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Abstract

During hypoxic conditions, cells undergo critical adaptive responses that include the
up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded
protein response (UPR). While their induced signaling pathways have many distinct
targets, there are some important connections as well. Despite the extensive studies
on both of these signaling pathways, the exact mechanisms involved that determine
survival versus apoptosis remain largely unexplained and therefore beyond
therapeutic control. Here we discuss the complex relationship between the HIF and
UPR signaling pathways and the importance of understanding how these pathways
differ between normal and cancer cell models.
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Introduction
Aerobic organisms employ critical control strategies to ensure proper oxygen supply

through various physiological and metabolic cellular signaling networks. The inability

to meet cellular oxygen demands, termed hypoxia, results in the activation of specific

cellular stress responses [1, 2]. Hypoxic stress induces global gene expression changes

in order to help cells adapt and survive by altering the cell’s metabolic and angiogenic

pathways and restoring oxygen homeostasis [3–10]. If these repair and adaptive mech-

anisms fail, cells modify their gene expression profiles to induce programmed cell

death [11–16]. Although active hypoxia signaling networks are necessary during em-

bryogenesis and development [17–19], hypoxic conditions either diminish normally, or

they contribute to pathological events in mature organisms [20–23].

Efficient activation of hypoxia signaling and angiogenesis is critical, for example, after

stroke [24], myocardial infarction [25], and other ischemic events [26–29].
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Alternatively, metabolic adaptation to low oxygen levels and the related tissue revascu-

larization allows for the survival and progression of the majority of human tumors [30–

32], and contributes to macular degeneration [33–36], glaucoma progression [37], and

diabetic retinopathy [38–41]. Thus, the discovery and development of therapeutic strat-

egies exploiting hypoxia-related cellular networks are of great interest to modern medi-

cine, as evidenced by the awarding of the 2019 Nobel Prize in Physiology or Medicine

to Drs. Semenza, Ratcliffe, Kaelin on their research into how cells detect oxygen and

react to hypoxia [42–46].

The main goal of the cellular response to hypoxia is to promote cell survival and re-

store oxygen homeostasis. This goal, however, is accompanied by deregulation of cellu-

lar organelle changes in mitochondria and endoplasmic reticulum (ER) function that

are reflected in perturbations in protein folding and trafficking [4, 47–53]. Erratic pro-

tein folding activates another specific stress response pathway, the unfolded protein re-

sponse (UPR). The UPR promotes cellular survival by restoring endoplasmic and

mitochondrial homeostasis through its distinct signaling networks [54–56], but if un-

successful, the UPR induces cell death [57–59].

Although activation of the UPR supports surviving hypoxia, it can also impair cellular

survival [60]. The ER, for example, is responsible for folding and maturation of trans-

membrane and secretory proteins [61–69] that include proangiogenic receptors and li-

gands such as vascular endothelial growth factor (VEGF) and erythropoietin (EPO) that

are critical for hypoxia-induced angiogenesis and erythropoiesis, respectively [70–72].

Thus, although underappreciated, understanding mutual crosstalk between these stress

response pathways is important for understanding and developing therapeutic interven-

tions in cardiovascular diseases and cancer. Nevertheless, despite the extensive studies

on both of these stress responses, the resulting consequences of their collective activa-

tion remain largely unexplained and are mainly limited to in vitro cell culture-based

models. In this review, we summarize these two cell survival pathways and the implica-

tions of UPR involvement in the hypoxia cellular response pathway.

Hypoxia-inducible factor responses to hypoxia
The unmet cellular oxygen demand is reflected by the accumulation of functional het-

erodimeric α/β-subunit complexes of specific transcription factors called hypoxia-

inducible factors (HIFs) [42–46]. HIFs mediate both the adaptive and apoptotic re-

sponses to hypoxia through transcriptional modulation of genes containing their spe-

cific target sequences that are termed hypoxia-response elements (HREs) [7, 73–77]. If

cells are sufficiently supplied with the oxygen, the formation of active HIF complexes is

inhibited by the limited availability of the alpha (α) subunits. Under normal oxygen

pressure (normoxia), HIF-α subunits undergo oxygen-dependent post-translational

modifications by proline-hydroxylases (PHDs) that mark these subunits for subsequent

proteasomal degradation [42–46]. Furthermore, during normoxia there is another

oxygen-dependent post-translational modification of α-subunits that is mediated by the

factor inhibiting HIF (FIH) which impairs HIF transcriptional activity (Fig. 1) [78]. In

contrast, the cellular levels of HIF-β subunits are oxygen independent [42–46]. During

hypoxia, the post-translational modifications of HIF-α subunits are inhibited and lead

to accumulation of the alpha subunit and the transcriptionally active HIF-αβ hetero-

complexes. Despite the fact that HIF-1α is considered a major mediator of HIF
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signaling in higher metazoans, other tissue specific isoforms of α-subunits, HIF-2α and

HIF-3α, are also known to participate in the cellular responses to hypoxia [7, 79–84].

The pro-survival pathway
During hypoxia, HIFs execute pro-survival transcriptomic strategies that allow cells to

sustain energy levels via utilization of less efficient non-oxidative energy production. To

sustain energy levels, HIFs upregulate glucose transporter genes and glycolytic en-

zymes, and inhibit oxidative phosphorylation (1) by preventing the conversion of pyru-

vate to acetyl-Co-A, (2) by reducing glucose oxidation and (3) by inhibiting β-oxidation

of fatty acids [85–88]. Importantly, hypoxia-related utilization of this alternate meta-

bolic pathway is accompanied by a HIF-mediated activation of the mechanisms that

allow for a more efficient utilization of the anaerobic glycolytic pathway and that

minimize its negative impact on the cell. The goal is to increase the electron transfer

efficiency and to reduce reactive oxygen species (ROS) production. HIF-1 also regulates

cytochrome c oxidase (COX) subunit composition to optimize the efficiency of respir-

ation during hypoxia and to reduce ROS by promoting ROS scavenging pathways [89,

90]. Furthermore, since anaerobic glycolysis results in increased proton release, HIF-1

induces the expression of carbonic anhydrase 9 (CA-IX) and monocarboxylate trans-

porter 4 (MCT4) to counteract acidosis by regulating intracellular pH [91, 92].

Since non-oxidative energy production of the cellular levels of ATP is less efficient

than oxidative phosphorylation, HIFs activate pathways to decrease the cell’s energy

needs. To accomplish this, HIFs selectively suppress translation and therefore decrease

total protein production [93–95] and induce induction of autophagy [96, 97] and

Fig. 1 Oxygen availability regulates HIF signaling. In normoxia, proline (P) residues on HIFα subunits are
hydroxylated by PHDs that marks them for proteasomal degradation. Additionally, FIH-1 mediates hydroxylation
of asparagine residues (N) on HIFα to prevent HIF transcriptional activity. Hypoxia impairs the ability of PHDs
and FIH-1 to hydroxylate the HIFα subunits, and thus results in the accumulation of this subunit and its
heterodimerization with the stable HIFβ subunits. In the nucleus, the HIFα/β complex binds to HRE elements in
the HIF target genes and governs their expression in order to adapt the cells to hypoxic conditions
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mitophagy [95, 98]. Notably, the mTOR pathway also reduces protein synthesis and cell

growth and induces autophagy via a HIF-independent mechanism [48, 99].

In order to restore oxygen homeostasis and maintain the well-being of the endothe-

lium, HIFs stimulate the expression of a number of angiogenic genes that include the

vascular endothelial growth factor (VEGF) [9, 100], heme oxygenase-1 (HMOX1) [101],

matrix metalloproteinases (MMP) 2 and 13 [102], the stem cell factor OCT-3/4 [103,

104], angiopoietin 2 (ANGPT2) [105], stromal derived factor 1 (SDF1) [106], platelet-

derived growth factor B (PDGFB) [107], placental growth factor (PGF) [108], and stem

cell factor (SCF )[109] and endothelial nitric oxide synthase (NOS3) [110, 111]. While

HIF-induced angiogenesis ensures increased blood flow to hypoxic tissues, the oxygen

caring capacity of the blood is enhanced via HIF-dependent upregulation of erythropoi-

etin [112–114]. Importantly, to secure proper cellular iron levels that are required for

the efficient erythropoiesis, HIFs adjust the expression of transferrin as well as of other

genes mediating iron homeostasis [115, 116]. Furthermore, EPO supports anti-

apoptotic proteins and inhibits caspase activity [117–119].

The UPR pathway responses to hypoxia
The fundamental function of the cellular response to hypoxia is surviving precarious

conditions and restoring oxygen homeostasis. Hence, despite the HIF-related mecha-

nisms to reduce the negative effects of anaerobic glycolysis and the reduced energy

availability, this metabolic switch eventually disturbs cellular homeostasis. This energy

deficiency limits the activity of ATP-dependent processes such as maintenance of ion

homeostasis and the related redox potential, and limits protein and lipid synthesis, and

post-translational protein folding capabilities due to the impaired disulfide-bond forma-

tion and ROS activity [4, 120–124]. All of these factors can disturb endoplasmic

reticulum homeostasis (termed as ER stress), and lead to the accumulation of unfolded

or misfolded proteins in the ER [125]. The accumulation of misfolded proteins activate

another specialized stress response signaling pathway called unfolded protein response

(UPR) [125]. During hypoxia, there are critical changes in mitochondrial function that

lead to elevated ROS levels. Furthermore, the proper folding of mitochondria-encoded

as well as the import and corresponding refolding of mitochondrial nucleus-encoded

proteins are crucial for mitochondrial function [126, 127]. Hence, prolonged hypoxia

will eventually result in perturbations in mitochondrial protein folding and activation

of a related specific stress response mechanism termed the mitochondrial unfolded pro-

tein response (UPRmt) [126, 128–130].

The three UPR signaling pathways
Controlling ER homeostasis relies on the interplay between three signaling pathways of

UPR that are initiated by three distinctive transmembrane sensors [125]. Buildup of un-

folded/misfolded proteins in the ER induces a higher demand for chaperone proteins

that include glucose-regulated protein 78 (GRP78 also known as BiP (binding immuno-

globin protein) [57]. BiP initiates the UPR by dissociating from luminal domains of

three proteins, protein kinase RNA-like endoplasmic reticulum kinase (PERK), the

inositol-requiring enzyme 1α (IRE1α), and with activating transcription factor 6 (ATF6)

[57]. Upon BiP release, PERK and IRE1α are activated via multimerization and trans-

autophosphorylation, whereas ATF6 is translocated to the Golgi apparatus where it is
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proteolytically processed to a cytoplasmically soluble and active ATF6f (p50) transcrip-

tion factor (Fig. 2) [131–133]. This activation cascade results in three distinctive UPR

signaling pathways/axes that are mediated by the PERK, IRE1α and ATF6 sensors.

Active PERK phosphorylates the alpha subunit of the eukaryotic initiation factor eIF2,

and this initiates the selective translation of certain proteins and repressing the translation

others during stress conditions. Some of the selected proteins include activating transcrip-

tion factor 4 (ATF4), growth arrest and DNA damage inducible protein (GADD34), and

CCAAT/enhancer binding homologous protein (CHOP) [57, 134, 135]. ATF4 modulates

the expression of genes involved in amino acid biosynthesis, anti-oxidative responses, pro-

tein folding and in maintaining redox homeostasis [136]. Importantly, GADD34 mediates

the dephosphorylation of eIF2, thus allowing the restoration of the protein synthesis upon

stress recovery [137]. If the stress is persistent, ATF4 can also facilitate autophagy and

stimulate transcription of the proapoptotic CHOP to induce cell death (Fig. 2) [138, 139].

Active IRE1α reduces protein synthesis through the degradation of selected mRNAs

in a process referred to as regulated IRE1-dependent decay (RIDD) [140]. Notably,

IRE1α endoribonuclease activity generates the active spliced isoform of the X-box

binding-protein transcription factor (XBP1s) [141]. XBP1s modulates gene expression

by increasing the ER’s folding capacity. XBP1s also promotes the expression of proteins

that are involved in ER membrane biosynthesis, disulfide bond formation, as well as in-

creasing the expression of chaperones and proteins involved in ER-associated

Fig. 2 UPR and UPRmt signaling. Upon buildup of misfolded/unfolded proteins in ER, BIP is released from
ER membrane to induce PERK dimerization and its subsequent autophosphorylation. Activated PERK
phosphorylates the eIF2α, leading to global translation attenuation. Some transcripts, however, including
ATF4 remain preferably translated. ATF4 provides the transcriptional signal to restore ER homeostasis,
however, it can also induce proapoptotic CHOP. Similarly, accumulation of unfolded proteins in
mitochondria leads to PERK activation and the induction of ATF4 signaling (UPRmt). Upon its dissociation
from BIP, IRE1α undergoes oligomerization and autophosphorylation and thus gains endoribonuclease
activity. To decrease the ER load, activated IRE1α degrades mRNAs and miRNAs (RIDD). IRE1α also performs
splicing of XBP1 mRNA to release transcriptionally active XBP1s. XBP1s activates a transcriptional program to
restore ER homeostasis. Alternatively, IRE1α can activate a proapoptotic kinase JNK1. Finally, BIP dissociation
allows ATF6 translocation to Golgi, where cleavage of this protein results in release of transcriptionally
active ATF6f. ATF6f activates a transcriptional program to restore ER homeostasis and support ERAD
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degradation (EDEM) and vesicular trafficking [141–143]. Furthermore, IRE1α kinase

activity activates Janus N-terminal kinase (JNK) in order to activate the inflammatory

response and to promote autophagy and apoptosis [140, 144] (Fig. 2).

ATF6f, on the other hand, initiates a transcriptional program to restore ER homeo-

stasis and that includes the induction of BIP expression, promoting protein chaperone

and lipid synthesis, stimulating ER-degradation, and enhancing N-glycosylation [145,

146]. ATF6f also induces CHOP expression and thus contributes to UPR-related cell

death [147, 148] (Fig. 2). Notably however, a recent report has shown that IRE1α acti-

vation can deactivate the ATF6f pathway [149].

Despite the fact that the UPR usually mediates cell death by activating the intrinsic

apoptotic pathway, recent reports indicate that during unresolved ER stress, there is

strong activation of the UPR that can lead to activation of programmed-necrosis path-

ways such as necroptosis [149–154]. Activation of these cell death pathways usually in-

volves PERK signaling and is associated with a rapid depletion of intracellular ATP and

a rapid release of ER-stored calcium [149–154]. Notably, the necroptosis pathway has

been involved in modulation of both HIF-signaling and key glycolytic enzymes that in-

clude pyruvate dehydrogenase. This results in the enhancement of aerobic respiration

and ROS generation, and thus can lead to impaired cellular adaptation to hypoxia

[155–158]. That being said, the origins and role of necroptosis in both the UPR and the

hypoxia response will require further studies.

Mitochondrial stress responses
Since mitochondria are separated from the cytosol and ER by their outer and inner

membranes, they have to rely on their own stress response mechanisms for translating

and folding proteins encoded in their genomes as well as refolding the imported

nuclear-encoded proteins [126, 127]. In order to maintain their protein homeostasis,

these organelles have a specific set of chaperones that includes heat shock protein 60

(HSP60) and LON peptidase 1 [159–161]. Notably, it has been reported that events that

lead to accumulation of unfolded/misfolded proteins in the mitochondria, or in impair-

ment of energy dependent mitochondrial protein import, or in disturbances in mito-

chondrial protein synthesis and folding lead to the activation of a mitochondrial UPR

(UPRmt) [126, 128–130].

To recover and preserve mitochondrial function, UPRmt modulates the expression of

both mitochondria and nuclear encoded genes [126, 128–130]. However, if the stress is

persistent, the UPRmt can contribute to the activation of intrinsic apoptosis pathways

[126, 128–130]. In C. elegans, properly functional mitochondria import and subse-

quently degrade the stress sensor protein called activating transcription factor associ-

ated with stress (ATFS-1) [162]. Upon stress, however, ATFS-1 import to mitochondria

is impaired, and this transcription factor accumulates in nucleus and activates a tran-

scriptional program to restore mitochondrial homeostasis through upregulation of

mitochondrial chaperons and proteases as well as components of both the protein im-

port machinery and ROS scavenger pathway [162].

Although the regulation of the mammalian UPRmt is poorly understood, it has been

suggested that the import efficiency of activating transcription factors 5 and 4 (ATF5

and ATF4) can be sensors of mitochondrial protein disturbances [163, 164]. Upon

stress, these transcription factors were shown to induce expression of mitochondrial
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chaperones and proteases. Furthermore, it has been shown that disturbances of mito-

chondrial protein homeostasis lead to activation of the PERK axis of the UPR, and this

reduces global protein synthesis and selectively promotes expression of ATF4, ATF5

and the proapoptotic protein CHOP (Fig. 2) [126, 128–130, 165]. However, the molecu-

lar mechanisms underpinning the integrated feedback between the UPR and the

UPRmt will require further study.

The crosstalk between hypoxia and UPR in cancer versus normal cell models
Despite the fact that normal endothelial cells are the main effectors of the adaptive cel-

lular response to hypoxia, the vast majority of current research regarding this signaling

pathway is from cancer cells [31, 48, 166, 167]. The mainstream reports of the interplay

between hypoxia and UPR are limited to cancer models as well [71, 72, 167–171]. Im-

portantly, cancer progression and cancer cell survival often result from the deregulation

of the cell fate decision mechanisms during both hypoxia and the UPR. Although hyp-

oxia was shown to induce all three UPR signaling axes, and given their activation could

also result from cancer cell-specific adaptations, it is important that the prosurvival

consequences of the UPR need to be directly compared to normal cell types.

Hypoxia-related induction of BIP expression has been reported in both cancer and

endothelial cells models [50, 110, 172–176]. This suggests that hypoxia-induced pertur-

bations in ER may increase BIP demand in both cell types and promote UPR induction.

Indeed, activation of PERK signaling is also observed in both cancer and normal cells

including endothelial cells, regardless of the hypoxia model applied [170, 177–182].

PERK-mediated eIF2 phosphorylation was observed in cells within minutes after expos-

ure to acute hypoxia (below 0.1% O2), whereas this reaction rate continuously declined

with increasing oxygen concentrations [177]. Furthermore, activation of the PERK axis

was also reported in transient (cyclic hypoxia) models that better resemble the fluctuat-

ing oxygen availability conditions that occur in solid tumors [183–187]. Hence, it can

be concluded that the hypoxia-required reduction of energy demand is partially

achieved via UPR-mediated translational attenuation. Notably, this pathway was shown

to be deactivated during prolonged hypoxia (16 h) as shown by dephosphorylation of

eIF2 that is probably due to a negative feedback loop with GADD34 [177, 188, 189].

During prolonged hypoxia, HIF-1 signaling is only partially sustained by the HIF-2 ac-

tivity during the transition from HIF-1 to HIF-2 expression [7, 76, 77]. This would sug-

gest that the activation of PERK axis can only be modulated by the HIF-1, whereas

during prolonged hypoxia, HIF-2 mediates the translational repression via an alternate

mechanism [167]. However, this hypothesis will require further study. Interestingly, the

PERK pathway was also shown to inhibit HIF-1α translation and thus prevent HIF-1

signaling in cancer cells [190].

Besides attenuation of protein synthesis, the PERK pathway mediated by ATF4 activates

genes supporting ER and mitochondrial homeostasis [126, 128–130, 165]. Notably, how-

ever, the PERK pathway can induce cell death through CHOP accumulation [191]. Al-

though CHOP accumulation and the potential induction of apoptotic response were

observed in some hypoxia experiments (including lung endothelial cells) [192–194], this

protein and mRNA levels were much lower than those observed during ER stress [177].

Inhibition of the entire PERK axis during hypoxia, however, has more drastic effects on

cell survival [177]. Furthermore, hypoxic PERK activation was shown to regulate carbonic
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anhydrase 9 (CA9) levels and thus is important for maintaining cellular pH [195, 196]. Im-

portantly, CHOP also directly reduces the expression of the proangiogenic endothelial ni-

tric synthase (NOS3, eNOS) [197]. The reduction of eNOS activity during hypoxia,

however, may be required to prevent the uncoupling of this enzyme and the related ROS

accumulation [198, 199]. Therefore, the evaluation of CHOP’s role in hypoxic cell survival

requires careful consideration and further study [200].

The activation of IRE1 axis and the role of XBP1s during hypoxia remain less clear.

Despite some functionally relevant accumulation of XBP1s that supported cancer cell

survival and tumor growth studies in cancers cell lines exposed to hypoxia, this effect

was observed in acute and moderate hypoxia only [177, 201–209]. In contrast, impair-

ment of XBP1 splicing under acute hypoxia was also reported [210]. Furthermore, al-

though some potentially IRE1-related activity was observed in human pulmonary artery

smooth muscle cells (PAMSCs), this did not result in direct hypoxia-induced XBP1s

protein accumulation [211]. Hence, IRE1α involvement in cellular response may be

very oxygen pressure- and cell type-specific and will require further studies in a wide

range of primary endothelial cells [212–216]. Finally, although numerous known ATF6

transcriptional targets were shown to be elevated in some experimental models by pro-

longed hypoxia and ischemia [192, 217, 218], the general direct hypoxic activation of

the ATF6 UPR axis has been convincingly presented [177]. Hopefully, the novel ATF6

pathway inhibitors, Ceapins [219], will be helpful in clarifying the role of this UPR

branch during hypoxia.

The main function of adaptive HIF activity is with the induction of angiogenesis and

erythropoiesis. The successful implementation of these cell rescue programs requires

increased synthesis of proangiogenic factors (ligands and receptors) as well as increased

erythropoietin production. All of these proteins fall into either the transmembrane or

secretory proteins category, and as such they have to mature in the ER [52, 121, 220–

223]. Hence, recovery from hypoxia absolutely depends on proper ER function [224].

Importantly, the PERK/ATF4 axis has been reported as a limiting factor for EPO pro-

duction, and thus hypoxic UPR activation may limit adaptation to hypoxia [70].

In 2014, Karali and coworkers described the mechanism potentially linking HIF tran-

scriptional activity with the activation of PERK, ATF6 and IRE1 pathways in human

endothelial cells [225]. They reported prosurvival UPR activation in VEGF (a HIF tran-

scriptional target) treated human umbilical vein endothelial cells (HUVECs) [226]. In

these studies, the authors proposed a mechanism in which VEGF-dependent phosphor-

ylation of vascular endothelial growth factor receptors (VGFRs) leads to phospholipase

C (PLC) activation and release of ER calcium, which activates all three axes of the UPR

[225]. The active UPR promotes transcriptional expression of numerous proangiogenic

genes that include VEGF that can be induced directly by ATF6f, XBP1s and ATF4

[224, 227–237], and interleukin 8 that is induced by ATF4 [238, 239]. Furthermore, it

has been suggested that this survival mechanism is mediated by XBP-1 through a direct

interaction with HIF-1α protein [201]. Nevertheless, the extend of VEGF-related activa-

tion of UPR is rather poorly reflected in endothelial hypoxia models, and will require

further study. In endothelial cells, it has been also reported that hypoxia-induced ex-

pression of very low density lipoprotein receptor (VLDLr) can contribute to the activa-

tion of the UPR cell death response [193, 194].
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The UPR and UPRmt
Collectively, despite a variety of ER stress-related mechanisms reported in cancer cells,

exposure to hypoxia results mainly in the activation of the PERK axis that can also be

co-regulated by UPRmt (Fig. 3). Notably, however, the dramatic activation of all arms

of UPR was reported in anoxia and that by definition relates to the loss of control over

the cellular metabolism and energy production due to a dramatic oxygen deficit [240].

Given that limitation, such as reports are hard to interpret since they were obtained

from mixed cells populations that were undergoing the anoxic necrosis and had totally

lost the ability to maintain their redox homeostasis.

By comparison, the limited activation of the UPR and UPRmt during moderate and

prolonged hypoxia suggests that the HIFs successfully prevent extensive ROS formation

and alleviate stress conditions. This statement is supported by the studies that have

shown that HIF-1α knockouts cells subjected to hypoxia produce lethal levels of ROS

[241] as well as by numerous reports demonstrating a negative correlation between cel-

lular ROS levels and HIF-1 stabilization [87, 90, 242–244]. Remarkably, however, cu-

mulating evidence demonstrates that rapid re-establishment of normal oxygen levels in

hypoxic cells often results in extensive ROS production and leads to cellular damage

that is referred to as hypoxia-reoxygenation injury and ischemia-reperfusion injury. Al-

though ROS accumulate in hypoxic cells, their levels are dramatically compounded by

this rapid re-introduction of oxygen [90, 241, 245, 246].

Importantly, both ischemia-reperfusion injury [247–259] and hypoxia-reoxygenation

injury [260–271] are also known to be accompanied by ER stress that are related to

hypoxia/reoxygenation-triggered depletion of ER calcium and ROS accumulation. In-

deed, an extensive UPR and UPRmt activation occurred upon rapid restoring oxygen

Fig. 3 Hypoxia signaling and the related changes in cellular functions activate the UPR and UPRmt. During
hypoxia, accumulation of misfolded/unfolded proteins in ER and mitochondria activate PERK signaling, and
this contributes to both pro-survival (global translational arrest and induction of pro-angiogenic genes IL8
and VEGF) and apoptotic responses (induction of CHOP and inhibition of pro-angiogenic eNOS expression).
Furthermore, in some models, hypoxia-related activation of ATF6 and IRE1α contributes to pro-survival and
pro-angiogenic signaling. There also appears to be cooperation between XBP1s and HIF1 in
pro-survival signaling
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levels in human endothelial cells, cardiomyocytes and neurons [247–271]. Although the

IRE1α and ATF6 axes were activated in some models similar to their activation to hyp-

oxia [272, 273], the PERK pathway was the common and main axis of UPR activation

after hypoxia/reoxygenation. Importantly, the UPR pathway was shown to be crucial

for determining cell fate during hypoxia/reoxygenation, and therefore this pathway

should be considered as a potential therapeutic target for ischemic and cardiovascular

diseases.

Importantly, intermittent (cyclic hypoxia) results from chronic exposure of cells to

cycles of hypoxia/reoxygenation and is a basic feature of sleep apnea. Cyclic hypoxia

also clearly defines the development of the majority of solid tumors, which were also

shown to be accompanied by chronic ER stress [274, 275]. Nevertheless, the majority of

the hypoxia-induced UPR cancer research has been performed in continuous hypoxia

models that display diminished UPR activation.

Concluding remarks
The cellular response to hypoxia as well as the UPR are critical components of human

pathologies and have become obvious therapeutic targets. Despite the continuous re-

search to elucidate these complex molecular signaling pathways, however, the exact

mechanisms that cells use to determine cell fate during stress remain mainly largely un-

explained and beyond therapeutic control. Furthermore the current understanding of

the molecular mechanisms underpinning the mutual interplay between cellular re-

sponse to hypoxia and UPR remain very limited. Although hypoxia-related ER stress is

well defined, the extent of the related UPR activation and its effects on angiogenesis

and particularly cell survival are complicated and often contradictory. Several research

cell model-related barriers need to be tested in order to gain better insight into physio-

logical relevance of the hypoxic UPR before any type of intervention could be properly

tested in vivo.

To date, the two dimensional in vitro cultures of cancer cells that are exposed to con-

tinuous hypoxia constitute the main research cell models. As mentioned, the cancer

cell lines have developed specific genetic and epigenetic adaptations that allow them to

adapt and survive both persistent ER-stress and hypoxia. Therefore, parallel research in

matched normal, primary cells is needed to distinguish between the cancer-specific and

cell line-specific signaling pathway mechanisms employed for cell fate decisions.

In solid tumors, for example, cancer cells usually benefit from endothelial angiogen-

esis, and thus despite sending angiogenic signals to endothelial cells, they alone not the

right model for determining the extent of how hypoxia or the UPR impacts angiogen-

esis. Hence, the role of tumors’ endothelial cells and the development of representative

models including both cancer and endothelial cells, is extremely important. Notably,

the current development of high-throughput single-cell transcriptomics on organoids

and 3D culture systems [276, 277] should contribute to the utilization of such a re-

search approach.

Furthermore, solid tumors are persistently exposed to fluctuating oxygen levels

(cyclic hypoxia) rather than chronic hypoxia [278–283]. Given the potent activation

of the UPR during cycles of hypoxia/reoxygenation, it is plausible that majority of

the cancer studies underestimate the UPR component of the response to hypoxia
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in these tumors. Moreover, human cells and tissues differ in their oxygen demands,

and the fate of individual cells and the magnitude of the individual cellular stress

responses are affected by the local levels of oxygen. This would suggest that the

consequences of reoxygenation to the lower actual tissue oxygen levels (termed

physoxia) should be considered as well [2].

Normal endothelial cells provide an alternative model to study hypoxia and the re-

lated UPR. The comparative analysis of endothelial cells from different vascular beds,

for example, could provide novel insights into the physiological relevance of hypoxia-

induced UPR. Many studies have been based on models where cells were exposed to

persistent moderate continuous hypoxia (e.g., 12 or 24 h at 1% oxygen) that is physiolo-

gically irrelevant and therefore difficult to interpret.

Recent studies have identified novel post-transcriptional levels of regulation of cellu-

lar signaling pathways that depend upon the RNA interference pathway, and include

mRNA modulation by microRNAs. Although, these short noncoding RNAs has been

reported to be important modulators of both hypoxia and UPR [59, 77, 83, 143, 187,

284–294], their role in the interplay between these two signaling pathways remains lim-

ited. Of note in this regard, a recent report has shown that XBP1s induces antiangio-

genic miR-153 during hypoxia in breast cancer cells [202, 203].

Further development of new experimental models, wide transcriptomic and proteomic

approaches, as well as employment of novel specific inhibitors of UPR axes will eventually

address some of these issues. Furthermore, numerous novel compounds and therapeutic

strategies focusing on cancer and cardiovascular diseases are progressing through clinical

trials that target either the hypoxic response or the UPR (https://clinicaltrials.gov/ct2/ and

https://clinicaltrials.gov/ct2/, respectively) [294–298]. Nevertheless, the crosstalk between

these stress pathways is rarely utilized in these putative therapies. For example, some of

the anticancer agents are proteasome inhibitors (bortezomib and nelfinavir) that utilize

the UPR pathways to decrease VEGF levels and thus directly inhibit tumor vasculature

[299–302], whereas the ER chaperones inhibitor 17-AAG (geldanamycin) reduces the de-

gree of adaptive HIF-1 signaling and thus stimulates hypoxic cell death [303, 304]. Finally,

although the interplay between the hypoxia and the related UPR is just beginning to be

appreciated, we are still very far from understanding their interrelated functions and

therefore further research in this field will be critical for the development of future

therapies.
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