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Introduction
Macrophages and their phagocytosis activity were first discovered by Elie Metchnikoff 
and Paul Ehrlich in 1908 [1–3]. The mononuclear phagocyte system (MPS) is a pro-
fessional phagocyte that comprises dendritic cells (DCs), blood monocytes, and tissue 
macrophages [4]. Macrophages are mononuclear cells that are the most plenteous and 
widespread immune cells and are involved in phagocytosis, homeostasis, and remod-
eling after injury and are necessary during organ development [5–7]. Macrophages can 
originate from local tissue-resident macrophages with a self-renewed ability or blood 
monocytes. Bone marrow progenitor-derived monocytes migrate to tissue by receiving 
stimuli signals and then become macrophages [4, 8]. Macrophages have plastic charac-
teristics. These characteristics enable them to switch their phenotypes and functions in 
connection with various microenvironmental signals [9].

Macrophages have been observed in many tissues. They are categorized on the basis 
of their location and function, for instance, microglial cells in the central nervous sys-
tem (CNS) with the ability to clear defective neurons; alveolar macrophages in the lung, 
which are needed for lung homeostasis; osteoclasts in bone with bone remodeling activ-
ity [10–12]; and Kupffer cells, which are the most lavish macrophages present in liver 
[13–15]. Macrophages are innate immune cells that can affect a variety of processes, 

Abstract 

Macrophages are influential members of the innate immune system that can be revers-
ibly polarized by different microenvironment signals. Cell polarization leads to a wide 
range of features, involving the migration, development, and organization of the cells. 
There is mounting evidence that macrophage polarization plays a key role in the initia-
tion and development of a wide range of diseases. This study aims to give an overview 
of macrophage polarization, their different subtypes, and the importance of alterna-
tively activated M2 macrophage and classically activated M1 macrophage in immune 
responses and pathological conditions. This review provides insight on the role of 
exosomes in M1/M2-like macrophage polarization and their potential as a promising 
therapeutic candidate.

Keywords:  Exosomes, Inflammation, Macrophages, Macrophage polarization

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

REVIEW LETTER

Gharavi et al. 
Cellular & Molecular Biology Letters           (2022) 27:83  
https://doi.org/10.1186/s11658-022-00384-y

Cellular & Molecular
Biology Letters

†Abdulwahab Teflischi Gharavi 
and Niloofar Asadi Hanjani 
contributed equally to this work.

*Correspondence:   
mdoroudi@tcd.ie

1 Department of Cell 
and Molecular Sciences, Faculty 
of Biological Sciences, Kharazmi 
University, Tehran 14911‑15719, 
Iran
2 Wadsworth Center, New York 
State Department of Health, 
Albany, New Year, USA

http://orcid.org/0000-0002-2933-9898
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s11658-022-00384-y&domain=pdf


Page 2 of 18Gharavi et al. Cellular & Molecular Biology Letters           (2022) 27:83 

including tissue repair, angiogenesis, and immunomodulation [16, 17]. Macrophages 
gain different phenotypes and functions under normal condition or during disease. Mac-
rophages’ ability to change their functions in response to different signals is known as 
polarization, which is a multifactorial process [18]. This is a key mediator of different 
diseases, including autoimmune diseases [19], glycolipid metabolic disorders [20], neu-
rology disorders [21], cardiovascular diseases [3], and cancers [22]. Different polarized 
macrophages, M1 (classically activated macrophages) and M2 (alternatively activated 
macrophages), express diverse cell surface markers and factors (Table 1) [23].

The polarization of macrophages is a dynamic process, so it can be reversed by dif-
ferent microenvironment conditions in different biological conditions and diseases. 
Macrophages can polarize with more than two forms [24]. M2 macrophage, also called 
activated or healing macrophage, was first described in the 1990s [25]. Subsets of M2 
macrophages include M2a, M2b, M2c, and M2d, with different properties such as cell 
markers, cytokines, and functions, i.e., M2a enhances cell growth and tissue repair 
while M2b, M2c, and M2d play crucial roles in inflammation, phagocytosis, and tumor 
progression, respectively [16, 26]. M2d macrophages are the main element of tumor 
microenvironment and are generally called tumor-associated macrophage (TAM). They 
could promote cancer-related processes such as progression and invasion of cancerous 

Table 1  Macrophage subtypes and their characteristic markers and stimuli

CCL, C–C chemokine ligand; CXCL, C–X–C chemokine ligand; CXCR, C–X–C chemokine receptor; DCIR, dendritic cell 
immunoreceptor; IFN, interferon; IFNγ, interferon-γ; IL, interleukin; IL-1R, IL-1 receptor; IL-27Rα, IL-27 receptor α-chain; iNOS, 
inducible nitric-oxide synthase; RELMα, resistin-like molecule-α; SPHK1, sphingosine kinase 1; TLR, Toll-like receptor; CD, 
cluster of differentiation; TGF-β, transforming growth factor-β; STATs, signal transducer and activator of transcription; PPAR-γ, 
peroxisome proliferator-activated receptor gamma; TNF-α, tumor necrotic factor-α; YM1, chitinase-like protein 3; LPS, 
lipopolysaccharides; VEGF, vascular endothelial growth factor; ICAM, intercellular adhesion molecule; DC-SIGN, dendritic 
cell-specific ICAM-grabbing non integrin; IRF5, interferon regulatory factor 5; HDAC3, histone deacetylase 3; MerTK, myeloid 
epithelial reproductive tyrosine kinase; M-CSF, macrophage-colony-stimulating factor; DNMT, DNA methyl transferase; 
miRs, microRNAs; NF-κB, nuclear factor-κB; MHCII, major histocompatibility complex II; IGF, insulin-like growth factor; Ly6C, 
lymphocyte antigen 6 complex; TREM-2, triggering receptor expressed on myeloid cells 2

Macrophage 
types

Suggested roles Markers Different stimulator 
factors

References

M1 Pro-inflammation, micro-
bicidal effect, tumor 
resistance

IL-6, IL-10 (low), IL-12 
(high), iNOS, CD80, CD86, 
CXCL9, CXCL10, CXCL11, 
CCL15, CCL20, CCL22, 
TLR2, TLR4, MHCII, TNF-α

IL-1, IL-6, IL-12, CXCL1-3, 
CXCL-5, CXCL8-10, CCL2, 
Type I IFN, IFN-γ, TNF-α, 
STAT1, iNOS, LPS, M-CSF, 
NF-κB, IRF5 miR-155, miR-
125b, DNMT1, DNMT3b, 
HDAC3

[19, 28–31]

M2a Allergy, profibrotic, anti-
inflammatory, wound 
healing

IL-10, IL-1R, IL-27Rα, CCL1, 
CCL17, CCL18, CCL22, 
CD11b, CD45, CD206, 
YM1, RELMα, IGF1, DCIR, 
Stabilin 1, Factor XIII-A, 
Ly6C, TREM-2, DC-SIGN

IL-4, IL-10, IL-13, (PPAR-γ) [19, 28, 32–35]

M2b Th2 activation, immune 
regulation, promoting 
infection, tumor progres-
sion

IL-6, TNF-α, CD86, SPHK1 IL-1β, LPS [28, 31, 36]

M2c Immunosuppression, 
phagocytosis, tissue 
repair, matrix remodeling

IL-10, CXCL13, CD163, 
CD206, CXCR4, TGF-β, 
MerTK,

IL-10, glucocorticoids
IL-6, IL-10, TNF-α, TLR,

[28, 36, 37]

M2d Tumor progression, 
angiogenesis, clearance 
of apoptotic tissue

IL-10, VEGF, TGF-β, LPS [28, 36, 38]
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cells (Fig. 1) [27, 28]. There is a dynamic balance between different types of macrophages 
that could cause a variety of diseases when it is disturbed. The number of tissue-resident 
macrophages is regulated by colony-stimulating factor-1 (CSF-1) or macrophage-col-
ony-stimulating factor (M-CSF), interleukin-34 (IL-34), and colony-stimulating factor-1 
receptor (CSF-1R) [4]. M1 macrophages are the first agents of protection in blocking 
the intracellular pathogens, and their activation can promote T-helper lymphocytes type 
1 (Th1) polarization. M1 macrophages release great amounts of some cytokines that 
have pro-inflammatory roles, including tumor necrotic factor-α (TNF-α), monocyte 
chemo attractant protein-1 (MCP-1), IL-6, IL-1, IL-12, type 1 interferons (IFNs), induc-
ible nitric oxide synthase (iNOS), and C–X–C motif chemokine ligands (CXCLs) such as 
CXCL1-3, CXCL5, and CXCL8-10.

M2 macrophages are involved in infections caused by fungal, parasitic, or helminthic 
pathogens and conversely express high level of dectin-1, DC-SIGN (CD209), mannose 
receptor (CD206), CD163, scavenger receptor A and B-1, C–C chemokine receptor 2 
(CCR2), C–X–C motif chemokine receptor 1 (CXCR1), and CXCR2. M2 macrophages 
produce materials that play a role in tissue remodeling and repair, such as IL-10, chi-
tinase-like protein 3 (YM1), macrophage and granulocyte inducer-form 1 (MgI1), and 
arginase-1 [4, 16]. Arginine metabolism pathways play a central role in macrophage 

Fig. 1  Macrophage polarization phenotypes and subtypes according to their different characteristics 
have many roles in immune responses. M1 macrophages have a pro-inflammatory role by their cytokines, 
but M2 macrophages, which are divided into four subtypes, have many different roles. For example, 
M2a macrophages play an important role in parasite killing, M2b macrophages function as immune 
system regulators, M2c macrophages assist in the wound healing process, and M2d macrophages have 
a pro-angiogenic role and are very important in tumor progression. CCL, C–C chemokine ligand; CXCL, 
C–X–C chemokine ligand; CXCR, C–X–C chemokine receptor; DCIR, dendritic cell immunoreceptor; IFN, 
interferon; IFNγ, interferon-γ; IL, interleukin; RELMα, resistin-like molecule-α; SPHK1, sphingosine kinase 1; 
TLR, Toll-like receptor; CD, cluster of differentiation; TGF-β, transforming growth factor-β; PPAR-γ, peroxisome 
proliferator-activated receptor gamma; TNF-α, tumor necrotic factor-α; YM1, chitinase-like protein 3; LPS, 
lipopolysaccharides; VEGF, vascular endothelial growth factor; MerTK, myeloid epithelial reproductive tyrosine 
kinase; DNMT, DNA methyl transferase; miRs, microRNAs; MHCII, major histocompatibility complex II; IGF, 
insulin-like growth factor
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polarization (Fig. 2) [29, 30]. Macrophage polarization is governed by the surrounding 
microenvironment, including cytokines and other components such as oligosaccharides, 
or by exosomes [22, 31]. On the other hand, epigenetic mechanisms such as chroma-
tin remodeling, DNA methylation (DNAm), and histone modifications can control this 
process in connection with different factors. It was demonstrated that different levels 
of DNA methyl transferase 1 (DNMT 1), 3a and b, are expressed in M1 and M2 mac-
rophages [4].

The importance of macrophage polarization balance
Macrophage activation is necessary for the appropriate response against pathogen 
spreading in infected tissue. The process begins with pathogen-associated molecules 
releasing active danger signals that induce most tissue-resident macrophages to M1 
polarization with nitrogen/oxygen-reactive agents and pro-inflammatory cytokine pro-
duction ability. The next step is clearing cellular debris, then wound-healing signals 
commence M2 polarization with anti-inflammatory activity [26, 32–34]. Data vali-
date the association between various diseases and the balance of M1/M2 macrophage 
polarization [35]. M1/M2 ratio and the regulation of macrophage polarization are very 

Fig. 2  Mammalian arginine metabolism pathways and M1 and M2 macrophage polarization. Arginine 
metabolism can be derived via NOS or arginase. NOS, which is expressed in M1 macrophages, causes arginine 
metabolism to release NO and citrulline, and M2 macrophages synthesize arginase, which causes arginine 
metabolism to release ornithine and urea. Downstream pathways of ornithine include putrescine, spermidine, 
and spermine, which hydrolyze products of ODC, SRM, and spermine synthase, respectively. Spermine can 
be resynthesized to spermidine by SMOX. As shown in the figure, putrescine and spermine downregulate 
the polarization of the M1 macrophages. Spermidine upregulates M1 macrophage polarization. In the case 
of M2 macrophage polarization, spermidine and spermine have inhibitor and enhancer effects, respectively. 
M1 macrophages increase NOS, but M2 macrophages upregulate arginase and ODC. Both arginine metabolic 
pathways arrest each other. Enzymes are shown by blue boxes and metabolites by yellow boxes, respectively. 
NOS, nitric oxide synthase; NO, nitric oxide; ODC, ornithine decarboxylase; SRM, spermidine synthase; SMOX, 
spermine oxidase
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important. This ratio can signal progression of many inflammation-related diseases, for 
example, in psoriasis, which is a chronic inflammatory skin disorder. M1 macrophage 
markers are more abundant than M2 macrophage markers in psoriatic tissues [36]. 
Some pathogens and even tumors are able to reduce the M1/M2 ratio to avoid inflam-
mation response [37–39]. For instance, some Lactobacillus are able to inhibit the forma-
tion of foam cells, which are a type of macrophage with lipoprotein ingestion activity 
[40]. Macrophage polarization is linked with some clinical conditions, including diabetes 
and obesity [3, 41], rheumatoid arthritis (RA) [42–44], chronic obstructive pulmonary 
disease [45], atherosclerosis [46, 47], non-alcoholic fatty liver disease (NAFLD) [48], 
osteoclastogenesis [49, 50], asthma [51], hypertension, and cardiovascular disease [52].

Balanced M1/M2 ratios are necessary for appropriate inflammatory response [16, 
53]. Different stimuli factors or pathways involved in macrophage polarization can be 
promising candidates for therapeutic targets (Table 2) [4, 8, 54]. For instance, thiazoli-
dinediones (TZDs), which target a member of the M2-like macrophage pathway, peroxi-
some proliferator-activated receptor gamma (PPAR-γ), are used for patients with type 
2 diabetes (T2D) [55]. In a clinical study, it was observed that reducing the ratio of M1/
M2 macrophages by blocking T-cell death-associated gene 8 (TDAG8), which has pro-
inflammatory role, can attenuate RA progression (NSC745885) [56].

Macrophages possess phagocytosis activity, which makes them able to capture 
nanoscale particles, and thus are appropriate candidates for targeting macrophages [57–
61]. In a study, a bioactive nanodevice was designed to convert the M1 phenotype to the 
M2 phenotype. A nanodevice is a peptide-coated gold nanoparticle (GNP) that promotes 
inflammation resolution. It also can be used as a novel therapeutic agent for patients 
with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) [62]. It has 
been shown that nanoparticles, including designed miRNAs or siRNAs, switch mac-
rophage polarization in some disease conditions [63, 64]. Clinical and experimental data 

Table 2  Immunomodulatory drugs that target macrophage polarization

immunomodulatory drugs Functions References

Thapsigargin Promote M2 polarization [95]

Glucocorticoids Trigger M2
polarization

[96]

Azithromycin Promotes polarization from M1 to M2 [97]

5-Aminosalicylates (5-ASAs) Inhibitory role in macrophage activation and inflammation 
suppressor

[98]

[6-(1-Methyl-4-nitroimidazol-5-yl)
thiopurine]

Repressed nitric oxide synthase (iNOS) expression [99]

Imiquimod Restore pro-inflammatory of TAMs [100]

PLX3397, PLX108-01
(pexidartinib)

Deplete macrophages [101–103]

Trabectedin Deplete macrophages [104]

CP-690,550
(tofacitinib)

Inhibit modulate gene expression in macrophages [105]

Hyaluronic acid
oligosaccharides

Modulate macrophage
polarity

[106]

Tocilizumab M1 macrophage
suppression

[107, 108]



Page 6 of 18Gharavi et al. Cellular & Molecular Biology Letters           (2022) 27:83 

have shown that M2 macrophages, which are TAMs, improve the growth, migration, 
invasion, and immunosuppressive activities of tumor cells [65–67]. Various therapeu-
tic strategies targeting TAMs, depletion of the M2 macrophage ratio, or converting M2 
macrophages to M1 macrophages are highlighted as potential strategies for suppressing 
tumor progression [65, 68–70]. TAMs can be used as novel targets in cancer therapy. 
For instance, a saponin component isolated from Astragali  radix,  called astragaloside 
IV (AS-IV), is reported to reduce tumor growth and metastasis by arresting the polari-
zation of M2 macrophages through the adenosine monophosphate-activated protein 
kinase (AMPK) signaling pathway [65, 71].

Another study has demonstrated that M1 macrophage induction can increase cellu-
lar apoptosis and decrease tumor metastasis and chemotherapy resistance in mice with 
hepatocellular carcinoma (HCC) [72]. Macrophage targeting strategies in combination 
with chemotherapies exhibit more antitumor activity [73]. Among the autoimmune 
diseases caused by imbalanced M1/M2 ratio are systemic lupus erythematosus (SLE) 
[74], inflammatory bowel diseases (IBD) [75], autoimmune myocarditis [76], and auto-
immune neuritis [77, 78]. Chronic inflammation is associated with age-related diseases 
such as cardiovascular disease, diabetes, and Alzheimer’s disease [5]. Much research has 
revealed that macrophages participate in the process of pregnancy [79] and could have 
important effects on preeclampsia, miscarriage, and preterm birth [32]. Different pheno-
types and functions of macrophages are essential for each phase of pregnancy to estab-
lish and maintain pregnancy. Decidual macrophages participate in implantation, spiral 
artery remodeling, and angiogenesis of embryo, and they also protect the embryo from 
pathogens and maternal immune responses [80].

According to various studies, different polarized states of macrophages have been 
associated with diseases, including cystic fibrosis (CF) and asthma; high level of 
M2-polarized macrophages is correlated with higher-severity asthma [81]. Accumulat-
ing data have shown indispensable roles for M2b macrophages in cardiovascular diseases 
[82]. In addition to M1 and M2 macrophages, a “chimeric” M1–M2 type with mixed 
biological function and phenotype that can cause impaired inflammation conditions 
is described in some cases such as rheumatoid arthritis [83]. In fact, recent evidence 
shows a continuum of different macrophages with different markers and phenotypes 
that strongly depend on their microenvironment. Therefore, they can be considered as 
a spectrum [84–86], although simplified macrophage classification (M1/M2) is used for 
better understanding. M1 and M2 macrophages can be reprogrammed by different stim-
uli signals. These reversible changes are essential during inflammation and its resolution 
phases [87, 88]. Of note, the tumor microenvironment (TME) has a vital effect on cancer 
progression [89, 90]. Macrophages are able to alter their features according to the TME. 
Therefore, macrophage polarization can be considered as a therapeutic strategy for can-
cer treatment [66].

Inflammation and the role of macrophage polarization in this process
Inflammation is a physiological condition that occurs in response to various situations, 
such as injury and infection. Acute inflammation is the first mechanism in responding 
to these conditions [91]. Uncontrolled acute inflammation may lead to chronic inflam-
mation, which has been related to many diseases [92]. Sterile inflammation (SI) occurs 
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by nonmicrobial factors such as chemical, physical, or metabolic stimuli, while nonster-
ile inflammation occurs by infection [93, 94]. Regenerative inflammation takes place 
in cases of low-grade damage or in highly regenerative tissues, such as the liver, and 
this type of inflammation plays a critical role in regeneration and repair [95]. Fibrotic 
inflammation occurs as a response to extensive damage or in poorly regenerative tissues, 
such as the myocardium. Macrophages play a crucial role in fibrotic inflammation [96]. 
Inflammation can lead to different immune responses via releasing molecular mediators. 
These mediators have roles in the direction of vascular responses, immune cell recruit-
ment, macrophage polarization, pathogen clearance, repair of damaged tissue, and res-
toration of homeostasis. The balance of signal transducer and activator of transcription 
(STATs) activation has a very important role in macrophage polarization. The activation 
of STAT1 can lead to M1 macrophage polarization. This is important in the process of 
cytotoxicity and pro-inflammatory functions. On the contrary, some cytokines such as 
IL-4/IL-13 and IL-10 and activation of STAT3 and STAT6 can increase M2 polarization. 
Some other factors such as DNA methylation, chromatin remodeling, histone modifica-
tion, and meta-inflammation, caused by chronic overnutrition and obesity, are involved 
in macrophage polarization. There are many clinical trials on macrophage polarization 
and inflammation (Table  3) [16, 97, 98]. Cardiac macrophages (CMs) are tissue-resi-
dent macrophages that are critical agents in the generation and development of cardiac 
inflammation, tissue remodeling, and repair. CMs are activated by the recognition of 
DAMPs or PAMPs. via cytokines released from inflammatory cells in the myocardium. 
An example of this is a promotion of M2 phenotype in dead cell clearance processes and 
an increase in the level of IL-10 and transforming growth factor-β (TGF-β), but pro-
inflammatory cytokines such as TNF-α promote the M1 phenotype [99]. Unregulated 
immune responses mediated by macrophages may lead to chronic kidney disease (CKD). 
The balance of macrophage polarization between M1 phenotype and M2 phenotype is 
important in tissue injury.

M1 macrophages play a key role in CKD. These macrophages increase plasma 
pro-inflammatory biomarkers such as TNF-α in patients, which may lead to chronic 
renal insufficiency. Furthermore, M2 macrophages are involved in chronic renal 
inflammation, especially in the repair phase, where M1 macrophages switch to M2 
macrophages and secrete anti-inflammatory cytokines such as IL-10, IL-22, and 
TGF-β. M2 macrophages are involved more in the progression of fibrosis than M1 
macrophages because they secret profibrotic factors such as TGF-β [100]. Adipo-
cytes can play an important role in the management of macrophage polarization in 
adipose tissue. In healthy conditions, adipocytes promote M2-like polarization, but 
in obesity, adipocytes may favor the prevalence of M1-like macrophage polariza-
tion [101, 102]. Imbalance of inflammatory responses can cause many inflammatory 
insufficiencies, like what happens in IBD. In this case, lamina propria macrophages 
from patients with IBD have M1 phenotype rather than M2 phenotype, and as 
mentioned previously, these macrophages can produce a large amount of pro-
inflammatory cytokines [103]. The polarization of macrophages is tied to glycolytic 
changes and oxidative phosphorylation (OXPHOS) metabolism. Indeed, M1 mac-
rophages rely on glycolytic changes but M2 macrophages rely on fatty-acid-fueled 
OXPHOS. Many risk factors change macrophage polarization, including obesity 



Page 8 of 18Gharavi et al. Cellular & Molecular Biology Letters           (2022) 27:83 

and hypertension. These factors can lead to chronic and systemic inflammation 
by M1 macrophage activation. Obesity and hypertension can change target-organ 
damage by hormones, local inflammatory signals, and hypoxia-induced signaling 
or alteration in glycolytic- OXPHOS paradigm in macrophages [104]. Macrophage 
polarization processes and their regulation are very important for sufficient immune 
responses, and any skew in these processes may lead to some inflammation disor-
ders [105].

Table 3  Clinical trials on macrophage polarization and inflammation

Status Study title Intervention ClinicalTrials.
gov identifier

Recruiting Treatment of macrophage activation 
syndrome (MAS) with anakinra

•Drug: kineret
•Drug: placebo

NCT02780583

Completed Effect of liraglutide (Victoza) on 
inflammation in human adipose tissue 
and blood

•Drug: Victoza (liraglutide) with dieti-
cian
monitoring
•Other: placebo with dietician moni-
toring

NCT02650206

Completed The effect of gut sterilization on mac-
rophage activation in patients with 
alcoholic hepatitis

•Drug: combined vancomycin and
gentamycin and meropenem

NCT03157388

Completed Macrophage activation markers 
during sofosbuvir-based treatment 
regimens of chronic hepatitis C

•Drug: galactose
•Procedure: gastroscopy
•Procedure: liver biopsy
•Procedure: FibroScan
•Procedure: liver vein catheterization
•Drug: sofosbuvir

NCT02528461

Unknown status New candidate criteria for diagnosis of 
macrophage activation syndrome

– NCT01095146

Completed Exploration of immunity in Gaucher 
disease 

– NCT01358188

Completed A study to investigate the safety and 
efficacy of emapalumab, an anti-
IFN-gamma mAb in patients with 
systemic juvenile idiopathic arthritis 
(sJIA) or adult-onset Still’s disease 
(AOSD) developing macrophage 
activation syndrome/secondary HLH 
(MAS/sHLH)

•Drug: emapalumab NCT03311854

Recruiting sCD163 in patients with PBC—
assessment of disease severity and 
prognosis

•Other: blood samples, FibroScan, and 
questionnaires

NCT02924701

Completed A role for RAGE/TXNIP/inflammasome 
axis in alveolar macrophage activa-
tion during ARDS (RIAMA): a proof-of 
concept clinical study

•Other: RAGE/TXNIP/inflammasome 
axis

NCT02545621

Recruiting sCD163 in patients with PBC—assess-
ment of treatment
response

•Other: blood samples
•Device: FibroScan
•Other: questionnaires
•Biological: liver biopsy

NCT02931513

Completed Downmodulating monocyte activa-
tion for HIV-1-associated neurocogni-
tive disorders (HAND)

•Drug: atorvastatin (Lipitor)
•Drug: placebo

NCT01600170

Completed A trial of validation and restoration of 
immune dysfunction in severe infec-
tions and sepsis

•Drug: anakinra
•Drug: recombinant human interferon 
gamma
•Drug: placebo

NCT03332225
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Exosomes involve in macrophage polarization
Exosomes are a subset of nanoscale (30–150  nm) extracellular vesicles (EVs) that 
are released from almost every eukaryotic cell. Exosomes carry and deliver biological 
material, including proteins, lipids, saccharides, and genetic signals such as messenger 
ribonucleic acid (mRNAs), microRNAs (miRs), long noncoding RNAs (lncRNAs), deox-
yribonucleic acid (DNAs), and circular RNAs (circRNAs). They have a very important 
role in cell communication. Exosomes have various effects on immune cell responses, 
stromal cells, and extracellular matrix (ECM), and can even alter them and their behav-
iors [106–108]. Exosomes derived from different cells play a key role in macrophage 
polarization processes. They are also able to change macrophage polarization. Recently, 
a research study demonstrated that M2-Exo causes a reprogramming of the M1 pheno-
type to the M2 phenotype (Fig. 3) [109]. Mesenchymal stromal cells (MSCs) have great 
potential to differentiate into many cell types. Numerous studies have demonstrated 
that exosomes secreted by MSCs have an important role in macrophage polarization 
[110, 111]. Exosomes present in serum have demonstrated involvement in IBD. A study 
reported that pregnancy zone protein (PZP) can be used as a biomarker in IBD [78].

Exosomes derived from MSCs of human bone marrow assist in the regulation of 
inflammatory responses. The systemic administration of these exosomes could substan-
tially mitigate colitis in various models of IBD [112]. MSC exosomes have an important 
role in neuroinflammatory conditions. These exosomes can regulate macrophage polari-
zation and change it toward an anti-inflammatory phenotype [113]. Also, MSC exosomes 
have a tumor-growth-suppressive effect by increasing inflammatory infiltration [111]. 
Pro-inflammatory bone-marrow-derived mesenchymal stem cells (BMMSCs) secrete 

Fig. 3  Exosomes are derived from different cells, including MSCs, tumor cells, or other cells that are present 
in the microenvironment such as macrophages. These exosomes can switch macrophage polarization 
according to their cargos. MSCs, mesenchymal stromal cells; lncRNA, long noncoding RNAs; miR, microRNAs; 
circRNA, circular RNA
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exosomes that potentially promote macrophage M2 polarization. BMMSCs exosomes 
can reduce macrophage M1 polarization by regulation of the protein kinase B1/protein 
kinase B2 (AKT1/AKT2) signaling pathway and relieve myocardial injury [114, 115]. 
Fibronectin type III domain-containing protein 5 (FNDC5) is a transmembrane protein 
located in the cytoplasm that can increase BMMSC exosome secretion. This mechanism 
can promote M2 polarization by the nuclear factor-κB (NF-κB) signaling pathway [116, 
117]. A study reported that administration of BMMSC-derived exosomes can induce 
macrophage M2 polarization, improve the inflammatory microenvironment, and pro-
mote fibrocartilage regeneration, especially at the tendon–bone interface [118].

Exosomes of adipose-derived stem cells (ADSCs) have an important role in obesity-
associated inflammation and other metabolic disorders. They can induce anti-inflamma-
tion M2 macrophage polarization by carrying active STAT3 and inhibiting macrophage 
inflammatory responses [119]. ADSC exosomes have a critical role in myocardial repair 
after myocardial infection (MI). These exosomes can decrease lipopolysaccharides 
(LPS)-induced inflammation by activating sphingosine 1-phosphate (S1P), sphingosine 
kinase 1 (SphK1 or SK1), and sphingosine-1-phosphate receptor 1 (S1PR1) signaling, 
which leads to promotion of macrophage M2 polarization [120].

Exosomes derived from human umbilical cord mesenchymal stem cells (hUCM-
SCs) have involvement in regulation of macrophage polarization. They can inhibit M1 
polarization and promote M2 polarization. These exosomes can inhibit the expression 
of tumor necrosis factor receptor-associated factor 1 (TRAF1), which has been shown 
to be involved in the macrophage M1 polarization mechanism and ameliorate steroid-
resistant asthma (SSRA), an important clinical problem in asthma management [121]. 
Exosomes carry genetic signals such as miRs, which play a critical role in macrophage 
polarization. For example, mammary epithelial cells (MECs) can regulate immune sys-
tem responses, secreting exosomes carrying exosomal miR-122. This miR can promote 
polarization of M1 macrophages by suppressing cytokine signaling 1 (SOCS1), STAT1, 
and STAT3 [122].

It has been demonstrated that exosomal miR-21-5p, originated from MSCs, can stim-
ulate the polarization of M2 macrophages. It can reduce the inflammatory response 
and promote heart cell repair after myocardial ischemia–reperfusion injury [123]. It is 
reported that exosomal miR-21-5p released from MSCs has an important role in mac-
rophage polarization. miR-21-5p induces M2 polarization by mediating phosphate and 
tensin homolog (PTEN) downregulation. This mechanism can support lung cancer cell 
growth and facilitate their invasion [110]. Upregulation of miR-374b-5p in exosomes, 
derived from hypoxic tubular epithelial cells (TECs), reduces SOCS1 expression and 
promotes M1 macrophage activation during renal ischemia–reperfusion injury (RIRI) 
conditions [124, 125]. Exosomes derived from polymorph nuclear neutrophils (PMNs) 
have an important role in sepsis-related ALI. These exosomes promote M1 macrophage 
activation by miR-30d-5p, which targets SOCS-1 and sirtuin 1 (SIRT1) in macrophages 
[126]. Atherosclerosis is an inflammatory disease that leads to clogging of blood vessels 
by the accumulation of lipids.

Exosomes, which originate from different cells, have a very important role in ath-
erosclerosis. For example, exosomal miR-155 can enlarge inflammatory cytokines 
and M1 polarization markers such as cluster of differentiation 80 (CD80) and CD86, 
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which are involved in the process of atherosclerosis through pro-inflammatory M1 
polarization [127]. Some exosomal miRs such as miR-100-5p, miR-512-3p, let-7 fam-
ily, and miR-21a-5p are derived from MSCs and have various properties. As these exo-
somal miRs can induce M2 macrophage polarization, they are capable of suppressing 
atherosclerosis [128, 129]. Bone-marrow-derived macrophages (BMDMs) can release 
exosomal miRs with anti-inflammatory properties, including miR-99a, miR-146b, and 
miR-378a, which are capable of promoting M2 polarization in BMDMs [127, 130]. 
Wu et  al. generated exosomes with anti-inflammatory functions in atherosclerosis. 
These exosomes are derived from M2 macrophages and contain hexyl 5-aminole-
vulinate hydrochloride (HAL), which is FDA-approved and has an anti-inflammatory 
effect. This makes HALM2 exosomes a promising candidate for atherosclerosis ther-
apy applying macrophage-derived exosomes [127, 131].

Exosomes can modulate immune responses in tumor cells. Tumor-derived 
exosomes (TEs) can change macrophage polarization, and could activate anti-
inflammatory pro-tumorigenic M2 macrophage phenotypes or pro-inflammatory 
anti-tumorigenic M1 macrophage phenotypes, change the M1/M2 ratio in the TME, 
and promote tumor growth [132]. Melanoma-derived exosomes can upregulate spe-
cific macrophage polarization factors and promote mixed M1 and M2 macrophage 
phenotypes (128) Lung tumor cell-derived exosomes can reprogram macrophage 
metabolism and promote M2 macrophage polarization [133]. Exosomal miR-222 
derived from adriamycin-resistant breast cancer cells can target phosphatases and 
PTEN gene, and activate the Akt pathway, so it can switch macrophage polarization 
to M2 phenotype and stimulate tumor growth [134, 135]. Exosomal miR-222 derived 
from adriamycin-resistant breast cancer cells can directly target phosphatase and 
the PTEN gene, activate the Akt pathway, convert macrophage polarization to M2 
phenotype, and stimulate tumor growth by M2 macrophage polarization [136]. It has 
been reported that exosomes derived from hypoxic tumor cells can elevate oxidative 
phosphorylation in macrophages that originate from bone marrow by let-7a exosomal 
miR, which suppresses insulin-Akt-mammalian target of rapamycin (mTOR) signal-
ing pathway and promotes M2-like macrophages [137].

Exosomal lncRNAs participate in macrophage polarization. For example, HCC-
derived exosomes contain different levels of exosomal lncRNA TUC339 that regulate 
macrophage polarization [138]. It has been identified that circRNA, which is carried 
by exosomes, has important regulatory roles in different pathophysiological pro-
cesses. For example, exosomal hsa-circ-0048117 has been upregulated in esophageal 
squamous cell carcinoma (ESCC). Upregulation of hsa-circ0048117 can promote M2 
macrophage polarization and regulate ESCC progression. Another exosomal circRNA 
is circFARSA, which is highly expressed in tumor cells and is capable of inducing the 
promotion of M2 phenotypes and facilitating metastasis in non-small cell lung can-
cer (NSCLC) cells [139]. M1 macrophage-derived exosomes can be used as paclitaxel 
(PTX) nanocarriers and enhance antitumor activity of PTX [140]. These can also be 
tumor biomarkers such as exosomal miR-16, which are received by macrophages. 
These act as metastasis biomarkers in breast cancer [141], showing that exosomes can 
be employed for the treatment of cancer [59].
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Conclusion
Recently, it was confirmed that inflammation is a sign of chronic disease such as cancers, 
diabetes, cardiovascular, and neurologic system disorders. This review points out that 
the plasticity features of macrophages give them a critical role in inflammatory condi-
tions. Macrophage polarization can be switched from pro-inflammatory with anti-tum-
origenic macrophages (M1-like) phenotype to anti-inflammatory with pro-tumorigenic 
(M2-like) phenotype. In addition. The balance between different types of macrophages 
plays a key role in immune system dysfunctions. Exosomes as vehicles in cell communi-
cation have serious involvement in macrophage polarization. Cancerous cells can modu-
late immune cell responses by their secreted exosomes. There are many immune-based 
strategies that have been established for cancer therapy such as cancer vaccines. Various 
agents have been used for delivering of medicines.

Exosomes can change macrophage polarization and promote or prevent different sub-
types of macrophage population via their cargos, such as miRs, cricRNAs, and lncRNAs. 
Numerous studies have reported that these nano-sized vesicles could be engineered for 
medical aims and developed as delivery systems for immune system modulation. How-
ever, there are several unsolved problems in the clinical application of exosomes as bio-
logically derived nanovesicles. Examples of this are selecting the appropriate exosome 
isolation method, ensuring purity of exosomes, and identifying an efficient method for 
exosome modification. In conclusion, further studies on macrophage polarization mech-
anisms and its related pathways are needed to elucidate exosomes’ roles in these path-
ways and their therapeutic potential in the development of immunotherapies for various 
medical aims.
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