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Abstract

Apoptotic cells are rapidly engulfed and degraded by phagocytes through
efferocytosis. Efferocytosis is a highly regulated process. It is triggered upon the
activation of caspase-dependent apoptosis, which in turn promotes the expression of
“eat me” signals on the surface of dying cells and the release of soluble “find me”
signals for the recruitment of phagocytes. To date, many “eat me” signals have been
recognized, including phosphatidylserine (PS), intercellular adhesion molecule-3,
carbohydrates (e.g., amino sugars, mannose) and calreticulin. Among them, PS is the
most studied one. PS recognition receptors are different functionally active receptors
expressed by phagocytes. Various PS recognition receptors with different structure,
cell type expression, and ability to bind to PS have been recognized. Although PS
recognition receptors do not fall into a single classification or family of proteins due
to their structural differences, they all share the common ability to activate
downstream signaling pathways leading to the production of anti-inflammatory
mediators. In this review, available evidence regarding molecular mechanisms
underlying PS recognition receptor-regulated clearance of apoptotic cells is
discussed. In addition, some efferocytosis-independent biological functions of PS
recognition receptors are reviewed.
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Introduction
Efferocytosis is the clearance of apoptotic cells by either professional phagocytes, in-

cluding macrophages and dendritic cells (DCs), or non-professional phagocytes, that is

neighboring tissue cells (e.g., endothelial cells, epithelial cells, fibroblasts) acquiring a

phagocyte-like phenotype [1–3]. At the earliest steps of cell death, soluble “find-me”

signals attract phagocytes towards dying cells [4–7]. Subsequently, the exposure of

phosphatidylserine (PS) on the apoptotic cell surface has a crucial role in facilitating

specific recognition of dying cells by phagocytes [8] and triggering phagocytic cup for-

mation [9]. PS, a negatively charged phospholipid normally confined to the inner
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plasma membrane leaflet by flippases, is externalized on the apoptotic cell surface

by scramblases [6, 10–12]. Several molecules, including secreted soluble proteins

[e.g., growth arrest-specific gene 6 (Gas6), protein S (ProS), and milk-fat globule

epidermal growth factor 8 (MFG-E8)] and type I membrane proteins expressed on

the phagocyte surface (e.g., CD300) may recognize PS. Ligation between PS on the

apoptotic cell surface and PS recognition receptors is essential for phagocyte cup

formation and engulfment [13]. In fact, the inhibition of either PS or PS recogni-

tion receptors has been reported to be sufficient to block apoptotic cell removal by

phagocytes [14, 15]. Noteworthy, other molecules apart from PS have been recog-

nized as “eat me” signals on the apoptotic cell surface [e.g., intercellular adhesion

molecule-3 (ICAM-3), carbohydrates, and calreticulin] [16–20] (Fig. 1). However,

whether their ligation with specific phagocyte receptors may further augment en-

gulfment remains to be clarified [21]. In addition, a phospholipid other than PS

[i.e., phosphatidylethanolamine (PE)] is asymmetrically expressed on the surface of

apoptotic cells. However, its specific role in apoptosis has not been fully clarified.

In this review, we will discuss the role of PS recognition receptors in efferocytosis.

In addition, some efferocytosis-independent biological functions of PS recognition

receptors will be reviewed.

Fig. 1 Recognition of apoptotic cells by phagocytes. Numerous receptors on the phagocyte membrane
interact with “eat me” signals on the apoptotic cell surface either directly or indirectly through bridging
molecules. Apoptotic cells can attract phagocytes through the release of soluble molecules, namely “find
me” signals. Instead, healthy cells express “don’t eat me” molecules to avoid phagocytosis. BAI1, brain-
specific angiogenesis inhibitor-1; C1q, complement component 1q; FcR, Fc fragment of immunoglobulin G
receptor; Gas6, growth arrest-specific gene 6; ICAM-3, intracellular adhesion molecule-3; LOX-1, lectin-like
oxidized low-density lipoprotein receptor-1; LRP, LDL receptor-related protein; PS, phosphatidylserine;
MerTK, c-mer proto-oncogene tyrosine kinase; MFG-E8, milk-fat globule epidermal growth factor 8; PSR, PS
receptor; SRA, scavenger receptor class A; TIM-4, transmembrane immunoglobulin and mucin domain
protein 4; αVβ3, vitronectin receptor; β2GPI, beta 2-glycoprotein 2
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Exposure of PS: apoptotic and non-apoptotic role

Generally, exposure of PS on the membrane of apoptotic cells leads to cell removal by

phagocytes through efferocytosis. In physiological conditions, as efferocytosis occurs ef-

ficiently and swiftly, it is hard to find free apoptotic corpses throughout body tissues,

even when large numbers of cells undergo apoptosis. Such effective clearance of cells that

are no longer desired or are functionally abnormal is crucial for the maintenance of tissue

homeostasis and for the prevention of various diseases including cancer [22, 23], degen-

erative diseases of the central nervous system, atherosclerosis and autoimmune diseases

[24–28]. Therefore, efferocytosis mediators may represent potential therapeutic targets

for either the prevention or the treatment of these pathological conditions [29–31].

However, the binding between PS and the PS recognition receptor has a regulatory

role also in different efferocytosis-independent biological processes [e.g., platelet activa-

tion [32], osteoblast-mediated mineralization [33], cell fusion [34], viral infections [35]].

Reportedly, PS exposure has a crucial role in axonal fusion, that is, the process in which

a regrowing axon reconnects with its detached segment, leading to the structural and

functional restoration of the injured neuron [36]. PS externalization, by facilitating cell-

cell contact between myoblasts, seems to play a regulatory role in the early phases of

myotube formation, that is, the fusion of an individual myoblast into multinucleated

cells differentiating into myocytes [34]. PS is externalized by trophoblasts and mediates

intertrophoblastic fusion during placental development [37]. Non-apoptotic macro-

phages are known to externalize PS and recognition of PS-expressing macrophages by

CD36 triggers macrophage fusion, thereby mediating the formation of multinucleated

giant cells [38, 39].

Moreover, PS exposure has a crucial role in different infections. The presence of PS on

the surface of some enveloped and non-enveloped viruses (i.e., apoptotic mimicry) has

been reported to promote viral infectivity by facilitating viral entry in host cells expressing

PS recognition receptors and enhancing immune escape by infected cells [40–42]. In

addition, during infections by different pathogens [e.g., human immunodeficiency virus

(HIV), hepatitis C virus (HCV), Plasmodium, Leishmania or Mycobacterium leprae], anti-

phospholipid antibodies, including anti-PS, are detectable in the serum of a high percent-

age of patients [43, 44]. In the case of Plasmodium infection, the binding between anti-PS

antibodies and infected PS-exposing erythrocytes has been suggested to have a crucial role

in the removal of intracellular pathogens. Indeed, although infected PS-exposing erythro-

cytes express high levels of CD47, a “do-not-eat-me” signal [45], their interaction with

anti-PS antibodies mediates their phagocytosis and exerts a protective effect against Plas-

modium [44]. Furthermore, the binding of soluble PS released by tumor cells to the PS re-

ceptor (PSR) has been shown to result in the production of anti-inflammatory mediators

that block antitumor immune responses [e.g., tumor growth factor (TGF)-β, interleukin

(IL)-10 and prostaglandin E2 (PGE2)] [46].

Several members of the galectin family induce the exposure of PS on the surface of

inflammatory cells. However, Gal-1- and Gal-3-induced externalization of PS promote

differential responses in T cells and neutrophils. Gal-3, but not Gal-1, induces both PS

exposure and apoptosis in primary activated human T cells, whereas both Gal-1 and

Gal-3 induce PS exposure but not cell death in neutrophils. Noteworthy, although in

some conditions galectin-induced PS exposure does not occur in cells undergoing

apoptosis, it can induce cell paraparesis, that is, sensitization to phagocytic clearance
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[47]. Indeed, in some circumstances galectin-induced PS exposure is independent of

evident alterations in mitochondrial potential, caspase activation, membrane morph-

ology or cell death typically seen in apoptotic cells [47]. Also, it may be fully reverted

after galectin removal without determining any subsequent alteration in cell viability

[47]. Such phagocytic removal of living cells promoted by Gal-1 and Gal-3-induced PS

externalization represents a peculiar model of cellular turnover and regulation of vari-

ous cellular processes, including cellular trafficking and immunological synapse forma-

tion [48, 49].

PS recognition receptors

Biological functions of PS recognition by TAM family members/ProS/Gas6

Axl (also known as UFO),Tyro3 and Mer are members of a subfamily of receptor tyro-

sine kinases (RTKs) named TAM (from the first letters of Tyro3, Axl, and Mer) [50].

They were identified as PS recognition receptors by using anti-PS antibodies to screen

the human cDNA expression library from B lymphoblastoid λgt11 [51], and by poly-

merase chain reaction (PCR) amplification using degenerate oligonucleotides [52]. Axl,

Tyro3 and Mer bind to the carboxy terminal domains of their ligands (i.e., ProS and

Gas6) [53], which in turn bind to PS through their amino terminal domains [54–56],

thereby acting as ‘bridges’ between PS on apoptotic cells and TAM receptors on phago-

cytes [57]. Noteworthy, ProS has no affinity for Axl [58], while Gas6 binding to Axl oc-

curs with a higher affinity as compared to Gas binding to Mer and Tyro3 [59]. Upon

ligation with either ProS or Gas6, the dimerization of TAM receptors occurs, leading to

the phosphorylation of tyrosine residues in their cytoplasmic region [60] and to the ac-

tivation of different downstream signaling pathways.

TAM receptors may be variably expressed in different tissues and cell types. Tyro3 is

expressed in prostate, cerebral cortex and olfactory bulb. Axl is expressed in

lipopolysaccharide-treated macrophages, osteoblasts, uterus and ovary. Mer is

expressed in resident peritoneal macrophages, lung, small intestine and retinal pigment

epithelial cells [13].

Under physiological conditions, TAM receptors are involved in either efferocytosis-

dependent or efferocytosis-independent biological processes, including the regulation

of inflammatory cytokine release, cell proliferation/survival, cell adhesion and migra-

tion, platelet activation and thrombus formation [61, 62].

Several studies have recognized the oncogenic role of the abnormal expression of TAM

receptors in a wide variety of tumors [63, 64]. One the one hand, excessive TAM receptor

activation may promote tumor immune escape through the induction of an immunosup-

pressive response in the tumor microenvironment [65–67]. On the other hand, TAM re-

ceptor activation may stimulate tumor cell proliferation and survival by increasing the

production and release of TGF-β [68]. Therefore, therapeutic inhibition of TAM receptors

may represent a potential strategy to inhibit tumor progression [69, 70].

Moreover, TAM receptors have been reported to have a crucial role in the regulation

of immune response in different pathological conditions. Accordingly, the inhibition of

TAM receptor-activated intracellular signaling pathways has been suggested to have a

therapeutic role in the treatment of sepsis and post-transplantation organ rejection

[71]. By contrast, sustained TAM receptor inhibition has been associated with the
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pathogenesis of various autoimmune diseases, including systemic lupus erythematosus

and rheumatoid arthritis [66, 72–74].

Finally, a variable association has been described between TAM receptor activation

and atherosclerosis progression. Accordingly, defective Mer function has been reported

to induce the accumulation of apoptotic foam cells and the formation of necrotic cores

within atherosclerotic plaques [75–77], whereas Gas6 binding to TAM receptors has been

shown to promote atherogenesis by increasing endothelial activation, monocyte chemo-

taxis and vascular smooth muscle cell (VSMC) differentiation into foam cells [78, 79].

Biological functions of PS recognition by TIM family members

Members of the transmembrane immunoglobulin and mucin domain (TIM) family are

a group of proteins (i.e., TIM-1, TIM-2. TIM-3, TIM-4) which are variably expressed

on the inflammatory cell surface and have a crucial role in the regulation of immune

responses. The TIM family consists of three members in humans and four members in

mice [80]. Among them, TIM-1 and TIM-4 act as PS recognition receptors, whereas

TIM-2 and TIM-3 do not have noticeable PS-binding activity [81].

TIM-1, also known as kidney injury molecule-1 (KIM-1), is a type 1 membrane re-

ceptor [82]. It is a proximal tubular cell (PTC) surface protein which is expressed in a

wide range of kidney diseases. Upon PS recognition [83] it mediates the conversion of

tubular epithelial cells into non-professional phagocytes [84], thereby promoting effero-

cytosis of apoptotic cells and exerting a protective effect against acute kidney injury

[85–90]. However, KIM-1 binding to PS exerts nephroprotective action also through

efferocytosis-independent mechanisms, that is, the limitation of renal epithelial cell

damage through the inhibition of Gα12 [91] or the promotion of tubular epithelium re-

pair through activation of the extracellular signal-regulated kinase (ERK)/mitogen-acti-

vated protein (MAP) kinase (MAPK) signaling pathway [92].

Moreover, KIM-1 also plays an immunoregulatory role by controlling Th2, Th1, and

Th17 cell differentiation [93] and the activation of B cells, DCs, and natural killer (NK)

cells [94]. Specifically, KIM-1-mediated efferocytosis induces a pro-tolerogenic immune

response, leading to the inhibition of CD4 T-cell proliferation and to the activation of

regulatory T cells [95].

TIM-4 is expressed in a variety of resident macrophages, including peritoneal macro-

phages, hepatic Kupffer cells, skin CD169+ macrophages [59, 96] and CD4+ tangible

body macrophages at Peyer patches of the small intestine [97]. It binds to PS via the

IgG domain. TIM-4 itself is not able to mediate efferocytosis [98] and requires TAM

receptors [59]. Accordingly, macrophages expressing both TIM-4 and TAM receptors

(e.g., skin macrophages, resident peritoneal macrophages and Kupffer cells) [59] engulf

apoptotic cells in two steps, that is, tethering and tickling [99]. In the tethering step,

TIM-4 firmly binds to PS and recruits apoptotic cells to the macrophage surface. In the

tickling step, soluble “bridge” proteins (e.g., ProS, Gas6 and MFG-E8) bind to PS on the

apoptotic cell surface and to PS recognition receptors on phagocytes, thereby promot-

ing phagocytic cup formation and engulfment. In different tumors TIM-4 has been de-

scribed as an oncogenic driver which promotes tumor cell proliferation and facilitates

immune escape by tumor cells through the induction of an immunosuppressive re-

sponse in the tumor microenvironment [100–102].
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Biological functions of other PS recognition receptors

Many other cell surface molecules have been shown to recognize PS, including brain-

specific angiogenesis inhibitor 1 (BAI1), lectin-like oxidized low-density lipoprotein

receptor-1 (LOX-1), stabilin-1 and stabilin-2, CD300a, CD300b, CD300f, receptor for

advanced glycosylation end products (RAGE), complement component 1q (C1q), β2-

glycoprotein I (β2GPI), annexins, integrins αVβ3/β5, and PSR [103]. Some of these PS

recognition receptors have signaling ability, while others mainly act as tethering and ad-

hesion molecules. Their role in multiple biological functions will be discussed in the

following section.

Biological functions of PS recognition by annexins, β2GPI and C1q

All annexin family molecules, except for one, act as bridging molecules between PS on

the apoptotic cell surface and PS recognition receptors on the phagocyte surface [104].

β2GPI, a well-known phospholipid-binding molecule [105, 106], is expressed by hepa-

tocytes, endothelial cells and placental villous tissues [107]. It can bind to PS-exposing

targets and help their interaction with macrophages through the generation of a spe-

cific bridging moiety [108].

C1q is the first component of the complement cascade pathway, which is part of the in-

nate immune system. Unlike most complement proteins, which are produced by hepato-

cytes, C1q is mainly produced by macrophages [109]. C1q binding to PS mediates

opsonization and phagocytosis of apoptotic cell debris and other PS-exposing targets,

playing a crucial role in regulation of the immune response [110–114]. In addition, C1q

has been shown to slow atherosclerosis progression by promoting macrophage survival

and foam cell efferocytotic capacity in the early phases of atherosclerosis [115, 116].

Biological functions of PS recognition by receptors of CD300 family

Receptors of the CD300 family are type I transmembrane proteins that contain a single

IgV-like extracellular domain with two disulfide bonds and intracellular immunorecep-

tor tyrosine-based inhibition motifs (ITIMs) [117]. Among the seven members of this

family, only three CD300 molecules (i.e., CD300a, CD300b, and CD300f) have the abil-

ity to recognize PS exposed on the outer leaflet of activated cell membranes [118–120].

CD300a is expressed by myeloid cells [121], lymphoid cells, monocytes, macrophages,

mast cells, granulocytes, DCs, NK cells and subsets of B and T cells [121]. Importantly,

CD300a does not seem to be involved in efferocytosis. Its main function is the trans-

duction of an inhibitory signal in mast cells leading to the reduced production of pro-

inflammatory mediators [121].

CD300f is commonly expressed by myeloid cell lineages and increases myeloid cell

efferocytotic ability [122]. In addition, it exerts an immunoregulatory function by inhi-

biting DC-mediated antigen-specific T-cell responses [123].

Both CD300a and CD300c may promote viral infections either by facilitating the

binding between PS-containing viral particles and host cells or by easing viral escape

mechanisms [124]. Noteworthy, these receptors have demonstrated great potential as

therapeutic targets in the treatment of different diseases, including cancer, infectious

diseases, allergies and other pathological conditions [118].
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Biological functions of PS recognition by BAI1, LOX-1 and stabilin1/2

BAI1 is a transmembrane protein and a member of the adhesion-type G-protein-

coupled receptor family with the ability of binding to PS via thrombospondin type 1 re-

peats. BAI1 is expressed in macrophages, myoblasts, glial and neuronal cells. It pro-

motes the engulfment of apoptotic cells by forming a complex with engulfment and

cell motility (ELMO)/dedicator of cytokinesis 1 (Dock180)/Rac and participating in the

uptake process via actin cytoskeleton remodeling [125, 126]. In addition, under physio-

logical conditions BAI1 promotes mammalian myogenesis by facilitating the myoblast

fusion process [127].

LOX-1 is a type II membrane protein with a C-type lectin-like domain. It shows the

ability to bind to various ligands, including modified lipoproteins [e.g., oxidized low-

density lipoproteins (oxLDLs), acetylated low-density lipoproteins (acLDLs)], negatively

charged phospholipids [e.g., PS and phosphatidylinositol (PI)] [128] and other ligands

expressed by apoptotic cells, activated platelets and bacteria [129]. LOX-1 promotes

efferocytosis by mediating the recognition of PS-containing apoptotic bodies [11, 130].

Importantly, LOX-1 also acts as a scavenger receptor mediating the uptake of oxLDLs

by macrophages in atherosclerotic plaques [131, 132]. Accordingly, soluble LOX-1

(sLOX-1) has been suggested as a biomarker of cardiovascular risk and LOX-1 receptor

blockade has been proposed as a potential therapeutic target for reduction of cardiovas-

cular damage in systemic lupus erythematosus [132].

Stabilin-1 and stabilin-2 are multifunctional receptors, which share structural similar-

ities but have significant functional differences. Structurally, stabilin-1 is a type-1 trans-

membrane receptor with a short cytoplasmic tail [133] and a scarce ligand repertoire. It

is expressed in macrophages and in non-continuous sinusoidal endothelial cells of liver

[134], spleen, lymph nodes and adrenal cortex [135–137]. The involvement of stabilin-

1 in direct cell-cell communications appears to be crucial for cell migration [133], tis-

sue homeostasis [138], and tumor development [139]. Stabilin-1-expressing macro-

phages have a pivotal role in maintaining tissue homeostasis and protecting against

organ fibrosis in chronic liver injury [140]. In addition, stabilin-1 expression on macro-

phages contributes to the induction of an immunosuppressive profile in normal preg-

nancy of humans and to the maintenance of vascular integrity through the clearance of

infected apoptotic endothelial cells in sepsis [141–143]. Finally, a stabilin-1-mediated

pro-atherogenic effect has been suggested, as stabilin-1-expressing circulating mono-

cytes of patients with familial hypercholesterolemia (FH) have shown increased CD36-

mediated uptake of oxLDL [133]. Stabilin-2 is highly expressed in non-continuous si-

nusoidal endothelium of spleen, liver [134], lymph nodes and bone marrow [144] but

shows restricted expression on a few macrophages including alveolar macrophages

[138], and human monocyte-derived macrophages (HMDMs) [145]. Unlike stabilin-1,

stabilin-2 seems to be a proper clearance receptor for hyaluronic acid (HA) on sinus-

oidal endothelial cells in the liver and a scavenger receptor for modified unwanted-self

products [133, 135, 146]. Given the inhibitory action of HA in tumor cell metastasis,

stabilin-2 inhibition, leading to elevated circulating HA levels, has been suggested as a

potential antitumor strategy [147].
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Biological functions of PS recognition by MFG-E8

MFG-E8 is a secreted glycoprotein which shows structural similarity to the coagulation

factors V and VIII. Its second EGF-like domain consists of an RGD motif with the abil-

ity to bind to integrin αVβ3/5 in phagocytes [148]. MFG-E8 is broadly expressed in dif-

ferent organs and tissues (e.g., spleen, liver, lungs, kidneys, intestine, and mammary

glands) by macrophages, DCs, fibroblasts, epithelial cells and osteoclasts [149, 150].

Integrin-binding activity is essential for a wide variety of MFG-E8-mediated

efferocytosis-dependent/independent biological functions [151]. MFG-E8 inhibits

neutrophil migration through αVβ3-integrin-mediated MAP kinase activation [152].

MFG-E8 also promotes macrophage M2 polarization in the tumor microenvironment,

thereby promoting local immune suppression and facilitating tumor progression and

metastasis [153, 154]. Consistent with MFG-E8-mediated anti-inflammatory activity,

reduced MFG-E8 levels have been associated with an increased incidence of micro-

vascular complications in patients with type 2 diabetes [155]. A variable association

between MFG-E8 expression levels and autoimmune diseases has been described

[156]. Accordingly, MFG-E8 is considered as a protective factor in the pathogenesis

of rheumatoid arthritis [157], while high serum MFG-E8 levels or abnormally highly

glycosylated serum MFG-E8 levels have been reported in some systemic lupus erythe-

matosus patients [156, 158]. Septic shock is promoted by reduced serum levels of

MFG-E8, resulting in defective efferocytosis [159]. Further, MFG-E8 deficiency in

macrophages has been associated with reduced phagocytic clearance of apoptotic cells

within atherosclerotic plaques, promoting atherosclerosis progression [160]. Accord-

ingly, a genome-wide association meta-analysis showed that MFGE8 as a contributory

gene of coronary artery disease [161]. Finally, the ability of some enveloped viruses to

infect integrin- and TAM receptor-presenting cells has been reported to be facilitated

through the surface expression of MFG-E8 and Gas6 [162].

Biological functions of PS recognition by PSR

Using an established monoclonal antibody (i.e., mAb 217) binding both human and

mouse macrophages and inhibiting the engulfment of apoptotic cells, the identifica-

tion of a PS-binding membrane protein, that is, PSR, was prompted [163]. PSR,

also named Jumonji domain-containing protein 6 (JMJD6), is a type II membrane

protein expressed on macrophages, epithelial cells and fibroblasts [163]. Unlike

other PS recognition receptors, PSR shows a low phospholipid-binding affinity and

specificity for PS [164]. PSR-mediated phagocytosis has a crucial role in the main-

tenance of tissue homeostasis [165] and in regulation of the immune response

[166]. PSR regulates the recognition and internalization of apoptotic photoreceptors

and the conservation of retinal tissue architecture after retinal detachment [167].

Moreover, in central retinal vein occlusion (CRVO) red blood cell adhesion is facil-

itated by the interaction between PS RBC and endothelial PS receptor [168]. The

clearance of PS-exposing particles present in the vascular wall, which is mediated

by PSR, is important for the prevention of inflammation associated with necrosis,

calcification and also elimination of thrombogenic factors. However, some studies

revealed that PSR is also crucial for tissue remodeling and differentiation of various

organs during embryogenesis through efferocytosis-independent molecular pathways
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[169–171]. In fact, homomultimers of PSR may function as scaffolding nuclear

proteins with histone arginine demethylase activity regulating gene expression

[172–178]. The upregulation of PSR has been described as an oncogenic driver in

some tumor types [175, 176, 179, 180].

Biological functions of PS recognition by RAGE

RAGE is a transmembrane receptor of the immunoglobulin superfamily which binds to

advanced glycation end products (AGEs) [181, 182]. RAGE activation has a crucial role

in the pathogenesis of diabetic vascular complications [183–185], diabetic dyslipidemia

[186] and diabetic nephropathy [187, 188]. In fact, AGE/RAGE signaling stimulates the

production of reactive oxygen species (ROS) and inflammatory markers [189, 190]. In

addition, the ligation of RAGE is one of the major means by which AGEs may impair

cholesterol efflux and reverse cholesterol transport (RCT). Accordingly, RAGE binding

to AGEs has been shown to suppress ATP-binding cassette sub-family G member 1

(ABCG1) and ATP-binding cassette transporter A1 (ABCA1) expression by macro-

phages. Also, RAGE activation has been associated with reduced circulating HDL levels

in diabetic mice [186]. Accordingly, the regulation of AGE/RAGE signaling by miRNAs

has been investigated as a therapeutic strategy against diabetes complications [191].

However, as a multiligand receptor, RAGE can also bind to PS and exert, like other

PS recognition receptors, both efferocytosis-dependent and efferocytosis-independent

biological functions. Accordingly, RAGE has been reported to modulate alveolar

macrophage phagocytosis [192] and its dysfunction has been implicated in the abnor-

mal remodeling of alveolar epithelium occurring in the pathogenesis of lung fibrosis

[193]. In addition, RAGE has been shown to affect the expression of cell cycle genes

modulating the G1/S phase transition [194, 195] and to stimulate phosphoinositide 3-

kinase (PI3K)/protein kinase B (Akt) signaling pathway activation [196], thereby playing

a crucial role in the development and progression of a number of tumor types [197].

Phosphatidylethanolamine: as functional as PS or not?

Under certain conditions, including apoptosis, tumor-related angiogenesis, infections,

and blood coagulation, loss of asymmetry of the plasma membrane of different cell

types is observed, due to diminished activity of flippases and reduced transport of both

PS and PE to the cytosolic face of the cell membrane [198].

Emoto and colleagues presented for the first time direct evidence that both PE and

PS are externalized on the cell membrane surface during the early stages of apoptosis

[199]. It is likely that PE exposure may promote apoptosis. Indeed, exogenous PE was

reported to induce apoptosis in human hepatoma HepG2 cells through activation of

the bcl-2/bax pathway [200]. In addition, Umeda and Emoto showed that the transbi-

layer PE redistribution in the plasma membrane was increased in apoptotic blebs, sug-

gesting a role of PE in the reorganization of cytoskeletal structures during apoptosis

[201]. However, the role of PE in efferocytosis is controversial and needs to be further

explored. In this regard, a number of studies indicate that besides PS, PE can also act

as a ligand for CD300a on the surface of phagocytes. However, the interaction between

PE-exposing apoptotic cells and CD300a on phagocytes down-regulates the removal of

apoptotic cells [120, 202]. In addition, another PS receptor involved in the regulation of
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phagocyte-mediated removal of dying cells, that is, Gas6, does not show any ability to

bind to PE, suggesting the hypothesis that PE, unlike PS, does not have a crucial role in

efferocytosis [54].

Several lines of evidence show that PE exposure on the cell surface is involved in a

number of additional cell biological events apart from apoptosis and efferocytosis.

Thus, for instance, PE expression on the outer face of the cell membrane is increased

at the surface of the cleavage furrow which forms between two mitotic daughter cells

and has a crucial role in the dynamics of contractile ring formation. PE redistribution

from the inner to the outer leaflet of the membrane of endothelial cells is a feature of

tumor vasculature in and around hypoxic areas, suggesting that PE could hold promise

as a target for anti-tumor drugs and as a biomarker for tumor imaging [203]. There is

evidence showing that PS exposure has a crucial role in certain infections. Indeed, rec-

ognition of PE-exposing viruses by two PS receptors (i.e., TIM-1 and TIM-4) has a piv-

otal role in the immune response against infections by numerous pathogenic viruses,

including Ebola, West Nile and dengue viruses. Also, PE expression on the surface of

intestinal epithelial cells may promote infection by enterohemorrhagic Escherichia coli

(EHEC) [204]. Therefore, PE might be used as a broad-spectrum antimicrobial target

[205, 206]. In addition, PE may enhance the cell membrane disruption by prefibrillar

islet amyloid polypeptide protein (IAPP), an amyloidogenic protein. Indeed, although

PE hampers the interaction of prefibrillar IAPP with cell membranes, it promotes IAPP-

mediated cytotoxicity by favoring the growth of fibers on the membrane surface via a

detergent-like mechanism [207]. Moreover, PE exposure by endothelial cells is involved in

activation of the protein C anticoagulant pathway [208]. Finally, there are some studies

reporting the ability of PE to interact with annexins within cell membranes, which may

represent a unique model of regulation of different biological events [209].

Concluding remarks

Apoptotic cell removal by phagocytes requires close collaboration between apoptotic

cells and phagocytes. At the early stages of apoptosis, dying cells expose PS as an “eat

me” signal. Subsequently, various receptors expressed by phagocytes, which can bind

PS either directly or indirectly, promote apoptotic cell engulfment. Notably, accumulat-

ing evidence has elucidated the molecular mechanisms of PS externalization and the

role of PS recognition receptors, their subunit structures, and their signaling pathways,

including in efferocytosis-independent biological processes. Although extensive studies

by several groups have greatly improved knowledge on multiple physiological functions

of PS recognition receptors, some unanswered questions about the role of PS receptors

in different pathological conditions need more investigations in order to fine-tune po-

tential therapeutic strategies targeting these molecules.

Although PS has been widely studied, much less information is available about the

function of PE exposure in apoptosis and efferocytosis, as well as other cellular pro-

cesses. This might be partly due to the lack of particular detection systems with ability

to discriminate between PE, PS or other phospholipids. However, the development of

PE-specific probes allowing for the molecular imaging of cell death and other biological

processes both in vitro and in vivo is expected to help unravel the specific role of PE

exposure on the cell surface.
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