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Effect of grain size on thermal transport in
post-annealed antimony telluride thin films
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Abstract

The effects of grain size and strain on the temperature-dependent thermal transport of antimony telluride (Sb2Te3)
thin films, controlled using post-annealing temperatures of 200°C to 350°C, were investigated using the 3-omega
method. The measured total thermal conductivities of 400-nm-thick thin films annealed at temperatures of 200°C,
250°C, 300°C, 320°C, and 350°C were determined to be 2.0 to 3.7 W/m · K in the 20 to 300 K temperature range. We
found that the film grain size, rather than the strain, had the most prominent effect on the reduction of the total
thermal conductivity. To confirm the effect of grain size on temperature-dependent thermal transport in the thin
films, the experimental results were analyzed using a modified Callaway model approach.
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Background
Thermoelectric (TE) materials and devices have been
widely investigated in recent decades [1-3], and TE
devices have been notably applied in solid-state re-
frigeration and power conversion. In general, the per-
formances of these TE devices in terms of energy
conversion from heat to electricity can be determined
simply from the dimensionless figure-of-merit, ZT
[4-6], which is defined as ZT = S2σT/κ, where S2σ is
the power factor, S is the Seebeck coefficient, σ is the
electrical conductivity, T is the absolute temperature,
and κ is the thermal conductivity. To achieve high ZT
values, TE devices require both high power factors
and high electric conductivity, along with low thermal
conductivity. Based on these properties, the reduction
of thermal conductivity with the retention of a high
power factor is thought to be the most effective approach
toward improving TE performance. In particular, it is not-
able that two-dimensional (2D) thin-film-based TE devices
have led to new opportunities for solid-state microelec-
tronic applications by enabling the integration of TE cool-
ing devices into microelectronic systems [6]. In addition,
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they can overcome the limitations of 1D materials with re-
gard to dimensionality, morphology, and application to
scalable large-area devices, despite the fact that 1D nano-
materials have significantly lower thermal conductiv-
ities compared to higher dimensional materials, including
bulk materials, at room temperature [7-10]. Recently,
Venkatasubramanian et al. reported that Bi2Te3/Sb2Te3
superlattice thin films prepared using metal-organic chem-
ical vapor deposition have exhibited a ZT value of approxi-
mately 2.4 at room temperature, which clearly indicates a
significant improvement in TE device performance com-
pared to that of the state-of-the-art bulk alloy at room
temperature [6]. Additionally, nanostructured Bi-, Sb-, Te-,
and Se-based thin films, such as Bi2Te3 [11], Bi0.5Sb1.5Te3
[12], Pb-doped Bi2Te3 [13], Bi2Se3 [14], Sb2Te3, Bi2Te3/
Sb2Te3 [15-17], Bi0.5Sb1.5Te3, and Bi2Te2.7Se0.3 [18], have
been proven to be promising TE materials at room
temperature.
Antimony telluride (Sb2Te3) is a narrow-band-gap

(approximately 0.2 eV) semiconductor with a tetradymite
structure and has been shown to be one of the most prom-
ising TE materials at room temperature [19]. Das et al. have
studied the TE and electrical properties of crystalline Sb2Te3
thin films as a function of temperature and film thickness,
including thermal power, the Seebeck coefficient, and elec-
tric resistivity [15]. They have reported that both the TE
power and electrical resistivity are linear functions of the
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reciprocal of the film thickness. Furthermore, while many
previous works have primarily examined the electrical prop-
erties and power factor of Sb2Te3, including the Seebeck co-
efficient [15,20-22], only a small number of works on the
temperature-dependent thermal conductivity of Sb2Te3 thin
films have been reported, despite the fact that this substance
has been proven to be an excellent TE material. Moreover,
the effects of the nanostructures and morphologies of
Sb2Te3 thin films, including the strain and grain size,
on the temperature-dependent thermal transport are also
important with regard to further understanding of the
thermal properties of these films. This is especially true
since grain size and strain may play a significant role in
thermal transport [23]. For example, it has been reported
that the effects of strain in TE materials enhance the ther-
mal performance, since the thermal conductivity increases
as the compressive strain increases, while it decreases with
increasing tensile strain [24,25].
In this study, Sb2Te3 thin films were deposited at room

temperature using RF magnetron sputtering, and post-
annealing treatments were then employed at 200°C,
250°C, 300°C, 320°C, and 350°C for 5 min under an Ar
atmosphere to enhance the TE properties of the resultant
films. We investigated the influence of the post-annealing
process on the structure, chemical composition, and ther-
mal transport of the Sb2Te3 thin films. In particular, the
temperature-dependent thermal conductivity was mea-
sured in the temperature range of 20 to 300 K using
the four-point-probe 3-ω method. A theoretical model
study using the modified Callaway model is also reported
here, which was conducted to further investigate the ef-
fects of strain and grain size on the thermal transport
of the films.

Methods
Sample preparation
Four-hundred-nanometer-thick Sb2Te3 thin films were
prepared on a SiO2 (300 nm thick)/Si (001) substrate at
room temperature using RF magnetron sputtering with a
highly pure Sb2Te3 as a target (99.99% purity). The de-
tailed deposition process has been described elsewhere [26].
In brief, to tune the film nanostructures, post-annealing
processes were performed at temperatures of 200°C, 250°C,
300°C, 320°C, and 350°C for 5 min under an Ar atmosphere
of approximately 1.0 × 105 to 1.0 × 10−2 Pa. The properties
of the film crystal structures, including crystal orientation,
average grain size, and lattice parameters, were analyzed
using X-ray diffraction (XRD; Rigaku O/MAX-RC, Rigaku,
Shibuya-ku, Japan), while the surface morphologies of the
films were characterized using a field emission scanning
electron microscope (FE-SEM; SIGMA/Carl Zeiss, Seoul,
South Korea) equipped with energy dispersive X-ray spec-
trometry (EDX). The in-plane electrical conductivity of
the films was measured at room temperature using a
four-point probe method, and the out-of-plane (cross-
plane) thermal conductivity (κf ) of the thin film was
measured using a four-point-probe differential 3-ω tech-
nique with an accuracy of ±5% [27]. A detailed description
of the measurement setup can be found in our previous
publication [28]. Briefly, a thin SiO2 layer (approximately
100 nm) was first deposited onto the Sb2Te3 thin film
through plasma-enhanced chemical vapor deposition to
ensure the electrical insulation of the films. Narrow four-
point probe metal electrodes composed of Ti/Au (10 nm/
300 nm), in which the metal electronics act as both
heaters as well as sensors for measuring the temperature
gradient, were then patterned onto the films using a
photolithography process.

Thermal conductivity measurement using differential 3-ω
method
The thermal transport measurements were performed in
the 20 to 300 K temperature ranges in a closed-cycle re-
frigerator (CCR; Janis, Woburn, USA) system equipped
with a turbo pump (Edwards, North Somerset, UK). In the
differential 3-ω method, the total temperature oscillation,
ΔT (ω), for a multilayer sample can be given by [29]

ΔT ωð Þ ¼ P
πκs

1
2
ln

Ds

b2

� �
þ 0:923−

1
2
ln 2ωð Þ− iω

4

� �

þ Pdf

2bκf
;

ð1Þ
where P is the supplied power-per-unit-length of the
narrow metal line; Ds is the thermal diffusivity; df is the
thin film thickness; b is the width; and κs and κf are the
thermal conductivities of the SiO2(300-nm-thick)/Si sub-
strate and 400-nm-thick Sb2Te3 thin film, respectively.
ΔT (ω) is obtained from measurements of the third-
harmonic root-mean-square voltage drop,Vrms-3ω, across
the metal line, using the following equation:

ΔT ωð Þ ¼ 2Vrms−3ω

αI0R0
; α ¼ 1

R0

dR0

dT

� �
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Here, α is the temperature coefficient of the resistance,
R0, of the Ti/Au metal strip. Finally, κf is determined
using Equation 3, which can be derived from the second
term in Equation 1, such that

κf ¼ Pdf

2b ΔTsþf ωð Þ−ΔTs ωð Þ� � ; ð3Þ

where ΔTs+f (ω) is the temperature oscillation of the in-
phase component for the SiO2/Si substrate with the thin
film and ΔTs (ω) is the temperature oscillation of the in-
phase component without the thin film. Thus, the out-of-
plane thermal conductivity of the thin films can generally
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be evaluated using Equation 3, provided ΔTs+f (ω) and ΔTs
(ω) are measured separately using the 3-ω method in the
20 to 300 K temperature range.

Results and discussion
Material characteristics of Sb2Te3 thin film
First, the surface morphologies (including grain size
and boundary and atomic compositions) of the Sb2Te3
thin films were investigated using FE-SEM with EDX.
Figure 1a,b,c,d,e shows the surfaces and cross-planes
(inset) of the films annealed at 200°C, 250°C, 300°C, 320°C,
and 350°C, respectively. These images clearly reveal the
effect of the post-annealing temperature on these char-
acteristics (Figure 1). As shown in Figure 1, the grains
and grain boundary of all the annealed films are uniform,
even though Sb-rich crystalloid precipitates appeared
on the surfaces of the films annealed at 350°C. This
Figure 1 Surfaces and cross-planes of the films annealed at 200°C, 25
images) of the Sb2Te3 thin film of 400-nm thickness with post-annealing te
insets in each figure show cross-sectional images (tilted-view images) of th
Sb2Te3 thin film at room temperature.
crystalloid precipitate was confirmed by EDX measure-
ment (Figure 1f ). Previous works have also reported
these Sb-rich precipitates in annealed Bi-Sb-Te [30,31]
and in annealed Sb2Te3 films [16]. Moreover, we exam-
ined the stoichiometry of the annealed Sb2Te3 thin
films using EDX measurements, as shown in Figure 1f.
From the EDX spectrum, it can be observed that the
peaks of the Sb and Te elements have an approximate
ratio of 2:3, indicating the stoichiometry of the Sb2Te3
film, as summarized in Table 1. As shown in Table 1,
we found that the Te atomic composition decreased
slightly to 57.4 (at %) as the annealing temperature in-
creased to 350°C. This indicates that the post-annealing
temperature did not have a significant effect on the
atomic composition of the films, and these observations
are in good agreement with previous works on Sb2Te3
thin films [16]. As a result, we believe that all the thin
0°C, 300°C, 320°C, and 350°C. (a-e) SEM surface images (top-view
mperatures of 200°C, 250°C, 300°C, 320°C, and 350°C, respectively. The
e films annealed at temperatures of 200°C to 350°C. (f) EDX spectra of



Table 1 Calculated average grain sizes and atomic
compositions of Sb2Te3 thin films at different annealing
temperatures

Annealing
temperature (°C)

FWHM
B(°)

Bcosθ Average grain
size D (nm)

EDX (atom %)

Sb Te

200 0.283 0.00150 88 40.2 59.8

250 0.254 0.00135 98 40.2 59.8

300 0.246 0.00131 101 41.8 58.2

320 0.190 0.00104 127 41.8 58.2

350 0.193 0.00100 129 42.6 57.4
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films are principally stoichiometric. In addition, we ob-
served that the grain sizes of the films grew with in-
creasing annealing temperature, as has been observed
previously [31].
The XRD patterns of the annealed Sb2Te3 films are

shown in Figure 2a,b. From Figure 2a, it is apparent that
two clear diffraction peaks are located at 28.24° and
38.29°, which are corresponding to the diffraction reflec-
tions of the (015) and (1010) planes of the Sb2Te3 films,
respectively. A rhombohedral structure (JCPDS No. 71-393,
R�3m) can be expected for the Sb2Te3 thin film, which is also
consistent with the XRD patterns previously reported
for Sb2Te3 films [16,26,32,33]. In addition, the XRD
spectra show no further significant crystallinity changes
when the annealing temperature is increased up to 350°C,
Figure 2 XRD pattern, (1010) peak, and grain sizes and strains of Sb2
with increasing annealing temperatures of up to 350°C. (c) and (d) Grain
temperatures of up to 350°C, respectively.
as shown in Figure 2a, implying that the films obtained
highly oriented crystalline structures under all annealing
temperatures. The average grain size of the thin film was
calculated using the Debye-Scherrer equation [34]

D ¼ kλ=Bcosθ; ð4Þ

where k is a constant (=0.89), λ is the wavelength of the
radiation (=1.5401 Å), B is the full-width at half-
maximum (FWHM), and θ is the diffraction angle from
the XRD pattern. The detailed parameters of the Sb2Te3
thin films are summarized in Table 1. Using this method,
we found the average grain sizes to be approximately 88 to
approximately 129 nm for the films annealed at the tem-
peratures of 200°C to 350°C, indicating that the grain sizes
of the films increased as the annealing temperature in-
creased, as shown in Figure 2c. This observation corre-
sponds well with previous results for Sb2Te3 thin films
[16]. To further investigate the effect of strain on the
annealed Sb2Te3 thin films, we specially selected two
main peaks, (015) and (1010) planes, and repeated XRD
measurements in the vicinity of these peaks with a
smaller 2θ interval (approximately 0.02), as illustrated
in Figure 2b. We then found that the (1010) peak of the
films shifted toward a much higher angle when the an-
nealing temperatures were increased up to 350°C, as
shown in Figure 2d, while the (015) peak did not reveal
T3 thin films. (a) XRD pattern and (b) (1010) peak of Sb2T3 thin films
sizes and strains of Sb2Te3 thin films as a function of post-annealing
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a shift for post-annealing temperatures of up to 350°C.
This implies that the films experience a much larger com-
pressive strain at this higher annealing temperature. The
calculated compressive strain in the direction of (1010)
was determined to be −0.39% to −0.62%. Further detailed
effects of both the compressive strains and the grain sizes
of the annealed thin films on the thermal transport will be
discussed in the next section.

Thermal properties of Sb2Te3 thin films
Cross-plane thermal conductivity measurements were con-
ducted using four-point-probe 3-ω measurements in the 20
to 300 K temperature range in a vacuum of 5 × 10−5 Torr,
which has been proven to be a promising measurement
technique for both 1D nanostructures [7,8,32] and 2D thin
films [28]. Figure 3 shows the temperature oscillation
of the in-phase component, ΔTs+f (ω), for the 400-nm-
thick Sb2Te3 thin films annealed at temperatures of
200°C to 350°C, with the ΔTs (ω) value of the sub-
strates (SiO2/Si) also added as a reference. As shown
in Figure 3, we obtained a thermal conductivity for the
SiO2 (300 nm thick)/Si substrate of approximately
1.25 W/m · K at 300 K, which is consistent with previous
results [29]. Using Equation 3 and the slope of Figure 3,
the cross-plane total thermal conductivity of the films at
room temperature (as a function of annealing tempera-
tures up to 350°C) were obtained from κf = κe + κL, com-
prising both the electronic (ĸe) and lattice (ĸL) thermal
conductivity components. Figure 4a,b shows the total and
lattice thermal conductivities of the films at 300 K at an-
nealing temperatures of up to 350°C. The average total
thermal conductivity of the films was in the 2.02 to
2.52 W/m · K range at 300 K, which is approximately
Figure 3 Temperature oscillation of in-phase components for anneale
for annealed Sb2Te3 thin films with annealing temperatures of 200°C, 250°C
1,000 Hz. In addition, the temperature oscillation for the substrates is also i
1.6 to 2.0 times less than that of homogeneous Sb2Te3
single-crystal bulk materials at 300 K [19]. As shown in
Figure 4a, the total thermal conductivity increased as
the annealing temperature increased, indicating a simi-
lar trend to those of the grain size and compressive strain,
as shown in Figure 2c,d. As a result, this increase in the
total thermal conductivity of the films with increasing an-
nealing temperature is clearly associated with the grain
growth and strain of the films. This finding is very consist-
ent with previous reports on the effects of nanostructure
morphology and enhanced phonon scattering at the
grain boundaries of thin films on the thermal conductivity
[35-38]. Previous reports using numerical simulations
demonstrated that the thermal conductivity generally in-
creases with increasing compressive strain [25]. Note that
Takashiri et al. reported that the dominant factors in the
reduction of the ĸL of nanocrystalline bismuth antimony
telluride thin films were the grain size and thin-film strain,
here the grain size and strain were determined to be
approximately 38 to approximately 93 nm and −0.8%
to −1.4% while the ĸL were determined to be approxi-
mately 0.29 to approximately 0.39 W/m · K [35]. We
found that these two components are determined to be
approximately 88 to approximately 129 nm and −0.39%
to −0.62%, while the ĸL of Sb2Te3 thin films was in the
0.61 to 1.08 W/m · K range at 300 K (Figure 4c). Hence,
we expect that the reduction of the thermal conductivity
of the Sb2Te3 thin films can be attributed to the combined
grain-size and strain effects.
To estimate the electronic thermal conductivity using

the Wiedemann-Franz law, κe= LTσ, where L is the Lorenz
number (2.45 × 10−8 WΩ/K2) and T is the absolute
temperature [19], it should be noted that our measurements
d Sb2Te3 thin films. Temperature oscillation of in-phase components
, 300°C, 320°C, and 350°C, as a function of applied frequency of up to
ncluded.
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Figure 4 Total and lattice thermal conductivities of the films at 300 K. (a) Measured cross-plane (κf) and (b) lattice thermal conductivity (κL)
of 400-nm-thick Sb2Te3 thin films at 300 K with different annealing temperatures of up to 350°C. (c) Measured lattice thermal conductivity of films
as a function of grain size at 300 K. Dotted lines represent the best fitting.
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for σ are for the in-plane electrical conductivity only, as
mentioned previously in the experimental section. There-
fore, to evaluate the out-of-plane electrical conductivity of
the films, we estimated its value using anisotropic TE prop-
erties of layered Sb2Te3 bulk materials, where the relation-
ship between the in-plane and out-of-plane electrical
conductivities is σ11/σ33 = 1.8 [39]. Here, it was assumed
that the electronic and thermal anisotropic properties
of the single crystal bulk materials are the same as that
of the highly crystalline thin film. Consequently, the es-
timated out-of-plane electrical conductivity of the films
as a function of the annealing temperature was deter-
mined to be approximately 1,080 ± 55.1 to 2,833.9 ±
55.1 S/cm, as shown in Figure 4b. Figure 4c shows that
the out-of-plane lattice thermal conductivity increases
constantly with increasing grain size at 300 K and the
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thermal conductivity of the 400-nm-thick Sb2Te3 thin
films as a function of the grain size indicates strong
grain-size dependence of the thermal transport at 300 K.

Theoretical modeling of temperature-dependent thermal
conductivity of the films
Figure 5a shows the measured out-of-plane total thermal
conductivity of the 400-nm-thick Sb2Te3 thin films as a
function of temperature, from 20 to 300 K. As shown
in Figure 5a, we found that the thermal conductivity of
Figure 5 Measured out-of-plane total thermal conductivity of the 400
κf = κL + κe, of 400-nm-thick Sb2Te3 films annealed at temperatures of 2
(b) Measured total thermal conductivity of film annealed at 300°C as a f
theoretically calculated total thermal conductivity (κf, solid line in red) w
(κe, dotted line in black) and lattice thermal conductivities (κL, solid line
electrical conductivity using the Wiedemann-Franz law.
the films exhibits a strong dependence on the annealing
temperature and grain-size in the 20 to 300 K temperature
ranges. The observed reduction in the temperature-
dependent total thermal conductivity was due to en-
hanced phonon boundary scattering following the de-
crease in grain size, as has been reported previously
[16,35]. From Figure 5a, it can be seen that the total
thermal conductivity decreases constantly after the ap-
proximately 50 K peak (the so-called ‘Umklapp peak’)
has been reached, since the thin films at these temperatures
-nm-thick Sb2Te3 thin films. (a) Measured total thermal conductivity,
00°C, 250°C, 300°C, 320°C, and 350°C as a function of temperature.
unction of temperature (red in scatter plot). For comparison, the
ith the two components of the thermal conductivity (the electronic
in blue)), are also included. κe was calculated from the out-of-plane
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are more significantly affected by phonon-phonon
Umklapp scattering. For further understanding of lat-
tice and electronic contribution in total thermal con-
ductivity, we investigated a phonon transport model,
which is based on the relaxation time and was previ-
ously predicted by Callaway in 1959 [40]. The details
of this model are described elsewhere [40,41]. The ex-
pression for κL is given as follows [40]

κL Tð Þ ¼ kB
2π2c

kBT
ℏ

� �3Z θD=T

0
τc

x4ex

ex−1ð Þ2 dx; ð5Þ

where kB is the Boltzmann constant, ℏ is the reduced
Planck constant, x is the dimensionless parameter with
x = ℏω/kBT, θD is the Debye temperature, T is the abso-
lute temperature, and c is the velocity of sound. Under
the relaxation time approximation, we modify the scat-
tering mechanism of the phonons, which were originally
suggested by Callaway, and incorporate various scattering
mechanisms including dislocation, point defects, phonon-
phonon scattering, and boundary scattering from the grain
and thickness effect. Thus, the total modified phonon scat-
tering rate (relaxation time, τc) is given by

τ−1c ¼ c
d1

þ c
d2

þ Aω4 þ Bω2Texp −
θD
3T

� �
þ Cω; ð6Þ

where d1 is the grain size of the thin films, as shown in
Figure 2c and Table 1, d2 is the film thickness (400 nm), c
(2,900 m/s) is average sound velocity from bulk Sb2Te3,
and the coefficients A, B, and C are temperature-
independent fitting parameters. In Equation 6, the first
term, c

d , represents boundary scattering; the second
term, Aω4, represents point-defect scattering; the third
term, Bω2Texp − θD

3T

� 	
, represents three-phonon Umklapp

scattering, while the fourth term, Cω, represents carrier-
phonon scattering. For the Sb2Te3 film, the relaxation-
time fitting parameters A, B, and C are approximately
9.6 × 10−43 S3, approximately 2.7 × 10−17 S/K, and approxi-
mately 8.2 × 10−5, respectively, with the best fitting from
the bulk Sb2Te3 [19]. Figure 5b shows the measured
cross-thermal conductivity (κf ) of the Sb2Te3 thin film
annealed at 300°C with the measured temperatures from
20 to 300 K, together with the theoretically calculated total
thermal conductivity (solid-line) and calculated κe and κL
values. As shown in Figure 5b, we found that the elec-
tronic contribution to the total thermal conductivity be-
comes more pronounced compared to that of the lattice
component between temperatures of approximately 150
to 300 K, where the contribution of κe reaches approxi-
mately 72% at 300 K. Finally, Figure 5a,b shows that
the temperature-dependent thermal conductivity of the
Sb2Te3 thin films is strongly dependent on the grain
size in the 20 to 300 K temperature ranges.
Conclusions
In summary, we investigated the effect of strain and grain
size on the thermal transport of Sb2Te3 thin films depos-
ited on SiO2/Si substrates using the 3-ω technique. The
measured total thermal conductivities of the Sb2Te3 thin
films annealed at temperatures of 200°C, 250°C, 300°C,
320°C, and 350°C were determined to be 2.0 to 3.7 W/m · K
in the 20 to 300 K temperature range. We then found that
both grain size and strain have noticeable effects on the
reduction of the total thermal conductivity of the Sb2Te3
thin films. The experimentally measured results for the
thin films were also analyzed using a modified Callaway
approach. Hence, we suggest that careful control of grain
size or strain is the key to the development of high-
performance TE devices.
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