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Abstract 

Aryl hydrocarbon receptor (AhR) was originally identified as an environmental sensor 
that responds to pollutants. Subsequent research has revealed that AhR recognizes 
multiple exogenous and endogenous molecules, including uremic toxins retained 
in the body due to the decline in renal function. Therefore, AhR is also considered 
to be a uremic toxin receptor. As a ligand-activated transcriptional factor, the acti-
vation of AhR is involved in cell differentiation and senescence, lipid metabolism 
and fibrogenesis. The accumulation of uremic toxins in the body is hazardous to all 
tissues and organs. The identification of the endogenous uremic toxin receptor 
opens the door to investigating the precise role and molecular mechanism of tissue 
and organ damage induced by uremic toxins. This review focuses on summarizing 
recent findings on the role of AhR activation induced by uremic toxins in chronic 
kidney disease, diabetic nephropathy and acute kidney injury. Furthermore, potential 
clinical approaches to mitigate the effects of uremic toxins are explored herein, such 
as enhancing uremic toxin clearance through dialysis, reducing uremic toxin pro-
duction through dietary interventions or microbial manipulation, and manipulating 
metabolic pathways induced by uremic toxins through controlling AhR signaling. This 
information may also shed light on the mechanism of uremic toxin-induced injury 
to other organs, and provide insights into clinical approaches to manipulate the accu-
mulated uremic toxins.
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Graphical Abstract

Introduction
The kidney is the organ that excretes metabolic waste products, including creatinine, urea 
and uric acid, from the body. When metabolic waste products cannot be appropriately 
eliminated by the kidney, the accumulation of uremic toxins and disruption of the body’s 
internal environmental homeostasis are hazardous to all tissues and organs [1]. In recent 
years, the identification of endogenous uremic toxin receptors has opened the door to 
research on the precise role and molecular mechanism of uremic toxins in the tissue and 
organ, leading to the emergence of valuable insights [2].

Aryl hydrocarbon receptor (AhR) is an important receptor of uremic toxins. AhR was ini-
tially identified as an environmental sensor that responds to pollutants, including halogen-
ated aromatic hydrocarbons and polycyclic aromatic hydrocarbons [3]. Growing evidence 
has suggested that AhR not only is a receptor for xenobiotics but can also be activated by 
various physiological ligands, such as metabolites derived from the host, gut microbiota or 
natural plants. Numerous studies have demonstrated that AhR activation is widely involved 
in cell differentiation, cellular senescence, lipid metabolism, intestinal balance, immune 
response and fibrogenesis [4–7]. Recent studies have indicated that AhR activation by the 
accumulation of uremic toxins may be implicated in various kidney diseases, including 
chronic kidney disease (CKD), CKD-associated complications, diabetic nephropathy (DN), 
acute kidney injury (AKI) and systemic lupus erythematosus (SLE) [8, 9]. Reducing uremic 
toxins by improving their clearance or inhibiting their production benefits clinical treat-
ment outcomes [9]. However, these therapies possess inherent advantages and limitations 
that may contribute to poor outcomes for patients with kidney diseases. Targeting AhR 
with agonists or antagonists has shown promising initial efficacy in various kidney disease 
models [2]. Given the importance of understanding the effects of AhR activation by ure-
mic toxins on kidney diseases and complications, this review summarizes the recent under-
standing of the mechanisms of uremic toxin-activated AhR signaling pathways and their 
effects on different renal diseases and also simply discusses current therapeutic strategies 
for targeting both uremic toxins and AhR activation.
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Uremic toxins
During the development of CKD, some metabolic waste products (including uremic tox-
ins) are retained in the circulation and tissues due to a decreased glomerular filtration 
rate (GFR) and renal structural and physiological dysfunction [1]. Many uremic toxins 
are products of dietary constituents. For instance, p-cresyl sulfate (PCS) is derived from 
tyrosine; kynurenine (KYN) and indoxyl sulfate (IS) are derived from tryptophan (Trp); 
and trimethylamine-N-oxide (TMAO) is derived from dietary fish, red meat and eggs 
[10].

L-tyrosine can be reversibly converted to phenol by tyrosine phenol-lyase [11]. In 
addition, L-tyrosine can also be  reversibly  converted to 4-hydroxyphenylpyruvate by 
tyrosine transaminase [12], aromatic-amino-acid transaminase [13] or phenylalanine 
dehydrogenase [14]. 4-Hydroxyphenylpyruvate is the precursor of 4-hydroxyphenylace-
tate, which is catalyzed by p-hydroxyphenylpyruvate oxidase [12], and can subsequently 
be decarboxylated to p-cresol by p-hydroxyphenylacetate decarboxylase [15]. These 
enzymes are present in the gut microbiota. The majority of p-cresol is sulfated into the 
PCS by aryl sulfotransferases [16], and a small fraction is metabolized to p-cresyl glucu-
ronide by UDP-glucuronyltransferases in the gut mucosa and liver [17, 18] (Fig. 1).

The essential amino acid Trp is mainly degraded by three known metabolic path-
ways that can be initiated in the host, plant or microbiota: the KYN pathway (90–95% 

Fig. 1  Metabolic pathway of tyrosine into p-cresyl sulfate (PCS). l-tyrosine can be reversibly converted to 
4-hydroxyphenylpyruvate by tyrosine transaminase, aromatic-amino-acid transaminase or phenylalanine 
dehydrogenase. 4-Hydroxyphenylpyruvate is the precursor of 4-hydroxyphenylacetate, which is 
catalyzed by p-hydroxyphenylpyruvate oxidase, and can subsequently be decarboxylated to p-cresol 
by p-hydroxyphenylacetate decarboxylase. The majority of p-cresol is sulfated into the PCS by aryl 
sulfotransferases, and a small fraction is metabolized to p-cresyl glucuronide by UDP-glucuronyltransferases. 
The processes marked by the yellow box occur in the gut microbiota, and the processes marked by the blue 
box occur in the gut mucosa and liver of the host
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of Trp), serotonin pathway (1–2% of Trp) and indolic pathway (4%-6% of Trp) [19] 
(Fig. 2). In the KYN pathway, Trp is converted to N-formylkynurenine (NFK) by the 
rate-limiting enzymes tryptophan 2,3-dioxygenase (TDO) and indoleamine-2,3-diox-
ygenase (IDO-1/2). NFK is converted to KYN by kynurenine formamidase (AFMID). 
Subsequently, KYN is converted to 3-hydroxykynurenine (3-HK) by kynurenine 
3-monooxygenase (KMO). Then, 3-HK is converted by kynureninase (KYNU) to 
3-hydroxyanthralinic acid (3-HAA), which is converted by 3-hydroxyanthranilate 
3,4-dioxygenase (HAAO) to quinolinic acid (QA). QA can be converted to NAD+, 
a key coenzyme in energy metabolism. 3-HK can also be catalyzed by kynurenine 
amino transferase (KAT) to produce xanthurenic acid (XA). KYN is also converted to 
anthralinic acid (AA) by KYNU. KAT can catalyze KYN to produce kynurenine qui-
nolinic acid, also known as kynurenic acid (KYNA) [20]. TDO is highly expressed in 
the liver and brain, and IDO-1/2 is widely expressed in various tissues [2, 21].

In the serotonin pathway, Trp is metabolized by Trp hydroxylase enzyme (TpH), 
which produces 5-hydroxytryptophan (5-HTP). 5-HTP is further metabolized into 
5-hydroxytryptamine (5-HT), also known as serotonin [22].

In the indole pathway, Trp is converted into indole by tryptophanase-positive 
microbiota. Indole is absorbed in the liver and then oxidized by cytochrome P450 

Fig. 2  Metabolic pathway of tryptophan (Trp). Trp is mainly degraded through three known metabolic 
pathways that can be initiated by the host, plant or microbiota. These include the KYN pathway (90–95% 
of Trp), serotonin pathway (1–2% of Trp) and indolic pathway (4–6% of Trp). Several compounds, including 
indoxyl sulfate (IS), kynurenine (KYN), kynurenic acid (KYNA), and indole-3-acetic acid (IAA), are recognized 
as uremic toxins and are marked with blue boxes. The compound acting as AhR ligands is marked with an 
asterisk (*)
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family 2 subfamily E member 1 (CYP2E1) to hydroxyindole, which is converted into 
IS by sulfotransferases [23]. Some bacterial species use Trp and metabolize it to vari-
ous indolic derivatives. For example, Lactobacillus spp. metabolize Trp to indole-3-al-
dehyde (I3A), Bifdobacterium spp. metabolize Trp to indole-3-lactic acid (ILA), and 
Bacteroides spp. metabolize Trp to indole-3-acetic acid (IAA) [8].

Trp photolysis by ultraviolet or visible light triggers several photochemical products, 
such as 1-(1H-indol-3-yl)-9H-pyrido[3,4-b]indole [24] and 6-formylindolo[3,2-b]carba-
zole (FICZ) [25].

Tryptophan-derived phytochemical indole-3-carbinol (I3C), which is produced in cru-
ciferous brassica genus vegetables, including cauliflower, cabbage, and brussels sprouts, 
can be converted into indolo[3,2-b]carbazole (ICZ) by nonenzymatic condensation reac-
tions in the stomach [26].

Choline is derived from eggs, fish and meat and can be metabolized to trimethylamine 
(TMA) by the choline-utilizing TMA lyase (CutC/D). L-carnitine is found in red meat 
and fish and can be metabolized to TMA by the carnitine Rieske-type oxygenase/reduc-
tase (CntA/B) [27–29]. YeaW and YeaX, the homologs of CntA/B, can also metabolize 
choline, carnitine and betaine to generate TMA. These effects are dependent on the gut 
microbiota [30]. TMA produced in the gut is absorbed into the blood and transported to 
the liver, where flavin monooxygenase 3 (FMO3) catalyzes TMA into TMAO [31]. Apart 
from dietary precursors of TMAO, most preformed TMAO, which is independent of gut 
microbes, is found in fish, humans [32] and rats [31, 33] (Fig. 3).

Fig. 3  Pathways of trimethylamine-N-oxide (TMAO) production. Foods are enriched in TMAO precursors 
(choline, carnitine and betaine) or TMAO itself. Choline can be metabolized to trimethylamine (TMA) by the 
choline-utilizing TMA lyase (CutC/D). L-carnitine can be metabolized to TMA by the carnitine Rieske-type 
oxygenase/reductase (CntA/B). YeaW and YeaX, the homologs of CntA/B, can also metabolize choline, 
carnitine and betaine to generate TMA. The above processes occur in the microbiota. TMA produced in the 
gut is absorbed into the blood and transported to the liver, where flavin monooxygenase 3 (FMO3) catalyzes 
TMA into TMAO. Dietary TMAO can bypass processing by the gut microbiota before intestinal absorption
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The European Uremic Toxin Work Group in 2003 classified uremic toxins into three 
categories based on dialysis clearance and physicochemical characteristics. The first cat-
egory comprises small molecule toxins with a molecular weight of less than 500 Da, sol-
ubility in water, non-protein binding, and easy elimination through hemodialysis (HD), 
which include urea, creatinine, creatine, uric acid and xanthine. The second category 
comprises medium molecule toxins with a molecular weight exceeding 500 Da which are 
less efficiently cleared by HD; these toxins include β2-microglobulin, interleukin (IL)-1β, 
IL-6 and tumor necrosis factor (TNF)-α. Finally, protein-bound toxins are difficult to 
eliminate using conventional dialysis techniques, including PCS, IS, KYN, KYNA and 
IAA [34]. However, a conference on uremic toxins in 2020 challenges this classification 
as follows: First, the current physiochemical subdivisions based on molecular weight can 
be considered arbitrary and artificial. Second, the protein-bound degree of these uremic 
solutes is variable, and the molecular weights of these solutes remain uncertain. Third, 
the HD in the original classification only applies to conventional HD and not peritoneal 
or other dialysis. Fourth, the original classification does not consider the compartmen-
tal partitioning behavior of solutes within the body. Fifth, some uremic toxins already 
exist before the initiation of dialysis. Therefore, experts recommended that the defini-
tion of uremic toxins should be based on HD strategies, membranes, and removal pat-
terns while adapting to technological advancements [35]. In addition, experts approved 
a scoring system in 2008 for classifying uremic toxins according to the experimental 
and clinical evidence of their toxicity. The highest-scoring uremic toxins were PCS, 
β2-microglobulin, asymmetric dimethyl arginine, KYN, carbamylated compounds, 
fibroblast growth factor (FGF)-23, IL-6, TNF-α and symmetric dimethyl arginine. The 
second highest-scoring uremic toxins are advanced glycation end products, IS, uric acid, 
ghrelin, IAA, parathyroid hormone, phenyl acetic acid, TMAO, retinol binding protein, 
endothelin, immunoglobulin light chains, IL-1β, IL-8, neuropeptide Y, lipids and lipo-
proteins [36]. Based on a new classification schema proposed by experts [35], this review 
further summarized the classification of uremic toxins according to metabolic pathways 
and dialysis modalities (Table 1).

AhR signaling
Compounds produced by Trp metabolism have been demonstrated to be potential AhR 
ligands, including KYN, KYNA, XA, 3-HK, 3-HAA, QA, tryptamine, IAA, 3-methylin-
dole (skatole), I3A, ILA, indole, IS, I3C, ICZ, FICZ [19], 5-HTP [37], and indole-3-acet-
aldehyde (IAAld) [8]. IS is a potent ligand of AhR that exhibits 500-fold greater potency 
in the transcriptional activation of human AhR than mouse AhR [23]. FICZ has struc-
tural similarities to ICZ, and both are important endogenous AhR agonists. FICZ binds 
to the AhR with higher affinity than tetrachlorodibenzo-p-dioxin (TCDD), a well-known 
potent agonist of AhR [38]. However, the precursor I3C acts as a weak AhR ligand [39]. 
Under pathological stimuli, AhR is widely expressed in a variety of cells, including epi-
thelial cells [40], vascular smooth muscle cells [41], endothelial cells, immune cells [42], 
hepatocytes [43], astrocytes and neurons [44].

AhR is a member of the bHLH-PAS family and is an evolutionarily conserved tran-
scription factor. Structurally, AhR contains a bHLH domain and two repeats of a 
PAS domain, known as PAS-A and PAS-B [45–47] (Fig.  4). Under physiological 
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conditions, the AhR PAS-B domain is attached to heat shock protein 90 (HSP90) [48]. 
The AhR bridge motif between PAS-A and PAS-B tightly binds to the HSP90 dimer and 
is threaded through the lumen of HSP90. HSP90 plays a crucial role in maintaining a 
high-affinity ligand-binding conformation. The amino acid residues connecting AhR 
PAS-B to the C-terminal transactivation domain form a long loop that folds back to 

Table 1  New classification of uremic toxins based on metabolic pathways and dialysis modalities 
[35]

HD hemodialysis, HDF hemodiafiltration, HDx expanded HD, IS indoxyl sulfate, KYN kynurenine, IAA indole-3-acetic acid, 
KYNA kynurenic acid, PCS p-cresyl sulfate, TMAO trimethylamine-N-oxide, IL interleukin, TNF tumor necrosis factor, FGF 
fibroblast growth factor, sTNFR soluble tumor necrosis factor receptor, CX3CL chemokine (C-X3-C motif ) ligand, YKL-40 
chitinase-3-like protein 1

Characteristics Uremic toxin 
sources

Molecular weight Dialysis modalities Metabolic pathways 
and uremic toxin 
products

Protein-bound (Pro-
tein-bound ≥ 80%)

Exogenous (Gut-
derived)

< 0.5 kDa Low-flux HD;
High-flux HD;
High-flux HDF;
Medium cutoff HDx;
High cutoff HD;

Tryptophan metabo-
lism (IS, KYN, IAA, 
KYNA [2]);
Tyrosine metabolism 
(PCS [18]);
Methionine metabo-
lism (Homocysteine 
[173]);
Maillard reaction 
(carboxymethyl lysine 
[174])

Water soluble (Pro-
tein-bound < 80%)

Exogenous and 
exogenous (Both 
gut-derived and 
endogenous 
metabolism)

< 0.5 kDa Low-flux HD;
High-flux HD;
High-flux HDF;
Medium cutoff HDx;
High cutoff HD;

Choline, carnitine and 
betaine metabolism 
(TMAO [31]);
Arginine methylation 
(asymmetric dimethy-
larginine, symmetric 
dimethylarginine 
[175]);
Purine metabolism 
(uric acid [176]);
Carbamylation (carba-
mylated compounds 
[177])

Endogenous (endog-
enous metabolism)

0.5–15 kDa High-flux HD;
High-flux HDF;
Medium cutoff HDx;
High cutoff HD

Cytokine (IL-8);
Structural protein (β2-
microglobulin)

> 15–25 kDa High-flux HDF;
Medium cutoff HDx;
High cutoff HD

Cytokines (TNF, IL-18, 
IL-10, IL-6, FGF-2);
Hormone (prolactin);
Structural proteins 
(kappa-FLC, myoglo-
bin, sTNFR2, comple-
ment factor D);

> 25–58 kDa Medium cutoff HDx;
High cutoff HD

Cytokines (pen-
tatraxin-3, FGF-23, 
CX3CL1, CXCL12, IL-2);
Structural proteins 
(sTNFR1, lambda-FLC, 
YKL-40);
Maillard reaction 
(advanced glycosyla-
tion end products 
[178])

> 58 kDa High cutoff HD Modified albumin
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the AhR PAS-B domain and interface with X-associated protein 2 (XAP2, also known 
as ARA9 or AIP), potentially interacting with the co-chaperone p23 [45]. These inter-
actions effectively sequester the AhR molecule within the HSP90/XAP2/p23 complex, 
thereby stabilizing AhR in the cytoplasm [48]. In the presence of ligands, the DE-loop 
and a group of conserved pocket inner residues within the AhR PAS-B domain are 
responsible for ligand binding [48]. Activation of AhR involves conformational changes 
that expose the nuclear localization sequence in its N-terminal region, triggering trans-
location to the nucleus. In the nucleus, this complex dissociates and releases AhR [49]. 
Subsequently, AhR binds to the aryl hydrocarbon receptor nuclear translocator (ARNT) 
through interactions in the bHLH and PAS-A domains [50]. The outcome is the recruit-
ment of transcriptional coactivators, such as histone acetyltransferase steroid receptor 
coactivator (SRC)-1, SRC-2 and p300, IκB kinase α (IKKα), brahma-related gene 1, and 
RNA initiation factors, to target promoters to enhance transcriptional activity [51–53]. 
This AhR/ARNT/coactivator complex binds to target genes containing consensus DRE 
or XRE (referred to as dioxin-response element or xenobiotic-responsive element) 
sequences (5’-GCGTG-3’) and regulates the transcription of target genes, including 
Cyp1a1, Cyp1a2 [53], aryl hydrocarbon receptor repressor (AhRR) [54], nucleotide-
binding oligomerization domain, leucine rich repeat and pyrin domain containing 3 
(Nlrp3) [55], IL-10 [9] and IL-22 [56]. Additionally, AhR regulates the transcription of 
target genes that do not harbor the canonical XRE recognition site in promoter regions 
by interacting with additional transcription factors, such as estrogen receptor (ER), 
krüppel-like factor 6 (KLF6), nuclear factor-κB (NF-κB), and MAF bZIP transcription 
factor (c-Maf) [57–60]. Furthermore, AhR can directly regulate the transcription of 
nuclear factor erythroid 2-related factor 2 (Nrf2) [61].

The transcriptional activity of AhR cannot explain all the cellular functions attrib-
uted to this receptor. Several studies have reported that AhR also functions as an E3 
ubiquitin ligase. In the nucleus, AhR, together with damaged-DNA binding protein 1 
(DDB1), RING-box protein 1 (Rbx1), transducin-β-like protein 3 (TBL3), ARNT and 
scaffold protein cullin 4B (CUL4B), forms a novel CUL4B ubiquitin ligase complex, 
CUL4BAhR. Ligand-activated AhR acts as a substrate-specific adaptor component target-
ing ER-α and androgen receptor (AR) for ubiquitin-mediated degradation. Furthermore, 
a study confirmed that the conserved C-terminal acidic domain of AhR interacts with 
the N-terminal region of CUL4B [62]. The role of AhR E3 ubiquitin ligase was impli-
cated in β-catenin degradation, which occurs independently but cooperatively with the 
APC-dependent pathway to suppress intestinal carcinogenesis [63]. AhR also targeted 

Fig. 4  The structure of mouse AhR. AhR contains a basic helix-loop-helix (bHLH) domain and two repeats 
of the Per-Arnt-Sim (PAS) domain, known as PAS-A and PAS-B. The bHLH and PAS-A domains of AhR are 
responsible for ARNT binding, and the PAS-B domain is responsible for ligand binding. The C-terminal acidic 
domain of AhR interacts with cullin 4B (CUL4B)
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peroxisome proliferator-activated receptor  γ (PPARγ) for proteasomal degradation to 
regulate adipocyte differentiation [64]. However, the specific mechanism by which this 
molecular switch mediates the transcriptional activity or E3 ubiquitin ligase activity 
of AhR has not been fully elucidated. Several investigations have attempted to address 
this question, with Luecke-Johansson et  al. proposing that ARNT plays a crucial role 
in determining the dual functions of AhR. Their findings revealed that the absence of 
ARNT significantly impeded the transcriptional activation of AhR but did not affect 
its E3 ubiquitin ligase function [65]. Kuocheng Lu et al. also demonstrated that differ-
ent IS concentrations can modulate ARNT as a molecular switch for AhR. Low-dose 
IS exposure increased nuclear ARNT expression, facilitating the formation of the IS/
AhR/ARNT complex in the nucleus. However, high-dose IS exposure decreased ARNT 
expression, inhibiting the transcriptional activity of AhR in the nucleus and increasing 
the function of AhR E3 ligase in the cytoplasm [66]. However, it should be noted that the 
two aforementioned studies ignored the involvement of ARNT in CUL4BAhR complex 
formation. The cytoplasmic functions of AhR have been gradually elucidated. Ligand-
activated cytoplasmic AhR has been reported to act as a protein adaptor that links SRC 
to janus kinase 2 (JAK2) and mediates SRC phosphorylation by JAK2, which activates 
the phosphatidylinositol 3-kinase (PI3K)/AKT, mitogen-activated extracellular signal-
regulated kinase (MEK)/extracellular signal-regulated kinase (ERK) [67] and yes-associ-
ated protein (YAP)-ERK signaling pathways [68]. Ligand-activated cytoplasmic AhR also 
protects tissue factor (TF) from ubiquitination and degradation to increase thrombotic 
risk [41] (Fig. 5).

The AhR signaling pathway is regulated at three levels: (i) the production and metabo-
lism of ligands that act as agonists or antagonists [8] and (ii) activity disruption by com-
petitors such as AhRR and hypoxia inducible factor (HIF)-1α. AhRR inhibits AhR signal 
transduction by binding to XREs and ARNT [69] or recruiting corepressors such as 
ankyrin repeat and LEM domain containing 2 gene, histone deacetylase (HDAC) 4 and 
HDAC5, which form a negative feedback loop to prevent the overactivation of AhR [70]. 
HIF1α inhibits AhR activity by interacting with ARNT (also known as HIF-1β) [71]. (iii) 
Degradation of AhR. After AhR is separated from DNA, it is exported from the nucleus 
and subjected to proteasomal degradation [72]. AhR can be phosphorylated in a glyco-
gen synthase kinase-3-dependent manner, leading to lysosomal degradation of the AhR 
protein [73]. Conversely, AhR can be deubiquitinated by the deubiquitinating enzyme 
ubiquitin C-terminal hydrolase L3 [74]. These mechanisms ensure the proper balance of 
AhR biology.

Uremic toxin‑activated AhR in kidney diseases
Proximal renal tubular epithelial cells (RTECs), which possess various transporters 
on the cell membrane, are responsible for the absorption and secretion of substances, 
including drugs, metabolites and environmental toxins [75]. Most uremic toxins are 
transported via the solute carrier family members organic anion transporters 1 and 3 
(OAT1 and OAT3) [75]. A study revealed elevated levels of plasma uremic toxins such 
as IS, XA and KYN in OAT1 knockout mice [76]. An imbalance between the production 
and excretion of uremic toxins can contribute to their accumulation within the body, 
which disturbs normal physiological functions and energy metabolism [1]. When renal 
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function is impaired, the accumulation of uremic toxins accelerates the progression of 
kidney diseases by activating the AhR signaling pathway, and this damage occurs not 
only in the kidney but also in other organs, such as the heart, vessel, liver and muscle 
(Table 2).

Uremic toxin‑activated AhR in CKD

CKD is defined by persistent urine abnormalities and structural or functional impair-
ments suggestive of a loss of functional nephrons [77]. CKD is a major public health 
problem that affects nearly 9.1% of the global population [78]. As the global population 

Fig. 5  AhR signaling pathway. Before ligand binding, AhR remains stable in the cytoplasm within the HSP90/
XAP2/p23 complex. When exposed to AhR ligands, such as uremic toxins, pollutants or natural plants, AhR 
changes its conformation, thus exposing the nuclear localization sequence in its N-terminal region and 
triggering translocation to the nucleus. In the nucleus, AhR is released from this complex and activated. 
Activated AhR binds to ARNT and some coactivators to regulate the transcription of target genes containing 
consensus XRE (xenobiotic response element), such as Cyp1a1, Cyp1a2, AhRR, Nlrp3, IL-10 and IL-22. In 
addition, AhR regulates the transcription of target genes that do not harbor the canonical XRE recognition 
site in their promoter regions by interacting with additional transcription factors, such as ER, KLF6, NF-κB 
and c-Maf. Furthermore, AhR directly regulates the transcription of Nrf2. Additionally, AhR, together with 
DDB1, Rbx1, TBL3, ARNT and CUL4B, assembles into the novel CUL4B ubiquitin ligase complex CUL4BAhR to 
regulate target proteins for ubiquitin degradation, such as ER-α, AR, β-catenin and PPARγ. Ligand-activated 
cytoplasmic AhR can act as a protein adaptor that links SRC to JAK2, activating the PI3K/AKT, MEK/ERK and 
YAP/ERK signaling pathways. AhR can also protect tissue factor (TF) from ubiquitination and degradation
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ages and the incidences of diabetes, hypertension and other diseases increase, the inci-
dence of CKD also gradually increases [77]. The majority of patients with CKD are at 
high risk of cardiovascular disease (CVD) and death. When patients with CKD progress 
to end-stage renal disease (ESRD), the optimal treatment strategy is renal replacement 
therapy, such as dialysis or kidney transplantation, which has limited accessibility and is 
extremely susceptible to cardiovascular mortality [77]. It was estimated that CVD mor-
tality in patients who underwent kidney transplantation is 2.3 times greater than that in 
the general population [79].

Table 2  The impact of AhR activation on kidney diseases and complications

Diseases AhR-expressing cell types Biological effects Signaling pathways References

CKD Human aortic vascular 
smooth muscle cell

Accelerate thrombosis AhR stabilized TF expres-
sion by inhibiting TF ubiqui-
tination and degradation.

[41]

HUVEC and PBMC Accelerate atherogenesis AhR increased TF expres-
sion.

[42]

HUVEC Accelerate thrombosis Increased TF expression 
was regulated by AhR/p38 
MAPK/NF-κB pathway.

[93]

HUVEC N/A AhR promoted neuronal 
pentraxin 1 transcription.

[94]

Human dermal microvascu-
lar endothelial cell

Suppress postischemic 
angiogenesis and promote 
PAD

AhR augmented β-catenin 
ubiquitination and 
degradation and then 
suppressed Wnt/β-catenin 
signaling pathway.

[98]

Skeletal muscle cell Exacerbate the ischemic 
myopathy and PAD

N/A [99]

HUVEC Exacerbate vascular inflam-
mation

AhR stimulated the 
transcriptional activity of 
activator protein 1 and 
then upregulated E-selectin 
expression, leading to the 
aggravation of leukocyte 
recruitment to the vascular 
wall.

[101]

Macrophage Promote inflammation AhR increased the tran-
scription of Socs2 and Tnf-α.

[102]

N/A Promote blood–brain bar-
rier disruption associated 
with cognitive impairment

N/A [87]

Astrocyte Induce anxiety, cognitive 
impairment, astrocyte 
reactivation and neuronal 
activity enhancement

AhR downregulated GLT1 
expression and activity 
and promoted pro-oxidant 
NOX1 expression.

[44]

RTEC Enhance IS clearance Elevated IS levels induced 
robust increases in the 
expression and transport 
activity of OAT1 by activat-
ing the AhR/ARNT and 
EGFR pathways.

[40]

Hepatocyte Increase hepatic cyclo-
sporine clearance

AhR upregulated 
P-glycoprotein expression 
and activity.

[43]

DN MC and RTEC Promote MC activation 
and extracellular matrix 
production

AhR was bound to the pro-
moters of Cox-2, fibronec-
tin, and collagen IV.

[122]
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The accumulation of uremic toxins and activation of AhR in CKD

In CKD patients, plasma Trp levels were unchanged, and metabolites of Trp, includ-
ing KYN, 5-HTP, serotonin and QA, were significantly increased at CKD stage 3 [80]. 
Plasma KYNA [80], IAA [81] and serum IS [82] levels increased significantly at the CKD 
stage 4. These uremic toxins increased progressively with increasing CKD stage [80–82]. 
IAA levels decreased substantially after kidney transplantation. Nontransplanted CKD 
patients with above-median IAA concentrations had a significantly higher risk of overall 
mortality and cardiovascular events than patients with below-median levels [81]. IS is 
also an independent risk factor for cardiovascular events in patients with CKD [82, 83]. 
IS has been shown to be positively correlated with aortic calcification and pulse wave 
velocity [82]. Patients on HD with high plasma IS concentrations were at a higher risk of 
developing first heart failure [84]. PCS is another widely studied and protein-bound ure-
mic toxin. Serum PCS levels were increased in CKD patients and associated with CKD 
progression and all-cause mortality [85]. Similarly, the levels of serum uremic toxins 

AhR aryl hydrocarbon receptor, CKD chronic kidney disease, DN diabetic nephropathy, AKI acute kidney injury, OSA 
obstructive sleep apnea, HUVEC human umbilical vein endothelial cell, PBMC peripheral blood mononuclear cell, TF 
tissue factor, PAD peripheral artery disease, MAPK mitogen-activated protein kinase, NF-κB nuclear factor kappa-B, 
ARNT aryl hydrocarbon receptor nuclear translocator, Socs2 suppressor of cytokine signaling 2, Tnf tumor necrosis 
factor, GLT1 glutamate transporter 1, NOX1 NADPH oxidase 1, RTEC renal tubular epithelial cell, IS indoxyl sulfate, EGFR 
epidermal growth factor receptor, OAT1 organic anion transporter 1, MC mesangial cell, Cox2 cyclooxygenase 2, JNK c-Jun 
N-terminal kinase, AhRR aryl hydrocarbon receptor repressor, MDM2 mouse double minute 2, miR miroRNA, Nrf2 nuclear 
factor erythroid 2-related factor, ROS reactive oxygen, EZH2 enhancer of zeste homolog 2, CIH chronic intermittent hypoxia, 
HTN hypertension

Table 2  (continued)

Diseases AhR-expressing cell types Biological effects Signaling pathways References

AKI RTEC Inhibit renal inflammation, 
pathological injury and 
apoptosis

AhR inhibited NF-κB and 
JNK pathways.

[128]

RTEC Promote tubular cell 
survival against cisplatin 
toxicity and protect the kid-
ney from cisplatin-induced 
acute injury

Elevated miR-125b 
transcriptionally by Nrf2 
inhibited AhRR, increasing 
the transcriptional activity 
of AhR, promoting MDM2 
expression, and then inhib-
iting p53 activity.

[130]

N/A Limit renal damage during 
malaria

N/A [131]

RTEC Promote apoptosis and 
renal damage

AhR induced oxidative 
stress by increasing ROS.

[132]

RTEC Accelerate cellular senes-
cence, kidney dysfunction 
and tubular injury

AhR upregulated EZH2 
expression, and EZH2 
conversely enhanced AhR 
expression via weakening 
H3K27me3 transcriptional 
inhibition on the AhR 
promoter.

[133]

RTEC Do not affect cellular 
senescence

N/A [134]

OSA N/A Promote the progression of 
HTN induced by CIH

AhR antagonist CH223191 
prevented the increase 
in systolic blood pres-
sure by 53 ± 12% and 
diastolic blood pressure by 
44 ± 16%.

[136]



Page 13 of 35Xie et al. Cellular & Molecular Biology Letters           (2024) 29:38 	

have been observed in animal models of CKD. The serum IS concentrations were sig-
nificantly higher in adenine diet-fed mice and rats, IS mice given water containing IS, 
and 5/6 nephrectomized rats than in controls, and the serum KYN levels were elevated 
in adenine diet-fed mice [86, 87]. Plasma TMAO was markedly increased, and elevated 
TMAO was associated with a 2.8-fold increase in the risk of 5-year all-cause mortality 
in CKD patients. High TMAO levels portend poorer prognosis among non-CKD sub-
jects [88]. Taken together, these studies indicate that some uremic toxins are independ-
ent predictors of overall mortality, CKD progression and cardiovascular events in CKD 
patients.

With the accumulation of AhR ligands in serum, upregulated AhR expression and 
activation are also observed in CKD patients and animals. AhR activity was higher in 
the sera of 20 ESRD patients on HD than in those of controls (activity range 3.02–7.62 
vs. 1.1–2.38) [41]. Similarly, another clinical study involving 116 patients with CKD 
revealed a significant increase in serum AhR activity. The mRNA levels of AhR target 
genes Cyp1a1 and AhRR were increased in patient blood cells, suggesting activation of 
the AhR signaling pathway in CKD patients. In addition, significant increases in serum 
AhR activity and Cyp1a1 mRNA level in the aorta and heart were detected in both 5/6 
nephrectomy-induced CKD mice and mice injected with IS for 5 consecutive days, 
whereas increased Cyp1a1 mRNA level was not observed in AhR knockout mice [89]. In 
kidneys of mice with unilateral ureteral obstruction-induced renal fibrosis, an increase 
in AhR mRNA level was accompanied by significant increases in the expressions of AhR 
target genes, including Cyp1a1, Cyp1a2 and Cyp1b1, suggesting AhR signaling pathway 
activation in mouse kidneys [90]. AhR activation was also confirmed in the kidneys of 
5/6 nephrectomized rats and patients with idiopathic membranous nephropathy and 
IgA nephropathy [91].

The above studies consistently suggest that uremic toxins are accumulated and AhR is 
activated during the progression of CKD.

The function of uremic toxin‑activated AhR in CKD

It was reported that IS and uremic serum induced AhR activation, as validated by nuclear 
translocation and increased expressions of target genes, including Cyp1a1, Cyp1b1 
and AhRR, which were abrogated by AhR antagonists CB7993113 and CH223191 [41]. 
Approximately 90% of IS circulates in a protein-bound way among HD patients [92]. 
A study indicated that both albumin-bound and free IS induced dose-dependent AhR 
activity in vascular smooth muscle cells [41]. Numerous studies have focused on the 
harmful effects of AhR activation by uremic toxins on cardiovascular dysfunction during 
CKD. Serum IS levels in ESRD patients were positively correlated with serum AhR activ-
ity and vascular smooth muscle cellular TF activity. In primary cultured human aortic 
vascular smooth muscle cells, the activation of AhR by IS stabilized TF via inhibiting TF 
ubiquitination and degradation, thus accelerating thrombosis [41]. Similar studies also 
showed that IS and IAA upregulated TF expression by activating AhR in human umbili-
cal vein endothelial cells (HUVECs) and peripheral blood mononuclear cells. And the 
effect was suppressed by treatment with AhR siRNA or the AhR inhibitor geldanamycin. 
Plasma TF levels were significantly higher in CKD patients than in healthy controls, and 
TF levels were even higher in CKD patients requiring HD than in non-dialysis patients. 
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In addition, plasma TF levels were positively correlated with IS and IAA levels. The pro-
coagulant state induced by increased TF expression and the direct proatherogenic effect 
of AhR activation accelerated atherogenesis in CKD [42]. However, other researchers 
observed that IAA-activated AhR promoted TF transcription independently of binding 
to the TF promoter in HUVECs. In fact, TF upregulation by IAA was regulated by the 
AhR/p38 mitogen-activated protein kinase (MAPK)/NF-κB pathway, which increased 
thrombotic risk [93]. Activated AhR by uremic solutes IS and IAA, as well as TCDD and 
FICZ, promoted neuronal pentraxin 1 transcription in HUVECs, and the mRNA level 
of neuronal pentraxin 1 was increased in the aortas of adenine-induced CKD mice [94]. 
Another study showed that IS reduced the fast transient outward potassium current-
related proteins and current densities by activating the reactive oxygen (ROS)/MAPK 
and NF-κB signaling pathways, prolonging action potential duration and QT interval in 
neonatal rat ventricular myocytes and hearts of CKD rats. This result helps to account 
for the high prevalence of ventricular arrhythmias related to sudden cardiac death in 
CKD patients [95].

CKD is well recognized as a distinct contributor to cardiac hypertrophy. A study clari-
fied the relationship between uremic toxins and cardiac hypertrophy. Treatment of car-
diomyocytes with uremic serum collected from patients with CKD stage 5 who have 
accumulated diverse uremic toxins induced mitochondrial oxidative damage. Mitochon-
drial damage increased VDAC-mediated mitochondrial outer membrane permeabiliza-
tion, leading to the release of mitochondrial DNA. Mitochondrial DNA activated cyclic 
GMP-AMP synthase/stimulator of interferon gene/NF-κB pathway and then stimulated 
ornithine decarboxylase upregulation and putrescine accumulation, which promoted 
cardiac hypertrophy [96].

CKD imposes a potent and independent risk for peripheral artery disease (PAD). In 
a study involving a cohort of 1,091,201 patients, those with CKD exhibited a striking 
threefold increase in the prevalence of PAD compared with the non-CKD patients [97]. 
A recent study demonstrated that plasma IS levels were elevated by 1.6-fold, KYN levels 
were raised by 2.2-fold, and KYNA and XA levels were heightened by 1.5-fold in PAD 
patients with adverse limb events compared to those without adverse limb events. How-
ever, there were no significant differences in the levels of Trp, AA, or QA between the 2 
groups. Plasma from PAD patients with adverse events activated AhR activity in human 
dermal microvascular endothelial cells 60% more compared with the group without 
adverse events. Uremic toxins were found to suppress the Wnt/β-catenin pathway by 
augmenting AhR-mediated β-catenin ubiquitination and degradation in human dermal 
microvascular endothelial cells, which was also verified in adenine-induced CKD and IS 
solute-specific mouse models with hindlimb ischemia. Notably, inhibiting AhR activity 
with CH223191 normalized postischemic angiogenesis in adenine-induced CKD mice to 
a non-CKD level [98]. Another study explored the role of AhR activation in the myopa-
thy of PAD and CKD. The expression and activity of AhR in skeletal muscle were greater 
in PAD patients with CKD than in PAD patients with normal renal function or non-PAD 
adult controls. Skeletal muscle-specific AhR knockout promoted ischemic muscle perfu-
sion recovery and arteriogenesis and preserved ischemic muscle mass, contractile func-
tion, mitochondrial respiratory function and paracrine vasculogenic signaling between 
myofibers and vascular cells in adenine-induced CKD mice with hindlimb ischemia. 
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These findings indicate that AhR inhibition is a potential therapeutic for PAD patients 
with CKD [99]. These studies implicate that retained uremic solutes in CKD patients 
drive PAD progression by disrupting angiogenesis and muscle health in an AhR-depend-
ent manner.

Increasing reports show that uremic toxin-activated AhR creates a vicious cycle 
between oxidative stress and inflammation, which aggravates the chronic inflamma-
tory environment in CKD. It has been reported that IS induces ROS production [95]. 
IS-upregulated ROS promoted the expressions of cAMP response element-binding 
protein and NF-κB, increasing NADPH oxidase (NOX) 4 expression, an enzyme cata-
lyzing the reduction of molecular oxygen to ROS in proximal renal tubules [100]. IS-
induced ROS production led to c-Jun N-terminal kinase (JNK) and NF-кB activation 
independent of AhR regulation in HUVECs. This study also showed that IS-induced 
AhR activation stimulated the transcriptional activity of activator protein 1 and subse-
quently upregulated E-selectin expression in HUVECs, which led to the aggravation of 
leukocyte recruitment to the vascular wall and vascular inflammation. Endothelial cell-
specific AhR knockout inhibited leukocyte recruitment [101]. Crosstalk between AhR 
and NF-κB is also observed in macrophages. During the early stages of IS stimulation, 
IS-activated AhR was associated with the NF-κB p65 subunit, leading to mutual inhibi-
tion of AhR and NF-κB in the cytoplasm. Subsequently, IS-activated AhR translocated 
into the nucleus and promoted the transcription of suppressor of cytokine signaling 2 
(Socs2), a negative modulator of NF-κB, thus inhibiting NF-κB signaling pathway activa-
tion. Finally, the mutual inhibition of AhR and NF-κB was diminished, and free activated 
AhR induced TNF-α expression by binding to the promoter of Tnf-α [102]. Both free and 
albumin-bound IS triggered proinflammatory macrophage activation and the expression 
of proinflammatory cytokines, such as IL-1β, TNF-α and monocyte chemotactic protein 
1, in 5/6 nephrectomy-induced CKD mice [103]. These findings indicate that AhR may 
promote inflammation in CKD.

Furthermore, uremic toxins impair the antioxidant capacity of cells against oxidative 
stress. Glutathione is a marker of oxidative stress and is known as the most potent anti-
oxidant [104]. A study showed that IS, phenyl sulfate, and PCS, but not IAA, at CKD 
concentrations led to decreases in total glutathione levels, thus rendering tubular epithe-
lial cells vulnerable to oxidative stress [105].

Recently, researchers have realized that CKD patients have a higher risk of developing 
cognitive impairment and dementia, even in the early stage of CKD [106]. It is noted 
that the accumulation of uremic toxins may harm cerebral endothelium and cogni-
tive function in CKD [107, 108]. Notably, serum free IS concentrations, but not PCS, 
were associated with lower cognitive function in patients with HD [109]. The effect of 
uremic toxins was experimentally explored, and an increase in serum IS concentra-
tions was shown to promote blood–brain barrier disruption associated with cognitive 
impairment by AhR activation in CKD rats established by an adenine-rich diet or by 5/6 
nephrectomy [87]. Similarly, 5/6 nephrectomy-induced CKD mice showed increased IS 
concentrations in both the blood and brain and AhR activation in the anterior cortex. 
CKD-induced anxiety, cognitive impairment, astrocyte reactivation in the anterior cin-
gulate cortex, and neuronal activity enhancement in the anterior cingulate cortex and 
hippocampal CA1 neurons were ameliorated after knocking out neural lineage-specific 
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and astrocyte-specific AhR or treating with AhR antagonist CH223191. Mechanistically, 
IS-activated AhR downregulated glutamate transporter 1 (GLT1) expression and activ-
ity and promoted pro-oxidant NOX1 expression in astrocytes, leading to enhanced neu-
ronal activity and synaptotoxicity in the brain. The study indicates that astrocytic AhR 
promotes CKD-induced neuron-astrocyte interaction dysfunction and mental disorders 
[44].

Renal fibrosis is the common ultimate pathological feature of CKD. Uremic toxins are 
considered to play a determinant pathological role in the progression of renal fibrosis. 
Peripheral fibroblast activation and tubular injury are the hallmarks of renal fibrosis 
[110]. In fibroblasts, IS accumulation promoted renal fibroblast activation via an HSP90-
dependent pathway [110]. In proximal RTECs, IS and PCS significantly activated the 
intrarenal renin–angiotensin–aldosterone system by increasing renin, angiotensinogen 
and angiotensin 1 receptor expressions, and decreasing angiotensin 2 receptor expres-
sion. IS and PCS also increased transforming growth factor β1 (TGFβ1) expression 
and activated the TGFβ/Smad pathway. IS and PCS induced the epithelial-mesenchy-
mal transition (EMT) phenotype by increasing snail family transcriptional repressor 
expression. EMT was implicated in renal fibrosis [111]. Cellular senescence is a stress-
induced cell cycle arrest independent of age. Senescent cells obtain increased secretion 
of cytokines, chemokines, growth factors, and proteases, which is referred to as the 
senescence-associated secretory phenotype [112]. Cellular senescence has been found 
in multiple kidney diseases, especially in CKD. Young CKD patients frequently exhibit 
characteristics of premature aging, including vascular aging, bone disease, muscle wast-
ing, cognitive dysfunction and frailty. Chronic renal injury induces cellular senescence, 
and cellular senescence can also accelerate the progression of renal fibrosis [113]. Recent 
findings have revealed that uremic toxins mediate cellular senescence in CKD. IS and 
PCS decreased Klotho expression by enhancing DNA methylation of the Klotho gene 
in RTECs, thus promoting renal fibrosis [114]. IS can also induce the downregulation 
of Klotho expression and the production of proinflammatory cytokines in macrophages 
by stimulating M1 polarization. Overexpression of Klotho alleviated kidney fibrosis by 
inactivating NF-kB signaling and promoting macrophage M2 polarization [115].

An increase in body uremic toxins triggers remote metabolite sensing to mediate tox-
ins and drug clearance. Membrane transporters are generally involved in metabolite 
sensing and are widely expressed in epithelial barriers. In proximal RTECs, elevated 
IS levels induced robust increases in the expression and transport activity of OAT1 by 
activating the AhR/ARNT and EGFR pathways, enhancing IS clearance. EGFR played 
a pivotal role in ARNT nuclear translocation, suggesting that crosstalk occurs between 
EGFR and AhR in IS sensing and signaling [40]. Additionally, IS increased the expression 
and activity of hepatocellular efflux transport protein P-glycoprotein (P-gp) during CKD 
by activating AhR, thus promoting the clearance of cyclosporine, a P-gp substrate, from 
the liver [43]. These results indicate that activated AhR promotes the detoxification pro-
cess by upregulating the expression of membrane transporters in response to the uremic 
toxin IS during CKD. Unfortunately, increasing the expression of transporters may alter 
the clearance of drugs and produce secondary effects.

Several studies have observed renal and hepatic changes in systemic AhR knockout 
rats. AhR knockout rats exhibited urologic pathological changes such as bilateral renal 
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and ureter dilation (hydronephrosis and hydroureter), as well as secondary medullary 
tubular and uroepithelial degenerative changes. However, AhR knockout mice exhibited 
impaired liver function, patent hepatic ductus venosus, and persistent hyaloid arteries in 
the eye [116]. These changes suggest that AhR plays significantly different roles in tissue 
development and body homeostasis in different species. Activated AhR is predominantly 
expressed in the proximal and distal tubules and periglomerular regions in animal mod-
els of CKD [86]. However, few studies have explored the role of uremic toxin-activated 
AhR in the renal tubular epithelium during CKD.

Uremic toxin‑activated AhR in DN

DN is defined as kidney damage due to diabetes and has become the predominant con-
tributing factor to CKD. DN occurs in approximately 40% of people with type 2 diabetes 
(T2D) and type 1 diabetes (T1D) [117]. DN mainly manifests as hyperfiltration, urinary 
protein, and progressive decline in renal function [118].

The accumulation of uremic toxins and activation of AhR in DN

Notably, compared with nondiabetic patients, the plasma of diabetic patients had lower 
Trp levels and significantly higher Trp metabolite levels such as 5-HTP, 5-hydroxyin-
doleacetic acid, KYNA, 3-HK, and XA [119]. Serum IS levels were fourfold higher in 
streptozotocin (STZ)-induced DN mice compared with controls [120].

AhR expression is increased in DN patients [91]. An increase in AhR activity is also 
observed in DN patients. Serum AhR activity was increased in the microalbuminuria, 
macroalbuminuria and ESRD patients compared with normoalbuminuria subjects, and 
the ESRD group showed higher AhR activity compared with the microalbuminuria and 
macroalbuminuria groups. Moreover, the serum AhR activity was negatively correlated 
with eGFR and positively correlated with serum creatinine levels. These findings sug-
gested that serum AhR activity is a significant independent risk factor for DN [121].

The function of uremic toxin‑activated AhR in DN

One study confirmed the role and mechanism of AhR activation in DN. STZ-induced 
diabetic mouse kidneys exhibited elevation in glomerular mesangial cell (MC) activa-
tion, macrophage infiltration, extracellular matrix protein deposition, cyclooxygenase 
(COX-2)/prostaglandin E2 production, lipid peroxidation, oxidative stress, NOX activ-
ity and N-ɛ-carboxymethyl lysine formation, which was attenuated by AhR knockout 
or AhR inhibitor α-NF. N-ɛ-carboxymethyl lysine triggered the transportation of AhR 
to the nucleus, where it bound to the promoters of Cox-2, fibronectin and collagen IV 
to produce extracellular matrix proteins in MCs and RTECs. These results suggest that 
activated AhR plays an important role in MC activation, macrophage infiltration, and 
extracellular matrix protein accumulation in DN [122]. In addition, treatment with 
Tangshen Formula, a traditional Chinese herbal medicine, for 12  weeks, significantly 
attenuated inflammation, renal histologic injury and urinary albumin excretion by inhib-
iting the upregulation of AhR expression in DN rats [120].
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Uremic toxin‑activated AhR in AKI

AKI is defined as the sudden loss of kidney function. Slow deterioration of kidney func-
tion or persistent kidney dysfunction in AKI is associated with irreversible loss of renal 
cells and nephrons, potentially leading to CKD [123]. The incidence of AKI is grow-
ing by 10% annually, and AKI affects up to 20% of hospitalized patients, with up to 
50% of intensive care unit-admitted patients [124]. The main features of AKI induced 
by ischemia reperfusion (IR), drugs, and sepsis are apoptosis, oxidative stress, inflam-
mation, mitochondrial dysfunction, and abnormalities within the renal vascular system 
[125, 126].

The accumulation of uremic toxins and activation of AhR in AKI

Clinical studies have shown that serum IS levels are significantly upregulated in AKI 
patients [127]. IR-induced AKI mice exhibited elevated plasma IS concentrations but no 
significant change in KYN. Renal AhR activity was increased in IR-induced AKI mice 
[86].

The function of uremic toxin‑activated AhR in AKI

Studies showed that renal AhR expression was decreased in IR mice, along with 
impaired renal function, increased secretion of inflammatory factors and increased 
apoptosis. Treatment with the AhR agonist FICZ attenuated renal inflammation, patho-
logical injury and apoptosis by inhibiting the NF-κB and JNK signaling pathways [128]. 
A similar study also revealed that IR-induced AKI mice treated with the AhR agonist 
leflunomide exhibited less apoptosis and necrosis and higher mitochondrial membrane 
potential than AKI mice. Leflunomide affected the infiltration of immune cells and stem 
cells in injured kidneys by increasing regulatory T cells, IL-10-positive cells and stem 
cell subsets (e.g., mesenchymal and hematopoietic stem cells and endothelial progenitor 
cells) and reducing IL-17- and IL-23-expressing cells [129]. In addition, activated AhR 
can relieve cisplatin-induced AKI. Elevated miR-125b transcription induced by Nrf2 
inhibited the translation of AhRR mRNA, which increased the transcriptional activity 
of AhR. Activated AhR promoted the expression of mouse double minute 2 (MDM2), 
leading to the inhibition of p53 activity. The decrease in p53 promoted tubular cell sur-
vival against cisplatin toxicity and protected the kidney from cisplatin-induced acute 
injury [130]. AhR knockout mice were more susceptible to malaria and developed high 
plasma heme levels and AKI during malaria, suggesting that AhR limits renal damage 
during malaria [131]. These studies indicate that AhR may represent a novel renoprotec-
tive mechanism for AKI. However, the role of AhR in AKI remains controversial. Several 
studies have shown the pro-injury effect of AhR in AKI. AhR expression was increased in 
RTECs after cisplatin treatment. Knockdown of AhR by siRNA inhibited the IS-induced 
increase in ROS levels in cisplatin-treated RTECs, indicating that the IS/AhR/ROS axis 
contributes to oxidative stress. ROS elevation may result in apoptosis and renal damage 
in cisplatin-induced AKI [132]. A similar study showed that AhR was increased in cispl-
atin-induced AKI mice kidneys and RTECs. AhR inhibition by BAY2416964 and tubu-
lar conditional deletion of AhR both alleviated cisplatin-induced kidney dysfunction 
and tubular injury by inhibiting cellular senescence. Mechanistically, AhR upregulated 
the expression of methyltransferase enhancer of zeste homolog 2 (EZH2), and EZH2 
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conversely enhanced AhR expression via weakening H3K27me3 transcriptional inhibi-
tion on the AhR promoter [133]. This finding suggests that increased AhR is implicated 
in cisplatin-associated cellular senescence, and inhibition of AhR is a promising thera-
peutic strategy against AKI. Interestingly, a study showed that AhR was activated under 
anoxia or reoxygenation in primary proximal RTECs. The AhR inhibitor CH223191 did 
not affect cellular senescence under anoxia or reoxygenation [134].

Role of AhR in other kidney‑related diseases

Renal damage is one of the typical clinical manifestations of SLE. A study showed that 
AhR was significantly increased in B cells of SLE patients with renal injury compared to 
SLE patients without renal injury, indicating that AhR may be a potential marker for pre-
dicting SLE with renal damage [135].

Obstructive sleep apnea (OSA) is a highly prevalent sleep-related breathing disorder. 
The main hallmark of OSA is chronic intermittent hypoxia (CIH), which contributes to 
systemic hypertension (HTN). The CIH-induced HTN rat kidney cortex and medulla 
showed higher expression and activation of AhR. In CIH-induced HTN rats, administra-
tion of AhR antagonist CH223191 (5 mg/kg/day, gavage, daily) for 14 days prevented the 
increase in systolic blood pressure by 53 ± 12% and diastolic blood pressure by 44 ± 16%. 
These findings suggest that renal AhR activation promotes the progression of HTN 
induced by CIH [136].

Therapeutic strategy
The accumulation of uremic toxins contributes to multiple organ injuries by activating 
AhR. Two principal therapeutic options are available to alleviate uremic toxin-induced 
injury: reducing the levels of uremic toxins and developing pharmacologic approaches to 
target AhR to mitigate their toxic effects [10] (Table 3).

Reducing uremic toxins

Reducing circulating uremic toxins is a viable strategy for preventing or alleviating kid-
ney diseases. Inhibiting the production and/or enhancing the clearance of uremic toxins 
are two rational and effective approaches [10].

Blood purification

Conventional HD is the main technique for reducing high concentrations of uremic 
toxins in the blood. HD transports solutes across a semipermeable membrane through 
diffusion and mainly applies to remove water-soluble small molecular-weight uremic 
toxins. Middle molecular-weight molecules and protein-bound uremic toxins are poorly 
removed [137]. Hemodiafiltration (HDF) transports solutes through diffusion and con-
vection and effectively removes small and middle molecular-weight uremic toxins. 
However, HDF leads to loss of potential albumin and nutrients during treatment and 
the consequent need for reinfusion [137]. Adsorption-based hemoperfusion can remove 
middle and large molecular-weight and protein-bound uremic toxins [137]. Absorbents 
for hemoperfusion are usually made of polymeric resins, activated carbon, carbon nano-
tubes and zeolites [138]. Graphene oxide is an exceptional material because of its out-
standing mechanical properties, modifiable surface functionalization and controllable 
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interlayer distance [138]. However, the direct use of graphene oxide as an adsorbent in 
hemoperfusion can contribute to hemolysis and decrease blood cell and platelet levels, 
which may harm patients [138]. In contrast, cellulose acetate (CA) is an adsorbent mate-
rial with good water and solute permeabilities and excellent hemocompatibility [138].

Improvements in the materials and production processes to increase the removal effect 
of uremic toxins may improve their applicability in extracorporeal purification systems. 
Abhishek Tyagi et al. developed a CA-functionalized graphene oxide composite mate-
rial for hemoperfusion, which cleared creatinine from 83.23 to 54.87  μmol/l and uric 
acid from 93.4 to 54.14 μmol/l, thus restoring to normal levels within 30 min [138]. The 
water-dispersal adsorbent poly-β-cyclodextrin added into the dialysate can remove 96% 
PCS in the plasma via adsorbent once-through mode [139]. Adding poly-β-cyclodextrin 
cross-linked with epichlorohydrin for two hours to the dialysate can result in a twice 
increase in the ability to remove IS [140]. Cationic metal–organic frameworks, utilizing 
tetrakis ethene as a ligand skeleton, pyridyl units as functional groups, and nickel/silver 
nitrate as metal nodes, could almost completely remove PCS within 3  hours through 
anion exchange with high adsorption capacities and good adsorption kinetics [141]. In 
the future, optimizing sorbent materials with technical characteristics to enhance dialy-
sis efficiency is a crucial research direction.

Gastrointestinal dialysis

Oral administration of cathartic compounds is a well-known method for promoting the 
excretion of uremic toxins and excess fluids [10]. The carbon adsorbent AST-120 has 
received the most attention due to its ability to absorb uremic toxin precursors in the 
intestinal tract and then excrete the precursors in feces, thereby reducing the absorp-
tion of uremic toxins into the blood [10]. The oral adsorbent AST-120 prevented renal 
accumulation of IS and PCS in adenine-induced CKD mice. However, AST-120 did 
not improve renal function and attenuate tubular injury and renal fibrosis in adenine-
induced CKD mice [142]. Administration of AST-120 significantly decreased serum IS 
levels in mice with 5/6 nephrectomy-induced CKD and arteriovenous fistula. AST-120 
attenuated neointima formation by inhibiting the expressions of matrix metalloprotein-
ase (MMP)-2, MMP-9, TNF-α, and TGFβ1 in neointima tissue [143]. The therapeutic 
efficacy of AST-120 in CKD patients is also controversial. A multicenter, randomized, 
controlled trial showed that AST-120 can slow the deterioration of renal function as evi-
denced by inhibition of the decrease in eGFR, but it did not significantly slow disease 
progression in patients with moderate to severe CKD during 1 year [144]. A systematic 
review and meta-analysis including eight studies also demonstrated that AST-120 can 
effectively reduce IS levels, but controversy remained regarding slowing CKD progres-
sion and all-cause mortality [145]. So the clinical use of AST-120 for the treatment of 
CKD needs to be carefully considered.

Nutritional therapy

Nutritional therapy has been recommended for the management of patients with CKD 
for more than a century [146]. A diet rich in animal proteins increases populations of 
proteolytic bacteria that ferment dietary protein and generate uremic toxins, such as 
PCS, IS and TMAO. A low protein diet exhibits favorable effects on CKD progression 
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due to the reduction of these substrates [147]. One study involving 29 healthy subjects 
and 20 wild-type friend leukemia virus mice revealed the influence of dietary protein 
intake on the mammalian metabolome. Human results showed that plasma and urinary 
IS levels were significantly lower, as were urinary indoxyl glucuronide, KYNA and QA, 
in the low protein diet group (target of 9% of total energy intake derived from protein 
intake) compared to the high protein diet group (target of > 25% of total energy intake 
derived from protein intake). The mouse results showed that the plasma p-cresyl glu-
curonide, phenyl sulfate and phenylacetic acid levels were decreased in the control diet 
(21% crude protein) compared to the high protein diet (45% crude protein). These results 
indicate that a low protein diet is a feasible approach for lowering uremic toxin levels in 
CKD patients [148]. A meta-analysis of 16 controlled trials of dietary protein restriction 
in CKD patients revealed that low protein intake (< 0.8 g/kg per day) or very low intake 
(< 0.4 g/kg per day) for 6–36 months preserved kidney function, slowed the progression 
to ESRD and reduced the rate of all-cause death compared to a high protein diet (> 0.8 g/
kg/day) [149]. However, a large Modification of Diet in Kidney Disease (MDRD) Study 
revealed that a very low protein diet (0.28 g/kg/day) did not delay CKD progression and 
even increased the risk of death between 6 and 12 years of follow-up [150].

Due to the uncertain efficacy and potential increased risk of protein malnutrition in 
protein restriction regimens, the use of a low (0.6–0.8 g/kg per day) or very low (0.3–
0.4 g/kg per day) protein diet is partly limited [146]. Some studies have focused on com-
pensating for missing essential amino acids by supplementing transamination-based 
ketoanalogues (KA) in a low or very low protein diet. In a randomized controlled trial, 
207 patients with CKD stage 4 + were allocated to a low protein diet (0.6 g/kg per day) 
or KA-supplemented vegetarian very low-protein diet (0.3 g/kg vegetable proteins and 
0.125 g/kg KA per day). Patients on a KA-supplemented vegetarian very low-protein diet 
had a lower risk of reaching the composite end point (> 50% eGFR reduction or dialysis 
initiation) than those on a conventional low protein diet after 18 months of follow-up. A 
KA-supplemented vegetarian very low-protein diet also improved calcium-phosphorus 
metabolism and increased serum bicarbonate levels, which alleviated uremic symptoms 
and deferred dialysis initiation [151].

Previous dietary trials often focused on restricting total protein intake. Actually, the 
types of protein intake are more important, which produces a vegetarian diet [147, 152]. 
Vegetable proteins may induce renal changes comparable to a low protein diet and pre-
vent the proteinuric and vasodilatory effects of meat [152]. A randomized study involv-
ing 113 healthy volunteers who were given red meat, white meat or non-meat protein 
(all meals prepared with 25% calories from protein) reported that chronic dietary red 
meat increased systemic TMAO levels by enhancing dietary precursors, increasing gut 
microbial TMA/TMAO production from carnitine, and reducing renal TMAO excre-
tion [153]. The study on the oral ingestion of deuterium-labeled L-carnitine showed 
that vegetarians/vegans had significantly lower TMAO levels than omnivores because 
vegetarians/vegans had decreased gut microbiota catabolism [29]. Fiber consump-
tion can slow CKD progression by improving the intestinal microbiota composition 
and reducing toxic metabolites [154]. A high-fiber diet also induced the production of 
beneficial metabolites, such as short-chain fatty acids (SCFAs) produced by butyrate-
producing bacteria. SCFAs not only provide energy for the intestinal flora and allow 
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the incorporation of amino acids from the colon into bacterial proteins and excretion 
instead of fermentation into uremic solutes, but also benefit the maintenance of intesti-
nal epithelial functionality and integrity [154]. A prospective monocentric study using a 
seven-day diet record in 58 HD patients reported that IS and PCS concentrations were 
negatively correlated with fiber intake and positively correlated with the protein/fiber 
index in anuric HD patients [155].

A low protein diet, KA-supplemented diet and vegetarian diet exhibit potential bene-
fits in reducing uremic toxin levels and slowing CKD progression. However, the benefits 
of these diets are often counteracted by poor patient compliance. Therefore, patient-tai-
lored diets that reduce uremic toxins should be established for the management of CKD 
[10].

Targeting microbiota

The microbial diversity and abundance of gut bacterial species are altered in patients 
with CKD or AKI [156]. For example, in kidney transplant recipients, the abundances of 
pathogenic bacteria, including Ruminococcacea and E. coli, were increased, whereas the 
abundances of protective bacteria, such as Alistipes senegalensis and Bacteroidales sp., 
were reduced. The metabolites of the microbiota were also significantly altered, such as a 
decrease in SCFAs in kidney transplant recipients [157]. Some therapies, such as dietary 
control as described above, and administration of probiotics, prebiotics or synbiotics, 
have been potential options to target the microbiome for ameliorating kidney injury and 
uremic toxins production [158].

A study showed that supplementation of Faecalibacterium prausnitzii to 5/6 nephrec-
tomy surgery-induced CKD mice reduced plasma PCS and TMAO levels but not IS lev-
els, and ameliorated renal dysfunction and inflammation [159]. Lactobacillus paracasei 
X11 has been shown to possess excellent uric acid-lowering activity and oral administra-
tion of Lactobacillus paracasei X11 reduced serum uric acid and renal inflammation in 
hyperuricemic mice [160]. However, supplementation of CKD patients undergoing HD 
with well-known Bifidobacteria, Lactobacilli and Streptococci failed to reduce uremic 
toxins [161].

Prebiotics, nondigestible foods stimulating the growth of beneficial bacteria in the 
colon, include fructo-oligosaccharides, galactose-oligosaccharides, xylose-oligosaccha-
rides, inulin, resistant starch, pectin, other fiber components, and milk oligosaccha-
rides [162]. A randomized trial enrolling 59 patients with CKD stage 3–5 revealed that 
β-glucan prebiotic intervention decreased plasma IS, PCS, and p-cresyl glucuronide lev-
els [163]. The study in individuals at high risk of CVD showed that β-glucan increased 
Bifidobacterium and Lactobacillus, increasing the production of SCFAs [164].

In practice, synbiotics are combinations of probiotics and prebiotics. Nondialysis 
adult participants with CKD stage 4 or 5 were recruited for a crossover trial of synbi-
otic therapy (combination of high molecular-weight inulin, fructo-oligosaccharides and 
galacto-oligosaccharides with nine different strains across the Lactobacillus, Bifidobacte-
rium, and Streptococcus genera) over 6 weeks. The results showed that synbiotic therapy 
reduced serum PCS but not IS and altered the intestinal microbiome [165].

Regarding the mechanism of probiotics, prebiotics or synbiotics, several meta-
analysis studies have shown that supplementation with probiotics, prebiotics, and 
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synbiotics in CKD patients could decrease inflammation, improve the oxidative 
imbalance between pro-oxidant factors and anti-oxidant enzymes, and ameliorate 
the lipid profile [166]. Synbiotics enhance the integrity of the intestinal epithelial 
barrier and the growth of protective bacteria, inhibit the growth of pathogenic bac-
teria, improve the host immune system and increase the production of the benefi-
cial metabolites SCFAs to suppress the production of uremic toxins [166, 167]. It 
should be noted that elevation of plasma uremic toxin levels is primarily attributed 
to decreased excretion due to a decline in kidney function rather than an increase 
in generation because culture of fecal samples from CKD patients showed no dif-
ference in PCS, indole and IAA production [168]. These results prompt a serious 
reconsideration of microbial manipulation as a therapeutic strategy to reduce the 
burden of uremic toxins.

Developing natural AhR agonists and antagonists

Natural products are abundant and crucial sources for drug discovery. Numerous 
studies have revealed and considered natural AhR agonists and antagonists as alter-
native therapies for improving CKD and inhibiting renal fibrosis [91]. The level of 
1-aminopyrene, a polycyclic aromatic hydrocarbon metabolite, was increased in 
the remnant kidneys of 5/6 nephrectomized rats. Treatment of RTECs with 1-ami-
nopyrene activated the AhR, suggesting that 1-aminopyrene is an agonist of AhR 
[91]. Three flavonoids 5’,7’,3’,4’,5’-pentahydroxy flavanone, barleriside A and rhoifolin 
screened and identified from Semen Plantagini showed strong interactions with rat 
AhR and strong antagonistic effects on AhR activity, suggesting that they are potent 
AhR antagonists. Three flavonoids alleviated 1-aminopyrene-induced upregulation 
of profibrotic protein expression in RTECs. Dietary 5’,7’,3’,4’,5’‐pentahydroxy fla-
vanone and barleriside A alleviated the decline in renal function and renal fibrosis 
in 5/6 nephrectomized rats by inhibiting AhR activation [91]. Vitamin B12 and folic 
acid (FA) were reported as natural antagonists of AhR. Vitamin B12 or FA deficiency 
in mice induced an increase in AhR transcriptional activity in the liver and accumu-
lation of erythroid progenitors in bone marrow in an AhR-dependent manner. Treat-
ment with vitamin B12 or FA rescued mice from TCDD- or FICZ-induced anemia 
and thrombocytopenia [169]. Baicalein, an important flavonoid compound isolated 
from the roots of Scutellaria baicalensis Georgi [170], was able to bind to AhR as 
predicted by molecular docking models, and induced AhR activation, indicating that 
baicalein is an AhR agonist [171]. Administration of baicalein (200  mg/kg) signifi-
cantly decreased serum uric acid and urea nitrogen levels to attenuate hyperurice-
mia and renal injury [170]. The renoprotective effect of baicalein was also observed 
in mice with aristolochic acid nephropathy through AhR-dependent CYP1A1/2 
induction in the liver [172].

Considering the double-edged sword effects of AhR in kidney diseases, the selec-
tion of AhR agonists or antagonists should be cautious and confirmed in experimen-
tal and clinical studies. However, AhR is still an intriguing and valuable therapeutic 
target for kidney diseases because of its important effect on renal injury and associ-
ated complications and response to uremic toxins.
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Conclusions
As the receptor for multiple uremic toxins, AhR is elevated and activated following 
the accumulation of uremic toxins in the body. Accumulation of uremic toxins affects 
all organs and tissues, so revealing the roles of AhR activation is attracting more and 
more research attention. This review systematically generalizes and summarizes various 
functions and signaling pathways of uremic toxin-activated AhR in current nephropa-
thy studies. Uremic toxin-activated AhR exerts detrimental biological effects on the 
development of CKD, CKD-associated cognitive impairment, anxiety, obstructive sleep 
apnea, ischemic myopathy and CVD, and DN. Uremic toxin-activated AhR increases 
drug and toxins clearance in CKD. In contrast, uremic toxin-activated AhR in AKI are 
controversial because of both protective and detrimental effects (Fig. 6). Therefore, the 
strategies of renal protection targeting AhR and related mechanisms, such as reducing 
uremic toxins or modulating AhR activation, are on the way to investigations. Uremic 
toxins are influenced not only by renal excretion but also by dietary intake processed in 
the intestinal microbiota and biotransformed in the liver, all of which can vary between 
individuals and may be considered targets for intervention. Although targeting uremic 
toxins and the AhR pathway are promising approaches, further elucidation of AhR regu-
lation and investigations into the effects of specific agonists/antagonists are required to 
develop optimal therapies for human kidney disease treatment.

Fig. 6  The impact of uremic toxin-activated AhR on kidney diseases and complications. Activation of AhR by 
uremic toxins has been implicated in various organs attributed to renal damage. In the brain, AhR activation 
promotes blood–brain barrier disruption, cognitive impairment, anxiety and neuron–astrocyte interaction 
dysfunction. AhR activation promotes the progression of systemic hypertension in obstructive sleep apnea. 
In drug metabolism, AhR activation facilitates drug clearance in the liver. Similarly, AhR activation in skeletal 
muscle exacerbates ischemic myopathy. The cardiovascular system is also impacted, with AhR activation 
in vessels contributing to thrombosis, peripheral artery disease, vascular inflammation and systemic 
hypertension. In the kidney, AhR activation promotes toxin clearance, chronic kidney disease and diabetic 
nephropathy and mediates acute kidney injury. AhR may be a potential marker for predicting systemic lupus 
erythematosus with renal damage. This figure was created with BioRendercom
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