
RESEARCH LETTER Open Access

MiR-214 prevents the progression of diffuse
large B-cell lymphoma by targeting PD-L1
Jing-Ran Sun1, Xiao Zhang2 and Ya Zhang3*

* Correspondence: zhangya614@
163.com
3Department of Gynecology and
Obstetrics, Liaocheng People’s
Hospital, 67 Dongchang West Road,
Liaocheng, Shandong 25200,
People’s Republic of China
Full list of author information is
available at the end of the article

Abstract

Objective: We explored the role and mechanism of miR-214 involvement in the
progression of diffuse large B-cell lymphoma (DLBCL).

Methods: The expression levels of miR-214 and PD-L1 in human DLBCL cell lines
and in tissue samples from patients with DLBCL were determined using quantitative
RT-PCR. The dual-luciferase reporter assay was employed to determine the
correlation between the expressions of miR-214 and PD-L1. Cell viability, invasiveness
and apoptosis were respectively examined in cells of the DLBCL line OCI-Ly3 using
CCK-8, transwell and flow cytometry assays. The expression level of PD-L1 was
determined via immunoblotting. Inflammatory cytokine secretion was determined
via enzyme-linked immune sorbent assay (ELISA).

Results: miR-214 was downregulated and PD-L1 was upregulated in DLBCL tissues
and cell lines in comparison to normal adjacent tissues or normal B-cell. This
indicates a negative correlation in the expression levels. Overexpression of miR-214
inhibited cell viability and invasion and induced apoptosis of OCI-Ly3 cells. Moreover,
miR-214 was shown to target PD-L1 mRNA by binding to its 3′-untranslated region
(UTR). Knockdown of PD-L1 attenuated the malignant phenotype of OCI-Ly3 cells.
Overexpression of miR-214 inhibited tumor growth by targeting PD-L1 in vivo.

Conclusion: By targeting PD-L1, miR-214 regulates the progression of DLBCL in vitro
and in vivo.
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Background
Diffuse large B-cell lymphoma (DLBCL) is a highly heterogeneous malignant lymph-

oma [1, 2]. Despite the current greater understanding of DLBCL pathological subtypes

and the effectiveness of rituximab-based chemoimmunotherapy, 35–40% of patients

show diminished treatment efficacy due to the rapid emergence of drug resistance [3].

To improve survival rates, there is an urgent need for an in-depth understanding of

DLBCL pathogenesis and the mechanisms that lead to drug resistance.

Previous studies found that microRNAs (miRNAs) participate in the regulation of

cancer cells’ malignant biological behavior [4, 5]. For example, miR-214 has been con-

firmed to act as a tumor suppressor gene in the development of various malignant

tumor types, including colon [6], breast [7], ovarian [8], non-small cell lung [9] and

gastric cancer [10], by decreasing cell proliferation and invasion and increasing
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apoptosis rates. Furthermore, miR-214 is downregulated in DLBCL tissues [11]. In

addition, elevated miR-214 was associated with a superior outcome for this cancer type

[12]. This led us to speculate that overexpression of miR-214 may inhibit the malignant

behavior of DLBCL cells by targeting a downstream gene, but the mechanism details

are not clear. The role of miR-214 in DLBCL progression is the focus of this study.

Programmed death ligand-1 (PD-L1) is a commonly found negative immunoregula-

tory protein [13]. It has great significance in the avoidance harmful autoimmune reac-

tions [3]. Many studies have found that PD-L1 expression significantly increases in

various malignant tumor tissues and cell lines, inducing the increase of immune cell

apoptosis, which is an important regulatory mechanism for tumor immunosuppression

[14, 15]. PD-L1 is widely distributed in various organs, circulatory systems and tumor

tissues, with its distribution mainly modulated by the molecular microenvironment

(IFN-γ, miRNAs, etc.) in which the cells are located [16, 17].

Several studies have confirmed that PD-L1 targeting underlies the involvement of

multiple miRNAs in regulating the development of malignant tumor types, including

gastric cancer [18], melanoma [19] and DLBCL [20]. He et al. reported that overex-

pressed miR-195 targets PD-L1 to attenuate DLBCL progression by decreasing the im-

mune escape of DLBCL cells [21]. However, further information on the role of PD-L1

in the malignant behavior of DLBCL cells is needed.

This study investigated how the miR-214–PD-L1 axis is involved in the regulation of

tumor growth and the function of T cells in vitro and in vivo. In addition, a new thera-

peutic biomarker for DLBCL treatment in the clinic is assessed.

Materials and methods

Tissue specimen

DLBCL tissues and paired normal adjacent tissues were collected from patients (n = 15)

at Liaocheng People’s Hospital. The clinical specimens were immediately frozen at −

80 °C. None of the patients had received chemotherapy or radiotherapy prior to sur-

gery. All the patients signed informed consent. Approval for the study was obtained

from the Ethical Committee of Liaocheng People’s Hospital and all procedures com-

plied with the guidelines and principles of the Declaration of Helsinki.

Cell culture

Human DLBCL cell lines (OCI-Ly3, SU-DHL-2 and OCI-Ly10), a normal B-cell line

(NBC) and HEK-293 T cells were purchased from the Shanghai Institute for Biological

Sciences of the Chinese Academy of Sciences. Cells were cultured according to the

manufacturer’s instructions in Dulbecco’s modified Eagle’s medium (DMEM; Gibco)

supplemented with 1% penicillin–streptomycin and 10% fetal bovine serum (FBS;

Thermo Fisher Scientific) at 37 °C in a 5% CO2 atmosphere.

T cell and OCI-Ly3 cell co-culture

T cells were obtained from the peripheral blood of healthy donors and DLBCL patients.

A total of 2 × 105 T cells/ml were seeded in 96-well plates cultured in 5% CO2 at 37 °C.

T-cell Activation (Thermo Fisher Scientific) was added according to the manufacturer’s

protocol. OCI-Ly3 cells were co-cultured with the activated T cells at a ratio of 9:1 for
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24 h before transfection with miR-214 inhibitor and PD-L1 siRNA or with PD-L1

siRNA alone.

Cell transfection

OCI-Ly3 cells were seeded in 6-well plates with 2 × 105 cells per well and then incu-

bated for 24 h. The miR-214 mimic and inhibitor, PD-L1 siRNA (si-PD-L1), and con-

trol were transfected into OCI-Ly3 cells with Lipofectamine 3000 reagent and Opti-

MEM medium (Invitrogen) according to the manufacturer’s protocols. The PD-L1

siRNA, miR-214 mimic and inhibitor, and control (blank plasmid) were purchased from

Tolo Biotech. The sequences were miR-214 mimic, 5′-ACAGCAGGCACAGACAGG

CAGU-3′; miR-214 inhibitor, 5′-ACUGCCUGUCUGUGCCUGCUGU-3′; and control,

5′-UUGUACUACACAAAAGUACUG-3′.

Real time quantitative polymerase chain reaction (RT-qPCR)

Total RNA was extracted from clinical specimens and cell lines using Trizol reagent

(QIAGEN) according to the manufacturer’s instructions. For mRNA detection, RNA

samples were reverse-transcribed into cDNA using a PrimeScript RT reagent kit with

gDNA Eraser (TaKaRa). Quantitative real-time PCR was performed with GoTaq qPCR

Master Mix (TaKaRa) using the CFX96 Sequence Detection System (Bio-Rad). For

miRNA detection, RNA samples were reverse transcribed using a Mir-X miRNA First-

Strand Synthesis kit (TaKaRa) and real-time PCR was done with an Applied Biosystems

7300 Real-Time PCR system. The primer sequences are given in Table 1. U6 and

GAPDH were respectively used as the endogenous reference for miRNA and mRNA.

Real-time PCR was performed in triplicate.

CCK-8 assay

OCI-Ly3 cells were cultured under standard conditions and transfected with different

vectors until the cell confluence reached about 70%. The cells were then collected and

seeded in the 96-well plates at a density of 1 × 104 cells per well. A CCK-8 kit (Sigma)

was used to assess cell proliferation according to the manufacturer’s protocol. Briefly,

the CCK-8 solution (10 μl per well) was added to the wells and incubated with the cells

for 2 h. The optical density (OD) values were determined at a wavelength of 450 nm

and used to assess cell proliferation abilities.

Table 1 Name and sequences of the primers

Name Primer sequences

miR-214 F: 5′ – CAATACTGACAGCAGGCACA – 3′
R: 5′ – TATGGTTGTTCACGACTCCTTAC – 3′

U6 F: 5′ – CTCGCTTCGGCAGCACA – 3′
R: 5′ – AACGCTTCACGAATTTGCGT – 3′

PD-L1 F: 5′ – GGTGAGGATGGTTCTACACAG – 3′
R: 5′ – GAGAACTGCATGAGGTTGC – 3′

GAPDH F: 5′ – GGAGCGAGATCCCTCCAAAAT – 3′
R: 5′ – GGCTGTTGTCATACTTCTCATGG – 3’

F: Forward primer; R: Reverse primer
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Flow cytometry analysis

DLBCL and healthy tissue samples were washed with phosphate-buffered saline (PBS),

centrifuged at 800×g for 6 min, suspended in ice-cold 70% ethanol/PBS, centrifuged at

800×g for another 6 min, and suspended with PBS. An Annexin V-FITC/Propidium

Iodide (PI) Apoptosis Detection Kit (Thermo Fisher Scientific) was used to determine

the cell apoptosis ratio according to the manufacturer’s instructions. Briefly, the OCI-

Ly3 cells were collected and suspended using 1× Annexin V Binding Buffer. After that,

the Annexin V and PI staining solution was incubated with the cell suspensions at

room temperature for 25 min without light. A BD LSR II Flow Cytometer (BD Biosci-

ences) was used to determine the rate of apoptosis.

Transwell invasion assay

A total of 2 × 105 OCI-Ly3 cells/ml were plated in 200 μl of serum-free medium in the

upper layer of a Corning Transwell chamber that was coated with Matrigel (BD Biosci-

ences), while 800 μl medium supplemented with 10% FBS was added to the bottom

chamber. After 24 h of incubation, the cells that had invaded were fixed with 4% para-

formaldehyde (PA), stained with 0.1% crystal violet for 10 min and rinsed three times

with PBS. For quantification, 5 randomly selected fields were analyzed.

Elisa

The expressions of IL-10, IFN-γ and TNF-α were determined using enzyme-linked im-

mune sorbent assay (ELISA). The cytokines secreted from T cells in a co-culture T

cell–OCI-Ly3 cell system were analyzed in triplicate using the IL-10, IFN-γ and TNF-α

ELISA kits (R&D Systems) according to the manufacturer’s instructions.

Western blot

Total proteins were extracted from tissue samples and cells using RIPA lysis buffer

(Beyotime Biotechnology) according to the manufacturer’s protocol. The BCA kit

(Beyotime Biotechnology) was used to quantify protein concentrations. The target pro-

teins were then separated via electrophoresis with 10% SDS-polyacrylamide gel (SDS-

PAGE) and transferred to polyvinylidene fluoride (PVDF) membranes (Millipore). The

membranes were incubated for 1 h at 37 °C with 5% skim milk diluted with TBS con-

taining 0.1% Tween-20, then were incubated overnight at 4 °C with the primary rabbit

antibodies against human PD-L1 (11,000, #13684, Cell Signaling Technology) and

glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 1:2500, ab9485, Abcam). Horse-

radish peroxidase-linked goat anti-rabbit IgG (12,000, ab205718, Abcam) was incubated

with the membranes for 1 h at room temperature. An ECL Western blot detection kit

(Bio-Rad) was employed to determine the optical density of the protein bands to evalu-

ate the expression levels of the proteins.

Dual-luciferase reporter gene assay

The PD-L1 fragment containing miR-214 binding sites was synthesized to generate

wild-type (PD-L1-WT) or mutant-type PD-L1 (PD-L1-MUT). The PD-L1-WT and PD-

L1-MUT fragments were subcloned into the Renilla luciferase gene Pgl3-Luciferase re-

porter vectors (Promega) to generate the pGL3-PD-L1 (WT) and pGL3-PD-L1 (MUT)
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vectors, respectively. After that, the vectors were co-transfected with miR-214 mimics

or control mimics into HEK-293 T cells for 24 h. Finally, the cells were lysed using a

Dual-Luciferase Assay Kit (Promega), and the luciferase activities were evaluated using

the luminescence plate reader (Molecular Devices).

Nude mouse model

The animal experiments were approved by the Ethical Committee of Liaocheng Peo-

ple’s Hospital. A total of 20 female BALB/c nude mice (4~5 weeks old) were randomly

separated into two groups of 10 mice. The miR-214 mimic or control mimics was

transfected into OCI-Ly3 cells and cultured in serum-free DMEM for 24 h. These OCI-

Ly3 cells (1 × 107) were subcutaneously inoculated into the mice when they were be-

tween 6 and 7 weeks old. After 4 weeks, all the mice were killed and the tumor tissues

were collected for further experiments. Immunohistochemistry staining was used to ob-

serve the histomorphology and examine the expression of Ki-67 as described in an earl-

ier study [22].

Statistical analysis

All data are presented as the means ± standard deviation. The data were analyzed using

SPSS 22.0 software (IBM). Spearman correlation analysis was performed to analyze the

correlation between miR-214 and PD-L1 in DLBCL tissues using Graphpad Prism Ver-

sion 8.0.2. p < 0.05 was considered statistically significant.

Results

MiR-214 is downregulated in DLBCL tissues and cell lines

To explore the relationship between miR-214 and DLBCL development, quantitative

RT-PCR was used to determine the expression level of miR-214 in DLBCL tissues (n =

15) and adjacent normal tissues (n = 15). As shown in Table 2, low miR-214 expression

was positively associated with tumor size (p < 0.05), clinical stage (p < 0.05) and IPI

scores (p < 0.05). The results also showed that the expression of miR-214 in DLBCL tis-

sues was significantly lower than in the normal adjacent tissues (p < 0.01, Fig. 1a).

Moreover, miR-214 was markedly downregulated in DLBCL cell lines compared with

normal B-cell lines (NBC; p < 0.01, Fig. 1b), especially when comparing OCI-Ly3 cells

(p < 0.01, Fig. 1b). Those results indicate that low expression of miR-214 may be related

to the DLBCL progression. Based on these findings, OCI-Ly3 cells were chosen for sub-

sequent experiments.

Overexpression of miR-214 attenuates the malignant phenotype of OCI-Ly3 cells

Based on the downregulation of miR-214 in DLBCL tissues and cell lines, we attempted

to explore the effect of miR-214 on OCI-Ly3 cell proliferation, invasion and apoptosis.

OCI-Ly3 cells were transfected with the miR-214 mimic to assess the gain-of-function

of miR-214. The expression of miR-214 was significantly enhanced in the miR-214

mimic group compared with the control group (p < 0.001, Fig. 2a), confirming success-

ful transfection and enhancement of miR-214 expression.

Next, we investigated the impact of miR-214 upregulation on the proliferation and

invasion of OCI-Ly3 cells using the CCK-8 and transwell assays. Overexpression of
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miR-214 significantly inhibited OCI-Ly3 cell viability compared with the negative con-

trol group (p < 0.05, Fig. 2b). Upregulated miR-214 also significantly suppressed the in-

vasion capacity of OCI-Ly3 cells as compared to the negative control group (p < 0.01,

Fig. 2c). Furthermore, Annexin V-FITC/PI double staining results showed that the in-

creased expression of miR-214 contributed to inducing apoptosis of OCI-Ly3 cells (p <

0.01, Fig. 2d). These results strongly imply that overexpression of miR-214 suppresses

cell proliferation and invasion and promotes apoptosis of OCI-Ly3 cells.

Table 2 The clinicopathological features of patients with DLBCL

Characteristic Total number of patients Expression of miR-214 P value

15 High (N = 7) aLow (N = 8)

Age (years) 0.447

≥ 55 8 (53.33%) 3 5

< 55 7 (46.67%) 4 3

Gender 0.833

Male 9 (60.00%) 4 5

Female 6 (40.00%) 3 3

Tumor size (cm) 0.020

≥ 3 9 (60.00%) 2 7

< 3 6 (40.00%) 5 1

Clinical stage 0.036

I - II 5 (33.33%) 4 1

III - IV 10 (66.67%) 2 7
bLDH 0.782

High (≥ 300) 8 (53.33%) 4 4

Low (< 300) 7 (46.67%) 3 4
cIPI 0.013

Low (0–2) 4 (26.67%) 4 0

High (≥ 3) 11 (73.33%) 3 8
aThe median of relative miR-214 expression level is 2.53, so the number of low miR-214 expression is 8 (< 2.53). bLDH:

Lactate dehydrogenase; c IPI: International prognostic index

Fig. 1 The expression of miR-214 in DLBCL tissues and cell lines. a and b—Quantitative RT-PCR was used to
determine the expression levels of miR-214 in DLBCL tissues (a) and cell lines (b). **p < 0.01, compared with
the adjacent normal tissues; #p < 0.05, ##p < 0.01, compared with the normal B-cell line (NBC); △p < 0.05,
△△p < 0.01, compared with the OCI-Ly3 cells
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MiR-214 negatively regulates the expression of PD-L1

The starBase database analysis revealed that miR-214 may target at PD-L1 directly

(Fig. 3a). The dual-luciferase reporter gene assay result showed that co-transfection

of miR-214 mimics and PD-L1-WT significantly decreased the luciferase activity

(p < 0.01, Fig. 3b), but co-transfection of miR-214 mimics and PD-L1-MUT did not

affect luciferase activity. Moreover, overexpression of miR-214 significantly de-

creased the expression levels of PD-L1 protein in OCI-Ly3 cells compared with the

levels for the NC group (p < 0.01; Fig. 3c and d). Additionally, the expression of

PD-L1 was markedly higher in DLBCL tissues than in the adjacent normal tissues

(p < 0.001, Fig. 3e). The same as the result was obtained for PD-L1 protein expres-

sion in the DLBCL cell line compared to the normal B cell line (p < 0.01, Fig. 3f

and g). Furthermore, Spearman’s correlation analysis revealed a marked negative

correlation between the expressions of miR-214 and PD-L1 in DLBCL tissues (r =

− 0.687, p < 0.01, Fig. 3h). These results show that PD-L1 is a target of miR-214

and that it has a lower expression in OCI-Ly3 cells.

Fig. 2 The impact of miR-214 on the proliferation, invasion and apoptosis of OCI-Ly3 cells. (a) The relative
expression of miR-214 in cells transfected with an miR-214 mimic was determined using quantitative RT-
PCR. (b) The proliferation of OCI-Ly3 cells was determined using the CCK-8 assay. (c) The invasion ability of
OCI-Ly3 cells was assessed using a Transwell assay (magnification, × 40). (d) The rate of OCI-Ly3 cell
apoptosis was measured using flow cytometry. *p < 0.05, **p < 0.01, ***p < 0.001, compared with the
negative control (NC) group
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MiR-214 targets PD-L1 and attenuates the malignant phenotype of OCI-Ly3 cells

We attempted to determine whether upregulation of miR-214 inhibits cell proliferation and

invasion and induces apoptosis of OCI-Ly3 cells by targeting PD-L1. Crucially, western blot

analysis results showed that PD-L1 knockdown decreased the levels of PD-L1 protein (p <

0.01, Fig. 4a, b), while co-transfection with miR-214 inhibitor restored them. Moreover, the

CCK-8 and Transwell assays showed that knockdown of PD-L1 significantly decreased the

proliferation (p < 0.05, Fig. 4c) and invasion (p < 0.01, Fig. 4d) of OCI-Ly3 cells compared with

the negative control group. Furthermore, compared with the control group, PD-L1 knock-

down increased the percentage of apoptotic OCI-Ly3 cells (p < 0.01, Fig. 4e). However, the ef-

fect of silencing PD-L1 on the behavior of OCI-Ly3 cells was reversed by co-transferction

with the miR-214 inhibitor. These results suggest that miR-214 negative regulates PD-L1 to

inhibit the proliferation and invasion and induce the apoptosis of OCI-Ly3 cells in vitro.

MiR-214 targets PD-L1 to modulate cytokine secretion from T cells

To further determine the impact of the miR-214–PD-L1 axis on inflammatory cytokine

secretion, we set up a co-culture system of OCI-Ly3 cells and T cells. The ELISA re-

sults show that knockdown of PD-L1 significantly increased the levels of IFN-γ and

TNF-α compared with the control group (p < 0.01, Fig. 4f and g), but decreased those

of IL-10 (p < 0.01, Fig. 4h). However, there was no significant difference between the

cells co-transfected with miR-214 inhibitor and PD-L1 siRNA and those in the negative

Fig. 3 The regulatory relationship between miR-214 and PD-L1. (a) The bioinformatics analysis showed that
miR-214 has a binding site with PD-L1. (b) The dual-luciferase reporter gene assay was used to verify the
targeted relationship between miR-214 and PD-L1. (c and d) The expression of PD-L1 protein was
determined using western blot. (e) Quantitative RT-PCR was used to determine the expression of PD-L1 in
NSCLC tissues and adjacent tissues. (f and g) The expressions of PD-L1 in DLBCL cell lines were determined
using quantitative RT-PCR. (h) The expression relationship between miR-214 and PD-L1 was evaluated using
Spearman’s correlation analysis. **p < 0.01, compared with the NC group; ###p < 0.001, compared with the
adjacent tissues; ▲p < 0.05, ▲▲p < 0.01, compared with the NBC group; △△p < 0.01, compared with the
OCI-Ly3 cells
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control group. This indicates that miR-214 targets PD-L1 to regulate the function of T

cells and to further mediate the immune response of tumor cells.

Upregulation of miR-214 suppresses DLBCL development in vivo

Having determined the impact of miR-214 on the proliferation, invasion and apoptosis

of OCI-Ly3 cells, we attempted to examine the effect of miR-214 on the tumor growth

of DLBCL in vivo. In a DLBCL mouse model with overexpression of miR-214, the

tumor volume and weight were noticeably lower than in the negative control group

(p < 0.01, Fig. 5a and b). Moreover, as in the cell lines, upregulation of miR-214 mark-

edly decreased the expression of PD-L1 protein (p < 0.01, Fig. 5c). Immunohistochemis-

try results demonstrate that elevated miR-214 decreased the expression of Ki-67 in

xenograft tumor tissues (p < 0.01, Fig. 5d). Our findings suggest that overexpression of

miR-214 may restrict DLBCL progression by targeting PD-L1 in vivo.

Discussion
This study focused on the molecular biomarkers in the development and progression

of DLBCL. We found that miR-214 is significantly downregulated in DLBCL tissues

Fig. 4 The effect of the miR-214–PD-L1 axis on the malignant behavior of OCI-Ly3 cells and on the
cytokine secretion from T cells. (a and b) The expression of PD-L1 protein was determined using western
blot. (c) The proliferation of OCI-Ly3 cells was determined using the CCK-8 assay. (d) The invasion ability of
OCI-Ly3 cells was assessed using the Transwell assay (magnification, × 40). (e) The rate of OCI-Ly3 cell
apoptosis was measured using flow cytometry. (f through h) The expression levels of TNF-α, IFN-γ and IL-10
were measured using ELISA. si-PD-L1: PD-L1 siRNA; si-PD-L1 + inh: PD-L1 siRNA + miR-214 inhibitor. *p <
0.05, **p < 0.01, compared with the NC group; #p < 0.05, ##p < 0.01, compared with the si-PD-L1 group
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and cell lines. We also established that it inhibits the proliferation and invasion and

promotes the apoptosis of OCI-Ly3 cells by targeting PD-L1. Furthermore, in a co-

culture system of OCI-Ly3 cells and T cells, knockdown of PD-L1 was found to in-

crease the levels of IFN-γ and TNF-α, but to decrease the level of IL-10. This effect

was reversed by knockdown of miR-214. Therefore, miR-214 plays an important role in

regulating DLBCL progression and may be used as a target in DLBCL treatment.

Recent studies have established that miR-214 is downregulated in tumor tissues and

cell lines, and that progression-free survival is shortened in patients with low expres-

sion of miR-214 [23]. MiR-214 participates in many cellular functions, including cell

cycle control, DNA damage and repair, and gene transcription; but its aberrant expres-

sion affects cell migration, invasion and apoptosis of human malignant tumor cells by

targeting downstream genes [24]. For example, overexpression of miR-214 inhibits pro-

liferation and migration in hepatocellular carcinoma by targeting FOXM1 [25]. A low

expression level of miR-214 is associated with lymph node metastasis, TNM stage and

tumor size [26, 27]. Meanwhile, downregulation of miR-214 is associated with poor sur-

vival in leukemia [28, 29].

The miR-214 is not only significant for malignant tumor progression, but also plays

an important role in regulating resistance to chemotherapy and radiotherapy in several

tumors. For example, overexpression of miR-214 enhances the sensitivity of radiother-

apy in colorectal cancer by decreasing ATG12-induced autophagy [30]. Elevated miR-

214 reverses doxorubicin resistance in breast cancer by promoting cell apoptosis [31].

Our results demonstrate that overexpression of miR-214 significantly restricts the

Fig. 5 Effect of miR-214 overexpression on the progression of DLBCL in vivo. (a) The tumor volume curve
of nude mice treated with miR-214 or NC was analyzed. (b) The tumor weight was measured in the
transfected miR-214 or NC group. (c) The expression of PD-L1 protein in the tumor tissues was measured
using western blot. (d) The expression of Ki-67 was determined in tumor tissues using
immunohistochemistry (magnification, × 400). *p < 0.05, **p < 0.01, compared with the NC group
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malignant behavior of OCI-Ly3 cells and decreases tumor growth in a xenograft mouse

model.

PD-L1 monoclonal antibodies have recently been approved by the FDA for the

United States, and they have been used in a variety of cancer therapies with good re-

sults [32, 33]. Importantly, PD-L1 acts as an immune checkpoint in cancer immuno-

therapy [34, 35]. Song et al. confirmed that the PD-1/PD-L1 pathway is an immune

evasion mechanism associated with the progression of DLBCL [14]. Abnormal PD-L1

expression is used as a biomarker for early diagnosis and progression of several malig-

nant tumors [36], such as lung cancer [37], thyroid cancer [38] and head and neck

squamous cell carcinoma [39].

In addition, some studies found that miRNAs targets PD-L1 to regulate the prolifera-

tion, invasion and apoptosis of tumor cells and modulate the immune response. For ex-

ample, miR-148a-3p overexpression inhibits the progression of colorectal cancer by

targeting PD-L1 [40]. Repression of miR-940 promotes the proliferation and migration

of gastric cancer by upregulating PD-L1 [41]. Overexpression of Epstein-Barr virus-

encoded EBNA2 contributes to an increase in the immune escape of B-cell lymphomas

through downregulation of the inhibitor effect of miR-34a on PD-L1 expression [42].

Here, we found that compared with the control group in a co-culture system of OCI-

Ly3 cells and T cells, knockdown of PD-L1 significantly decreases the malignant behav-

ior of OCI-Ly3 cells, increases the levels of IFN-γ and TNF-α, and decreases the level

of IL-10.

In this study, we determined that overexpression of miR-214 could suppress the pro-

gression of DLBCL by targeting PD-L1 in vitro and in vivo. In addition, miR-214 targets

PD-L1 to regulate the immune response of DLBCL by modulating the expressions of

IL-10, IFN-γ and TNF-α. We hope these results will point the way to new molecular

targets for the treatment of DLBCL and new biomarkers for its diagnosis and

prognosis.
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