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Abstract

In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell
nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated
via assembly of DNA-protein complex, chromatin. In addition to the reduction of
genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and
to mark active (transcribed) and repressed (non-transcribed) genes. Consequently,
epigenetic regulation of gene expression occurs at the level of DNA packaging in
chromatin. Taking into account the increasing attention of scientific community toward
epigenetic systems of gene regulation, it is very important to understand how DNA
folding in chromatin is related to gene activity. For many years the hierarchical model of
DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber)
is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/
chromosome scaffold. Recent studies have demonstrated that there is much less
regularity in chromatin folding within the cell nucleus. The very existence of 30-nm
chromatin fibers in living cells was questioned. On the other hand, it was found that
chromosomes are partitioned into self-interacting spatial domains that restrict the area
of enhancers action. Thus, TADs can be considered as structural-functional domains of
the chromosomes. Here we discuss the modern view of DNA packaging within the cell
nucleus in relation to the regulation of gene expression. Special attention is paid to the
possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the
model postulating that partitioning of the chromosome into TADs is determined by the
distribution of active and inactive chromatin segments along the chromosome.
This article was specially invited by the editors and represents work by leading
researchers.
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Background
The concept of hierarchic chromatin organization in the eukaryotic cell nucleus has

been developed rather long ago and is commonly accepted now [1–3]. A matter of de-

bate is what the levels are in the hierarchic packaging of the chromatin fibril. It is be-

yond doubt that the first level of DNA packaging in chromatin is DNA wrapping

around a histone octamer to produce a nucleosome. The so-called 10-nm chromatin

fiber thereby forms, having a characteristic beads-on-a-string structure. The 10-nm

fiber was believed for a long time to coil somehow into a more compact 30-nm fiber.

The process is readily detectable in experiments in vitro. Several models were
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proposed to explain the structure of the 30-nm chromatin fiber, and the best known of

them are a one-start solenoid with six nucleosomes per helix turn [4] and a two-start

helix with a zigzag nucleosome arrangement [5, 6]. Recent studies showed clearly that

even in vitro the 30-nm chromatin fiber is a dynamic structure with a number of con-

formations converting into one another [7, 8]. Electrostatic interactions between nucle-

osomes play a key role in the formation of a 30-nm fibril, positively charged N-terminal

histone domains (histone tails) of one nucleosome interacting with a negatively charged

acidic patch on the surface of another nucleosome [9–12]. It is important to note that

histone acetylation substantially reduces the positive charges of the N-terminal tails of

histones H3 and H4 and thereby weakens the electrostatic interactions that stabilize

the 30-nm chromatin fibril [13]. In a domain model of genome organization [14, 15],

histone acetylation-dependent transitions between more and less compact modes of

chromatin fibril folding are thought to provide a mechanism that activates or inacti-

vates chromatin domains [16].

It was always clear that higher-order compaction levels must follow the 30-nm chro-

matin fiber, but the mode of chromatin packing at these levels was long unknown. One

of the most common model suggestes that 30-nm fibers are organized in loops, which

are attached to the nuclear matrix [1, 17–20]. The question as to whether the loops

correspond to functional genome domains was intensely discussed in the literature (for

a review, see [21]).

Current views on the hierarchic levels of chromatin compaction
Several studies published in the recent years questioned the existence of 30-nm chromatin

fibrils in living cells [22–26]. A principal problem in studying the higher-order levels of

chromatin compaction by electron microscopy is that images of individual chromatin fibers

superimpose on one another and thus hinder a configuration analysis of individual fibers.

The problem was solved using electron spectroscopy, which makes it possible to examine

electron spectroscopic images [27], and electron tomography techniques [28, 29]. Regular

30-nm fibers were not observed in cell nuclei with these new methods. Chromatin mass

consisted of tightly associated nucleosome strings (10-nm fibers). The nucleosome packing

density differed between euchromatic and heterochromatic regions, but no regular supernu-

cleosomal structure was detected [26, 30]. Similar conclusions were made in an earlier chro-

matin structure analysis by cryoelectron microscopy [24].

The above results do not contradict the mere existence of higher-order hierarchic levels

in chromatin compaction, but indicate that these levels are not based on assembly of regular

structures, such as the 30-nm fiber. An important contribution to understanding the princi-

ples of hierarchic chromatin folding was made in studies that employed the so-called C

methods, which address the physical proximity of particular genome regions in the three-

dimensional space of the cell nucleus. The methods are based on ligation of DNA fragments

located close together. The procedure was proposed as early as the 1990s [31, 32], but did

not find broad application until a chromosome conformation capture technique was devel-

oped [33]. A Hi-C method assesses the physical proximity of various DNA fragments on a

genome-wide scale and is the most informative for analyzing the general principles of chro-

matin folding [34]. Studies with this experimental technique provided independent experi-

mental support to the existence of chromosome territories [34], which were earlier detected

by confocal microscopy of nuclei stained with sets of chromosome-specific hybridization
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probes [35–37]. In addition, mammalian chromatin was demonstrated to include two com-

partments, active A and inactive B, which correspond to euchromatin and heterochromatin

in the first approximation [34] (Fig. 1a). Finally, chromosome partitioning into the so-called

topologically associating domains (TADs) was observed (Fig. 1b). A main feature of TADs is

that intra-TAD spatial contacts between genome elements are significantly more frequent
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Fig. 1 A scheme illustrating the hierarchical structure of interphase chromatin. Chromosome territories (at the
top of the picture) are partitioned into A- and B-compartments (a) formed by long-range spatial interactions
between distant genome loci and containing active and repressed genome regions, respectively. At a
sub-megabase level, chromatin is folded into topologically-associating domains, TADs (b), commonly interpreted as
self-interacting globular structures those positions are largely conserved across cell types. The internal structure of
TADs is represented by arrays of so-called loop domains formed by spatial contacts between CTCF/cohesin-binding
sites (c). Color intensity on illustrative Hi-C maps (on the left side of each panel) reflects average interaction
frequency between corresponding genomic bins
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than inter-TAD contacts [38–40]. Early studies already showed that profiles of chromosome

partitioning into TADs are quite conserved among cells of different lineages and, within

syntenic regions, among closely related species [38, 41, 42]. However, the degree of this con-

servatism is limited. In mammals, 60-80% of the TAD boundaries coincide in cells of

different lineages [38, 43]. In Drosophila, the number of TAD boundaries coinciding in em-

bryonic and culture cells constitutes 40-50% [40, 44]. Substantial differences in TAD profiles

may arise, for example, from differential activation of tissue-specific genes in cells of differ-

ent lineages [44]. It should also be noted that TADs themselves are organized hierarchically

and may have several levels of smaller contact domains separated by weaker boundaries

[43–45]. As the resolution of Hi-C maps improved (up to kilobase and even sub-kilobase

scale (bioRxiv 149,344; bioRxiv 115,063) that seems to be a natural limit for Hi-C resolution

dictated by the average size of restriction fragments generated by a 4-cutter), contact subdo-

mains were observed within mammalian TADs, and many of them were identified as chro-

matin loops with bases containing CTCF sites and highly enriched in cohesin [46] (Fig. 1c).

It should be noted that the level at which contact domains should be termed TADs is still

unclear [47]. TADs are most commonly thought to range from 1 million to several millions

of base pairs in mammalian cells [38, 39, 41], while the average TAD size is several hundred

thousands of base pairs in Drosophila [40, 48]. Contact domains with a certain similarity to

mammalian and Drosophila TADs were observed in plants [49] and lower eukaryotes [50].

However, a number of parameters (stability, size, and genome coverage) substantially differ

between these contact domains and TADs present in mammalian and Drosophila

chromosomes.

What TADs are as physical bodies is an open question, although they are usually equated

with chromatin globules detectable using various microscopic techniques [51–53]. This in-

terpretation is partially supported by the results of in situ hybridization with probes distrib-

uted through the length of an individual TAD [54].

TADs are structural and functional domains of the genome
The question of whether structural organization of the genome coincides with its functional

organization has been debated in the literature over many years (for a review, see [55]). The

problem is difficult to solve because both functional and structural domains of the genome

still lack a clear definition. At least two types of functional domains can be identified,

namely, those associated with replication and transcription. As for replication, a replicon

seems reasonable to consider a functional domain. However, while alternative origins of rep-

lication exist and replicon positions are unstable over cell generations [56, 57], other replica-

tion domains attract attention. Replication time zones are sufficiently stable in each

particular cell type [58]. A good correlation between TADs and extended replication time

zones was demonstrated in several studies [59–61].

In the case of transcription, the definition of a functional domain is also not a trivial

question. Before the era of whole-genome research, a limited number of genomic

models were used in the majority of experimental studies, the mammalian and avian

globin gene loci being the most common ones [16, 62–64]. A gene cluster with distant

regulatory elements that control its genes was usually understood as a genome domain

in those studies (Fig. 2a). In some cases, this functional domain colocalizes with a chro-

matin domain demarcated by insulators and exhibiting differential DNase I sensitivity,

which correlates with the transcription status of the gene cluster [62, 65]. It is clear
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now that this definition of a functional domain is simplified. Genome-wide studies

showed that one enhancer may activate many genes that do not form a single cluster

and are far away from the enhancer along the DNA molecule (Fig. 2b). Enhancers were

at the same time found to be far more numerous than known genes, indicating that

several enhancers may apparently control the function of one gene [66, 67]. Although

the mechanism of action is unclear for enhancers, the most common model postulates

that an enhancer should be in direct contact with a promoter to ensure its activation

and that the intervening segment of the chromosome fiber loops out to bring the two

elements close together [68]. If so, the network of functional relationships between en-

hancers and promoters must be reflected in a network of physical contacts between re-

spective regions of the chromatin fiber. Networks of contacts between distant genomic
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Fig. 2 Chromosome partitioning into TADs reflects genome partitioning into regulatory domains delimiting
zones of enhancer influence. Conventional concept of genomic domain implies that the entire genome is
partitioned into non-overlapping parts (domains) containing gene clusters and regulatory regions (a), and
demarcated with insulators preventing cross-talk between regulatory systems of the adjacent domains.
According to current views, zones of enhancer influence (regulatory domains) largely overlap with TADs (b) that
spatially confine communication between genes and enhancers located within adjacent regulatory domains.
Deletion of TAD boundary leads to TAD fusion and, consequently, to fusion of corresponding regulatory
domains resulting in abnormal enhancer-promoter communication and transcription dysregulation (c)

Razin and Ulianov Cellular & Molecular Biology Letters  (2017) 22:18 Page 5 of 15



elements were detected in fact [67, 69]. They lay at the basis of the so-called regulatory

domains (regulatory archipelagos), wherein the majority of genes display a similar ex-

pression pattern, which depends on the type of cell differentiation [70, 71]. The above

TAD properties clearly indicate that the potential for enhancer–promoter communica-

tion is restricted to a TAD because relatively rare contacts arise between genomic ele-

ments that belong to different TADs. Colocalization was, in fact, demonstrated for

regulatory domains and TADs [71] (Fig. 2b). When TADs fuse as a result of a deletion

of the spacer between them, the sphere of influence changes for relevant enhancers

(Fig. 2c), leading in some cases to various disorders due alterations in gene expression

regulation within the TADs involved [72–74].

Additional line of evidence supporting the idea that TADs represent structural and

functional units of the genome arises from the studies of cell differentiation and repro-

gramming. In the model system of ESC differentiation into several distinct lineages,

TADs were found to be largely stable along the genome, but demonstrated a high flexi-

bility in both inter- and intra-TAD interactions [75]. TADs containing upregulated

genes exhibit a substantial increase in chromatin interactions and relocate into A-

compartment, whereas TADs harboring downregulated genes tend to decrease a num-

ber of chromatin contacts and undergo A-to-B compartment switching.

It should be noted that the establishment of enhancer–promoter communication

should depend on how fast the enhancer and its target promoter are brought close to-

gether in the nuclear space. A restriction of the search area to a TAD will certainly re-

duce the time it takes to establish enhancer–promoter communication. Lack of rigidity

in the TAD structure is of importance in this context. Alternative configurations of the

chromatin fiber continuously interchange within a TAD [76]. This is likely to provide

additional possibilities for cell adaptation to changing environment [77].

Mechanisms underlying the formation of topologically associated domains
Many models were proposed in the literature to describe the mechanisms of TAD forma-

tion. Computational simulations showed that entropic forces primarily drive the formation

of compact contact domains in a polymer model confined to a limited space. The profile of

polymer partitioning into contact domains may further be modulated by additional factors,

such as bridges between distant polymer regions [78]. The finding that the physical proper-

ties of a polymer confined to a limited space play a key role in the formation of contact do-

mains agree well with the fact that contact domains occur in one or another form in the

genomes of various organisms, including bacteria [79], and special cell types, such as sperm-

atozoa, which contain protamines in place of histones in their nuclei [80].

It is crucial to understand what factors determine the relatively specific profiles of

chromosome partitioning into TADs. Two alternatives are possible here (Fig. 3). One is

that boundary elements exist to prevent the spatial interactions between the chromatin

fiber segments separated by the elements. The other alternative suggests that there are

chromatin fiber segments that are capable of folding into compact (e.g., globular) struc-

tures annotated as TADs on Hi-C maps and chromatin fiber segments that cannot fold

into such structures because of their certain physical specifics.

It is assumed in the boundary element hypothesis that insulators play a main role in TAD

separation [81–83]. Insulators were discovered 25 years ago as genomic elements that block

the interaction between an enhancer and a promoter when located between them and
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prevent the spread of inactive chromatin domains [84, 85]. As became clear recently, the

functions of insulators are diverse and are based on their capability of closing a chromatin

fibril in loops [86–88]. Insulators accordingly came to be considered as architectural ele-

ments of the genome, and insulator-biding proteins are often termed the architectural pro-

teins [89, 90]. Several such proteins are found in Drosophila [91, 92]. In mammals, CTCF in

the only known insulator protein [93, 94]. CTCF maintains the spatial organization of the

genome by acting alone or recruiting cohesin [95–98].

The CTCF ability to organize DNA in loops certainly contributes to the TAD forma-

tion. High-resolution Hi-C maps constructed for various human and mouse cells [46]

were collated with CTCF genomic positions, and CTCF was implicated in the forma-

tion of the majority of the so-called loop domains. However, holding compact chroma-

tin masses together rather than partitioning them is the case here. Both loop and

ordinary domains are present in TADs [46]. The latter lack loop structures. A deletion

of an extended chromatin fiber fragment that occurs at the boundary between two

TADs and harbors a CTCF binding site was reported to cause partial TAD fusion [39].

However, the deletion could involve not only the CTCF binding site, but also other

genomic elements important for TAD separation. CTCF depletion was not observed to

cause a dramatic reorganization of TADs [99]. On the other hand, it seems likely that

Fig. 3 A scheme illustrating two proposal mechanisms of TAD boundary action. Left panel: boundary
plays an active role in TAD demarcation preventing interdomain interactions. Right panel: boundary
represents a genomic region unable to fold into higher-order structures and/or to interact with adjacent
regions. In contrast, TAD is comprised of chromatin regions which tend to interact with each other forming
globular structures
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DNA-associated CTCF preserves its association even when the CTCF concentration in

the cell is substantially reduced via RNA interference. Experiments with a controllable

CTCF degradation system showed that a substantial decrease in CTCF, including the

CTCF bound to DNA, leads to a considerable TAD loosening (a decrease in TAD

insulation) [100]. It should be noted that mammalian cells were used in virtually all ex-

periments that demonstrated an important role of CTCF in determining inter-TAD po-

sitions. The role that CTCF plays in Drosophila is less clear. In particular, loop

domains limiting spatial contacts between distant genomic elements were not observed

in Drosophila cells. We studied the distributions of several insulator proteins relative to

TAD boundaries in four Drosophila cell lines of different origins and did not detect an

appreciable enrichment in binding sites for dCTCF and Su(Hw) for TAD boundaries

[44]. On the other hand, data from our and other studies indicate that TAD boundary

regions harbor transcribed genes and are enriched in histone modifications typical for

active chromatin [40, 44, 48]. TADs usually contain tissue-specific genes, which are not

transcribed in the majority of cell types. Comparisons of the profiles of chromosome

partitioning into TADs in various cell lines showed that transcriptional activation of

tissue-specific genes correlates with a loosening of the respective TAD or its separation

into two TADs with an intensely transcribed gene between them [44]. The observations

made it possible to assume that inactive segments of a chromatin fiber spontaneously

fold into TADs. A compact TAD arrangement is due to electrostatic interactions be-

tween nucleosomes belonging to different fibers [44]. Entropic forces induced by

macromolecular crowding may further stabilize the association of chromatin fibers in

TADs [101]. The potential to form various conglomerates is well known for nucleo-

some fibers. The conglomerates are stabilized by interactions between positively

charged N-terminal tails of histones H3 and H4 and a negatively charged patch on the

surface of a nucleosomal globule [10, 12]. The same interactions facilitate the formation

of 30-nm nucleosome fibers at low fiber concentrations, when inter-fiber contacts are

unlikely [11, 102]. As was already mentioned above, histone acetylation, which is typical

for active chromatin, decreases the histone charge and prevents internucleosome inter-

actions [13, 103]. Any active chromatin region of a sufficient length will therefore insu-

late TADs, the extent of insulation depending on the region length and the extent of

histone acetylation. Thus, the distribution of active and inactive genes along a DNA

molecule may determine the profile of chromosome organization in TADs. We checked

this assumption by computer simulation of self-folding of a virtual polymer that con-

sists of alternating nucleosome blocks of two types reproducing the properties of active

and inactive chromatin regions [44]. Nucleosomes of “inactive” blocks were capable to

establish relatively unstable contacts with nucleosomes of the same type. Nucleosomes

of “active” blocks, which were shorter in size, were incapable of establishing contacts

with each other and nucleosomes from inactive blocks. Model polymeric chains orga-

nized in this manner were observed to form globular structures, which consisted of nu-

cleosomes from inactive blocks [44]. It is essential to note that inactive nucleosomes

could establish contacts with both nucleosomes of the same inactive block and nucleo-

somes of other inactive blocks in our model. As a result, conglomerates of inactive nu-

cleosomes fused to produce super-conglomerates in some cases. In some other cases,

nucleosomes of one inactive block formed more than one conglomerate with less com-

pact spacers between the conglomerates. The results of 12 modeling experiments
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generally differed in the detail of final spatial structures. However, when the data were

averaged over all experiments, the resulting Hi-C map contained contact domains

(TADs) that coincided with inactive nucleosome blocks and were separated by spacers

of active nucleosomes. The spatial genome organization in single cells has been re-

ported to date in two publications. Their results indicate that, indeed, the chromosome

partitioning profile obtained experimentally for a cell population is a superposition of

many individual configurations, which may substantially differ from the average profile

[104, 105]. Our model of TAD organization has an apparent advantage of being based

on the well-known properties of nucleosomes and nucleosome fibers. Saturated interac-

tions assumed for nucleosomes are an essential feature of our modeling; i.e., the num-

ber of contacts possible for a nucleosome is limited (to one contact in the simplest

case). Saturation is quite rapidly achieved in these conditions and is due to contacts be-

tween closely spaced nucleosomes. Contacts with distant nucleosomes (including those

from different blocks) are not prohibited, but are far rarer for purely stochastic reasons.

The so-called volume interactions, which are in no way determined by the known

properties of nucleosomes, were assumed in many earlier models of nucleosome fiber

behavior [106]. With volume interactions included in the model, the fiber coils into a

single globule as soon as equilibrium is achieved [107]. In the above-discussed model,

we did not take into account the architectural proteins as we did not found strong en-

richment of Drosophila TAD boundaries with deposition sites of CTCF or other known

architectural proteins [44]. This observation is in good agreement with the fact that

Drosophila does not have loop domains [108] that are easy to see on high-resolution

Hi-C maps of the human genome [46].

Other models of TAD formation emphasize the role of architectural proteins, which

are thought to pull parts of a linear segment of a chromatin fiber together to produce a

compact TAD by interacting with each other. To explain the existence of isolated

TADs, the models assume a multiplicity of architectural protein groups, each ensuring

the formation of a particular TAD [109–111]. The models seem implausible biologically

because architectural proteins are 100 times fewer than TADs even in Drosophila,

which is known to have several architectural proteins in addition to CTCF.

If TADs indeed are predominantly inactive chromatin domains separated by active

regions, then the TAD size must depend in a certain way on the gene sizes, the gene

distribution through the genome, and the relative sizes of the active and inactive gen-

ome fractions. Indirect evidence for this assumption can be found in the literature. For

instance, the average size of contact domains is 2–10 Kb in Saccharomyces cerevisiae

[50], in which a major part of the genome is active and genes are relatively small. Clas-

sical TADs were similarly not observed in Arabidopsis thaliana [49, 112], whose gen-

ome is comparable in size with the Drosophila genome, while annotated genes are

almost twice as many as in Drosophila.

Specifics of mammalian TADs
As mentioned above, genome organization in contact domains is hierarchic. The question

of the level at which contact domains should be considered to be TADs or sub-TADs is

solved to a great extent intuitively, based on the common views of average TAD sizes in

various organisms [113]. In mammals, the average TAD size is thought to be in the range of

one to several thousand Kb [90]. TADs of this size may include many (up to several tens in
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some cases) sub-TADs [46, 66, 75]. Sub-TADs are often bounded by CTCF binding sites

and correspond to the loop domains identified using high-resolution Hi-C map of the hu-

man and mouse genomes [46] (Fig. 1c), whereas TAD boundaries are enriched not only with

CTCF binding sites, but with tRNA genes, SINE retrotransposons, housekeeping genes and

active histone marks H3K4me1 and H3K36me3 as well [38]. Interestingly, the last three

properties of TAD boundaries are not mammal-specific. In Drosophila, promoter-specific

H3K4 monomethylation, ubiquitously transcribed genes and P-element integration events

are highly enriched within TAD boundaries [44], denoting the presence of basic features of

TAD boundaries such as high transcription level and open chromatin state. Sub-TADs can

substantially vary in transcription intensity and chromatin type. The orientation of the

CTCF binding sites located at the bases of loops is important for loop formation. Chromatin

loops form most often between convergent CTCF binding sites and are lost when the orien-

tation of the sites is changed by gene-engineering manipulations [114]. A model of TAD

and sub-TAD formation by loop extrusion assumes that chromatin fiber looping is driven

by certain molecular machines, such as a cohesin-involving complex [115, 116]. The cap-

ability of looping DNA was demonstrated for cohesins and condensins experimentally

[117]. The machines are thought to stop functioning at occupied CTCF binding sites. An-

other mechanism of an active looping of chromatin fibers is based on the function of RNA

polymerase immobilized in transcription factory [118]. The site of RNA polymerase loading

on DNA is rendered fixed by CTCF and cohesin, while transcribed DNA is looped out until

RNA polymerase encounters the next CTCF binding site. The mechanism agrees well with

the existence of genome-wide low-level transcription [119], clusters of similarly oriented

genes, and an asymmetric distribution of transcription starts in DNA loops bounded by

CTCF sites [120].

We think that genetic information that is not in demand is stored in TADs in the sim-

plest variant. This TAD function is prevalent in Drosophila [44]. However, genome parti-

tioning into relatively isolated structural domains came to be useful for organizing the

function of regulatory mechanisms as the genome size dramatically increased in mammals

and several other vertebrates. As regulatory networks grow in complexity and many dis-

tant enhancers arose, TADs acquired another important function of compartmentalizing

regulatory elements of the genome to restrict their spheres of influence to particular

groups of genes. Several other advantages can be assumed for the partitioning of a large

genome into relatively isolated domains. For instance, the time it takes to establish enhan-

cer–promoter communication is substantially shorter. Mechanisms that would move an

enhancer to its target promoter in a directional manner are currently not known to exist.

Enhancers and promoters move stochastically within the nucleus, and their movements

are limited by overall chromatin motility [121]. A genome locus is capable of scanning

over 0.5–0.8 μm per hour according to current estimates [121], and this rate is sufficient

for an enhancer and a promoter to meet within one TAD. If a whole chromosome terri-

tory is to be scanned at the same rate, an enhancer and a promoter will hardly meet

within the duration of one cell cycle. Compact chromatin organization in TADs should

limit the movements of broken DNA ends when a break occurs within a TAD, thus facili-

tating their correct ligation via nonhomologous end joining. On the other hand, the inter-

TAD location renders active genes more accessible to various damaging agents, and

broken DNA ends in inter-TADs should have a far greater mobility than within a TAD.

This circumstance should facilitate repair errors, potentially producing fusion genes.
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Concluding remarks
Although the importance of the 3D genome organization for regulation of gene expres-

sion has long been envisaged [122], the experimental analysis of this organization became

possible only when the appropriate tools were developed, such as 3C and derivative

genome-wide procedures [123]. Recent studies clearly demonstrated the functional signifi-

cance of the spatial contacts between remote genomic elements [124–126]. In addition,

our understanding of the levels of DNA packaging has undergone significant changes.

With the emergence of 3D genomics it became possible to revisit some long-standing

models, such as the domain model of eukaryotic genome organization [55]. Analysis of

interaction frequencies of the remote genomic elements allowed to identify self-

interacting chromatin domains,TADs [39] which appear to represent structural-functional

domains of eukaryotic genome [71, 127]. Mechanisms of TADs assembly remain largely

unclear. It is likely, that various factors contribute to their assembly. Our current results

strongly suggest that, in Drosophila, inactive chromatin domains became assembled in

compact masses (TADs) due to electrostatic interaction of nucleosomes located on neigh-

boring fibers [44]. These domains are separated by segments of chromatin fiber that har-

bor active genes. These segments remain relatively extended because highly acetylated

nucleosomes of active chromatin lost the ability to interact with each other. The whole

process of TADs formation appear to be stochastic and TAD profiles seen on Hi-C maps

emerge only as a population average. In mammals, TADs are much larger and appear to

be more complex [43, 113]. While, in Drosophila, the primary function of TADs appears

to be the storage of inactive genes [44], mammalian TADs acquire additional function in

transcriptional control [118]. Although stochastic interactions of neighboring nucleo-

somes are likely to contribute also in the assembly of mammalian TADs, the insulator

protein CTCF plays an essential role in the spatial and functional separation of these

TADs. It has been suggested that chromatin loop extrusion plays an essential role in the

formation of mammalian TADs [115, 116]. However, the nature of extrusion machines re-

mains elusive and the model still lacks direct experimental proves. Mammalian TADs

have a complex structure and are likely to be assembled from smaller looped and ordinary

domains [46]. The relation of these nested domains to the functional organization of the

genome remains to be studied.

Abbreviations
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