance can be controlled by RESET
stop voltage possibly due to the modulation of the rup-
tured CF length [24].
Excellent uniformity of the devices is crucial for array

operation, since a large device-to-device variation of re-
sistances or switching voltages may cause READ/WRITE
failure. To investigate the device-to-device uniformity,
resistance distribution and switching voltage distribution
of ten devices were statistically measured and extracted.
The results are shown in Figure 6a,b, with solid marks
and error bars representing the mean values and stan-
dard deviations of 100 consecutive cycles, respectively. It
can be found that the HfOx/AlOy devices show good
tion of HRS and LRS distributions. (b) Measured device-to-device
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uniformity, which may be ascribed to the precisely con-
trolled resistive switching layer properties in thickness,
uniformity, and conformity of the HfOx/AlOy layers by
the ALD technique.
Figure 7a exhibits the SET/RESET endurance of

1,000 DC sweep cycles of the HfOx/AlOy-based RRAM
devices. The set compliance current was 1 mA, and
the reset stop voltage was −2 V. Both LRS and HRS
were read at +0.1 V. Data of every cycle was extracted.
Though the resistance is not very stable, the resistance
ratio is always larger than 10.
In order to confirm the nonvolatility of the devices,

time-dependent evolution of the resistance values of both
HRS and LRS was monitored at 85°C. The resistance was
read every second with a read voltage of 0.1 V. As shown
Figure 7 Endurance and data retention. (a) DC endurance characteristics f
in Figure 7b, both LRS and HRS show no signs of degra-
dation for 104 s.
Conclusions
Excellent resistive switching characteristics of TiN/
HfOx/AlOy/Pt RRAM devices in a cross-point array
structure have been demonstrated in this work. The de-
vices in the array show excellent cycle-to-cycle and
device-to-device switching uniformity, which can be at-
tributed to the precisely controlled HfOx/AlOy bi-layered
resistive switching layer by ALD and the effect on the re-
sistive switching behaviors. These superior characteristics
of the cross-point RRAM array could be useful for future
nonvolatile memory applications.
or 1,000 cycles. (b) Data retention for both HRS and LRS for 104 s at 85°C.
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