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Abstract

Background: This study evaluated the effects of a combined innovative training regime consisting of stochastic
resonance whole-body vibration (SR-WBV) and a dance video game (DVG) on physical performance and muscle
strength in long-term-care dwelling elderly.

Methods: Thirthy long-term-care elderly were randomly allocated to an intervention group (IG; n = 16) receiving
combined SR-WBV training and DVG, or a sham group (SG; n = 14). IG performed five sets one minute of SR-WBY,
with one minute rest between sets (base frequency 3 Hz up to 6 Hz, Noise 4) during the first five weeks on three
days per week. From week five to eight a DVG was added to SR-WBV for IG on three days per week. SG performed
a five-set SR-WBV program (1 Hz, Noise 1) lasting five times one minute, with one minute rest in between, three
days a week. From week five to eight stepping exercises on a trampoline were added on three days per week.
Primary outcome: Short physical performance battery (SPPB). Secondary outcome: isometric maximal voluntary
contraction (IMVC), and sub phases of IMVC (Fsub), isometric rate of force development (IRFD) and sub time phases
of IRFD (IRFDsub) were measured at baseline, after four and eight weeks. ANOVA with repeated measures was used
for analyses of time and interaction effects and MANOVA determined between group intervention effects.

Results: Between group effects revealed significant effects on the SPPB primary outcome after four weeks F(1, 27) =6.17;
p=0.02) and after eight weeks F(1,27)=11.8; p=0.002). Secondary muscle function related outcome showed
significant between group effects in IG on IRFD, Fsub 30 ms, 100 ms, 200 ms and IRFDsub 0-30 ms, 0-50 ms,
0-100 ms and 100-200 ms compared to SG (all p < 0.05).

Conclusions: Fight weeks SR-WBV and DVG intervention improved lower extremity physical function and muscle
strength compared to a sham intervention in long-term-care elderly. SR-WBV and DVG seems to be effective as a
training regime for skilling up in long-term-care elderly.
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Background

‘The competence of an individual to have the physio-
logical capacity to perform normal everyday activities
safely and independently without undue fatigue’ [1] sig-
nifies the functional abilities of an individual. Disability,
defined as difficulty or dependency in the execution of
the activities of daily living, is associated with increased
healthcare utilization and related costs [2]. Disability in
frail older people is considered a public health problem
[3] in which prevention has to be considered a priority
for research and clinical practice [4]. Physical activity
(PA) for the elderly is one of the major elements for gen-
eral health prevention [5]; therefore inactive or sedentary
elderly should increase their PA [6]. Despite the known
benefits of PA, residents living in long-term care (LTC)
are relatively sedentary [7, 8].

The loss of muscle mass and strength with age, coined
sarcopenia, is recognized as a major cause of disability
and morbidity in the elderly [9]. Sarcopenia describes
the progressive decline in skeletal muscle mass and
function (strength or performance) with advancing age
[10]. However, recent studies demonstrated that muscle
atrophy is a relatively small contributor to the loss of
muscle strength [11-13]. Changes in neurologic function
and/or the intrinsic force-generating properties of skel-
etal muscle are recently proposed to be responsible for
muscle weakness and motor dysfunction in the elderly
[11, 14-18]. Dynapenia has been used to coin this age-
associated loss of muscle strength and power with its
significant clinical consequences; e.g., the increased risk
for functional limitations, disability, and mortality. Dyna-
penia encompasses broader aspects of skeletal muscle
performance, and so includes strength (i.e., maximal vol-
untary force) and/or mechanical power (a product of
force - time velocity) [19] together with aspects of
neurological functioning [20, 21].

Both neurologic and skeletal muscle properties are ne-
cessary for optimal muscle force production and control
[16, 17, 22]. The nervous system’s ability to fully activate
a skeletal muscle voluntarily for example seems to be
impaired in individuals with dynapenia [23]. Further-
more, poor sensorimotor nerve function independently
predicts mobility disability [24]. Targeting neural struc-
tures through exercise is, therefore, considered import-
ant in influencing muscle strength in elderly [25].

Efficient movement function and the maintenance of
balance function during dynamic tasks; e.g., during
walking, are more complex than merely adequate force
production from the muscles [26]. For whole body
movements it is important to precisely coordinate
muscle actions. This requires sensory, biomechanical
and motor-processing strategies along with learned re-
sponses from previous experiences and anticipation of
change [27, 28]. Adequately combining three levels of
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motor control (spinal reflex, brain stem balance, and
cognitive programming) produces appropriate muscle
responses [29]. So, from these results, it can be
hypothesised that when focusing on these three levels
of motor control in a training program there will be im-
provements in muscle recruitment and timing and,
hence, physical functioning and muscle strength.
Stochastic resonance (SR) is a phenomenon in nonlin-
ear systems characterized by a response increase of the
system induced by a particular level of input noise [30,
31]. One of the first studies applying noise in humans
revealed increased sensitivity to detect sub-threshold
tactile stimuli as an effect to such an intervention [32].
Cordo and colleagues [33] were among the first to dem-
onstrate that the application of noise on human muscle
spindle receptors improved afferents sensitivity in the
human motor system and suggested, based on their re-
sults, that a stochastic-resonance based technique could
be applied in clinical settings to individuals with elevated
cutaneous thresholds; e.g., to older adults [33]. First evi-
dence that mechanical noise applied to the feet via vi-
brating insoles improved balance in standing position
stems from Pripatla et al. [34] and Collins and co-
workers [35]. Systematic reviews concluded that, com-
pared to more demanding interventions, whole-body
vibration (WBYV) as a sensorimotor training might be a
safer and less fatiguing type of exercise [36] with a bene-
ficial effect on movement skills [37] and muscle strength
[38]. Stochastic resonance whole-body vibration (SR-
WBV) has been described as stimulating sensorimotor
processes [31, 39] with a positive effect on muscle func-
tional strength [38]. The SR-WBV stimulus triggers
muscle spindles and, thereby, improves the functionality
of the muscle-nerve system [40] and adjusts afferent and
efferent signals which, in turn, are leading to “training”
effects for the sensorimotor system [41]. Muscle strength
increase following SR-WBV is mainly attributed to
neural adaptation bringing on improvements in inter-
and intra-muscular coordination [42]. See [43] for an
overview. Virtual reality training techniques may be used
to incorporate cognitive programming elements into ex-
ercise [44] and could, hence, also be part of a training
program for elderly [45]. Pilot trials with long term care
dwelling elderly showed beneficial effects on physical
performance for those adhering to an SR-WBYV interven-
tion, however, the program requires modifications that
target improved compliance with the intervention [46].
Interventions performed with frail individuals often suf-
fer from low adherence rates and are, therefore, advised
to specifically include support and motivation strategies,
as well as giving assistance to individuals to develop
both goals and the strategies to achieve these [47, 48].
The aim of this study was to assess the effects of a
sensorimotor training program with SR-WBV & Virtual
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Reality Training that was accompanied with motivational
instructions in LTC elderly on lower extremity physical
function and leg muscle properties. We hypothesised
that an intervention program that targets motor control
will effect on physical functioning and muscle strength
of LTC elderly.

Methods

Design

This study follows the publication guideline of CON-
SORT [49], in the form of a randomised controlled trial
with blinded LTC dwelling elderly individuals, randomly
divided over intervention (IG) and sham control (SG)
groups. The assessor and supervisors were not blinded.
Measurements were carried out at baseline (BASE), after
four weeks (4 W) and after eight weeks (8 W) of train-
ing. Data were collected and analysed for participants
that completed 90 % of the scheduled training sessions.
Figure 1 presents the study flow.

Participants

Inclusion criteria was: age over 65 years, able to stand with
or without walking aids, living in the Canton of Berne, be-
ing classified as Resident Assessment Instrument (RAD!
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performance level >0, having a score>18 in the Mini-
Mental Status Examination (MMSE) Test and <6 points
on the Short Physical Performance Battery. Scoring <6
points on the Short Physical Performance Battery relates
to poor physical performance and is a risk indicator for
sarcopenia [50]. Exclusion criteria were: visual disturban-
ces”, lower or upper leg prosthesis, acute joint disease,
acute thrombosis, acute fractures, acute infections, acute
tissue damage, acute surgical scars or alcohol abuse. The
sampling frame of LTC elderly fulfilling the inclusion/ex-
clusion criteria and receiving information about the study
comprised 40 individuals (Table 1). Thirty-one LTC eld-
erly agreed to participate and were reached through per-
sonal interview and/or public information events.

Randomisation

An independent research assistant performed randomisa-
tion, using a random Microsoft Excel 2010 table. The par-
ticipants were randomly assigned to either IG or SG by
means of sealed opaque envelopes distributed after the
completion of all baseline assessments. Prior to the start
of the intervention, written informed consent was ob-
tained from all participants following Ethical Committee
approval (Canton Berne; Registration number 147/12).

== CONSORT

L7 I  TRANSPARENT REPORTING of TRIALS.

CONSORT 2010 Flow Diagram

‘ Assessed for eligibility (n = 39) ‘

Excluded (n = 8)
+ cognitive deficits (n = 3)

Randomized (n= 31)

+ stroke (n=4)
+ Parkinson disease (n = 1)

L

l Allocation ) l

Allocated to intervention (n = 16)
+ Received allocated intervention (n =16)

! Follow-Up !

Allocated to intervention (n = 15)

+ Received allocated intervention (n = 14)

+ Did not receive allocated intervention (dies
before baseline measurement) (n = 1)

Lost to follow-up (give reasons) (n = 0)

3 Analysis Y

Lost to follow-up (give reasons) (n = 0)

Analysed ( n=16)

Fig. 1 CONSORT flow chart of the study

Analysed (n= 14)
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Table 1 Demographic characteristics at baseline (mean + SD)

IG SG p
Sample 16 14
Sex (F/M) 10/6 10/4
Age (years) 904 +69 872+50 0.156
Age (range) 77 — 100 79 -97
Height (m) 163+0.1 158+0.1 0.256
Weight (kg) 669+ 14.2 67.1+£208 0.969
BMI (kg/cmz) 25.1£48 265+6.8 0.542

IG intervention group, SG sham group, F female, M male, BMI Body mass index,
SPPB Short Physical Performance Battery

The study protocol was registered at U.S. National Insti-
tute of Health (NCT02102919; https://clinicaltrials.gov/
ct2/show/NCT02102919).

Intervention protocol

All participants were familiarised with the SR-WBV and
the Dance Video Game (DVG) device one week prior to
the intervention period with the aim to reduce anxiety.
In the DVG session a tutorial sequence was provided to
ensure understanding of the task.

Stochastic resonance whole-body vibration

Participants were exposed to SR-WBV using a Zeptor
med® device (Frei Swiss AG, Zurich, Switzerland) while
standing freely on both legs wearing no shoes with slight
flexion of the hips, knees and ankle joints. A purpose
made seat was used to allow participants to sit down dur-
ing the one-minute breaks. Each intervention consisted of
five one-minute vibration periods with a one-minute
break between sets. The intervention took place on three
days a week, over a period of eight weeks. IG vibrated with
a basic frequency of 3 Hz and noise level 4 since a previ-
ous study showed this to be a good starting level for our
target population [51]. To ensure progression of the exer-
cise, the basic frequency gradually increased to 6 Hz, de-
pending on capabilities and feedback of the individual
concerned. The amplitude was a constant 4 mm during
the 8 weeks period. In analogy to previously described
protocols [52] progression of the exercise intensity was
based on participant’s abilities related to maintain postural
stability with decreasing base of support: from being able
to stand with parallel positioned feet without holding onto
the bars, the vibration frequency was increased gradually
from 3 Hz up to 6 Hz. From 6 Hz, the parallel standing
position changed to tandem standing and ended with this
position while dynamic squat movements were performed
on the vibrating plates. SG vibrated with a basic frequency
of 1 Hz and noise level 1 with no increase of the basic fre-
quency and no additional exercises. The 1 Hz frequency
was expected to cause no training effect [53] as previously
shown [54-56].
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Dance video game
As an additional cognitive element the DG performed the
dance video game after the SR-WBV exercise in every
training session. The dance video game was performed on
metal dance pads (TX 6000 Metal DDR Platinum Pro, 93 x
14.7 x 109 ¢cm, Mayflash Limited, Baoan Shenzhen, China)
and with a specially designed modification of the StepMa-
nia (Version 3.9) free-ware [44, 57, 58]. The dance video
game screen was projected on a white wall. A scrolling dis-
play of arrows moving upwards across the screen cued each
move, and the participants were asked to execute the indi-
cated steps (forward, backward, right, or left) when the ar-
rows reached the fixed raster graphic at the top of the
screen, and in time with different songs (32 to 137 beats
per minute). For each training session, the participants per-
formed for four songs of two to three minutes each, with a
short break of 30 s after each song. Progression of perform-
ance was controlled through beats per minute and difficulty
level and adapted based on performance of an individual.
As the levels increased, additional distracting visual
cues, e.g., “bombs,” were presented. Participants had to
ignore these cues and keep their attention focused on
the arrows. Occasionally, some arrows were drawn-out
on the target locations indicating that the participants
should remain for a while on the dance pad button on
one leg. The arrow sequences were generated using the
Dancing Monkey MATLAB script [59] and determined
step error. Electronic sensors in the dance pad detected
position and timing information that was then used to
provide participants with real-time visual feedback.
Video game dancing (DANCE) promotes fast, rhyth-
mic, and accurate foot movements and may improve
higher cognitive processing as measured by standard
neuropsychological tests [60, 61].

Motivation strategy

A professional exercise instructor (SR) coached the partic-
ipants in both groups to enhance exercise participation
and ensure that the targeted exercise frequencies and
levels, sessions duration [8], and prevention of attrition
[62] would be reached. The exercise instructor focused on
the motivation to perform functional activities in the LTC
setting [63] with the help of Motivation-Volition (MoVo)
[64]. MoVo programs, where the acronym stands for “mo-
tivation” and “volition”, have previously shown to be suc-
cesfull in reaching higher compliance and fewer dropout
rates for exercise in in-patient rehabilitation settings [65].
In brief, MoVo intervention programs encompass the fol-
lowing motivational strategies: (a) clarification of personal
health objectives; (b) contemplation of different actions to
achieve the health objectives; (c) formation of specific goal
intentions; (d) checking self-concordance of this goal
intention; and (f) reflection of outcome experiences. Fur-
thermore, MoVo puts a strong emphasis on subsequent
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volitional strategies: (a) generating implementation inten-
tions; (b) anticipating personal barriers; (c) developing
counter strategies; and (d) self-monitoring the new behav-
ior. The specific features of MoVo are described in more
detail elsewhere [64].

Primary outcome

The Short Physical Performance Battery (SPPB) [66], a
standardized measure of physical performance that as-
sesses standing balance, usual gait velocity over a 4-m
course, and the time to sit down and rise from a chair
five times as quickly as possible, has been recommended
for use as a functional outcome measure in clinical trials
in frail older persons [67]. The SPPB shows high reliabil-
ity with an ICC of 0.88-0.92 [68]. SPPB scores range
from O (lowest function) to 12 (highest function) points
and can be classified as: “weak performance” for scores
from 0 to 6 points, “mean performance” for 7 to 10
points, “good performance” for 11 tol2 points [69]. The
SPPB scale predicts institutionalization, hospital admis-
sion, mortality, and disability [66, 70, 71].

Secondary outcomes

Isometric maximal voluntary contraction (IMVC) and iso-
metric rate of force development (IRFD) of knee extension
and knee flexion were measured. The onset of force was
determined at 10 Newton (N) of each individuals force-
time curve. IMVC in N was determined as the maximum
point on the force-time curve. Submaximal force (Fsub)
values were calculated at 30, 50, 100 and 200 ms relative to
the onset of force and presented the maximum voluntary
contraction values (N) at this time point. IRFD was defined
as the maximal slope of the force-time curve between onset
of force and 200 ms (N/ms). Submaximal IRFD values
(IRFDsub) were calculated as the mean slope of the force-
time curve (AF/At) over time intervals of 0-30, 0-50, 0—
100 and 100-200 ms relative to the onset of force [72]. The
onset of force was 0 ms.

A strain gauge (Sensor KM 1500S, Megatron, Munich,
Germany) was used to measure the force values. The
participants sat on a chair with 90° knee flexion and the
dynamometers were fixed above the right (r) and left (1)
ankle joint (Fig. 2). On the command “3-2-1-go!” the
participants had to flex (flex) or extend (ex) each knee
separately for five seconds as fast and as strongly as pos-
sible against the fixation. Details of the protocol were
previously published and result in reliable measures with
intraclass correlation coefficients (ICC) ranging between
from 0.90 to 0.98 [73]. The analogue signal of the dyna-
mometer was transmitted to a measurement amplifier
(UMYV, uk-labs, Kempen, Germany), digitalised by a 12-
bit A-/D-converter (Meilhaus ME-2600i, SisNova Engin-
eering, Zug, Switzerland) with a sampling rate of 1 kHz
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Fig. 2 Set-up for the muscle strength assessment

and analyzed with the Analogue Digital Signal process-
ing software (ADS, uk-labs, Kempen, Germany).

Data processing

Dynamometer data was processed with a costum-made
software routine (MATLAB R2013a). After low-pass fil-
tering (10 Hz, 2™ order Butterworth, forward-backward)
the force-time curves were visually inspected for plausi-
bility and to determine the time points of force onset
(10 N). Force parameters were then calculated according
[72] the respective time windows.

Sample size calculation

The primary study objective was to evaluate the effect of
SR-WBV and DVG compared to sham intervention on
lower extremity physical performance as assessed with
the SPPB. Based on an estimated meaningful change in
SPPB score of 1 point [74—76], a significance level set at
5 %, a power of 80 % to detect differences with two-
sided hypothesis testing, inclusion of N =30 participants
(n =15 per group) will be needed for a two-groups pre-
post-test study design.

Statistical analyses

Statistical Package for Social Sciences (SPSS) 22.0 for
Mac (SPSS, Inc; Chicago, Illinois) was used for all statis-
tical analyses. An intention-to-treat analysis (ITT) was
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performed where missing data were replaced by mean
values of the group to which subjects were originally
allocated [77]. Kolmogorov-Smirnov test was used to as-
sess normality of data distribution. Baseline demo-
graphic data and baseline outcome data comparing IG
and SG were analyzed by unpaired students ¢-test.

A 2 (groups) x 3 (measurements) repeated measures
analysis of variance (ANOVA) was carried out to test for
interactions and time effects (Greenhouse-Geisser cor-
rected). We used nonparametric Rank-Order Tests of
Puri and Sen L Statistics to assess change over time
where Pillai’s Trace was used to calculate L [78—80].

For effect sizes (ES) assessing meaningfulness of differ-
ences within and between groups, eta-squared (n%) in
ANOVA and MANOVA was used. For 1%, an effect size
of 0.01 is considered a ‘small” effect, around 0.06 a ‘mod-
erate’ effect and 0.14 and above a ‘large’ effect [81].

Results

From the 40 LTC elderly approached, 31 agreed to par-
ticipate (Fig. 1) resulting in a 77.5 % recruitment rate for
the sampling frame. One participant from SG died be-
fore baseline measurement and eight of the 40 initially
deemed eligible were willing to participate, however, did
not fulfill the inclusion criteria (# =3 low MMSE score;
n =4 with recent stroke; n =1 with multiple sclerosis,
n =1 with parkinson disease). Training adherence rate,
expressed in %; [100 + (34 + Mean amount of train-
ings visited)] revealed a mean attendance rate of
100 % (34 of 34 intervention sessions).

The participants were willing to be randomized. Neither
subjective nor objective side-effects related to the used
intervention were reported. At baseline, no statistically sig-
nificant differences (p < 0.05) were found between groups.

Table 2 presents the primary and secondary outcomes
at baseline. All SPPB data could be used for statistical
analysis while for strength values an ITT was perfomed.
The time force-curve of four participants could not be
used for analysis. Fsub values and IRFDsub are listed in
Additional files 1, 2, 3, 4, 5, 6, 7 and 8. At baseline no
group differences were identified.

Table 2 SPPB ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction

Pillai's trace LIN-DPT p ES (n)
(" = SSget/SStor)
SPPB Total (time 022 0.30 0.742 0.22
effects)
SPPB Total 0.60 10.20 0.001* 0.60

(interaction effects)
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Primary outcome: short physical performance battery

A significant interaction effect in SPPB; F(1.7,48) = 35.2,
p<0.001) with a large ES (n2 =0.557) were determined
in favour of IG (Table 2). The between group effect
(Table 5) shows significant values after 4 weeks F(1,28 =
6.85; N2=0.20; p=0.014) and after 8 weeks F(1,28 =
13.17; n2 = 0.32; p = 0.001) in favour of IG.

Secondary outomes: strength tests
Tables 3, 4 and 5 summarise the intervention effects for
the muscle strength related outcomes. IMVC showed sig-
nificant changes over time for knee extension right and left
and knee flexion right (Table 4). Post-hoc analysis revealed
significant between group effects for knee flexion left
(p <0.02) after eight weeks of training (Table 5).

Following eight weeks of SR-WBV and DVG training,
Fsub measures at 30 ms, 100 ms and 200 ms in both right
and left leg flexion showed a significant between group
effect (p <0.01) with large ES (>0.14) compared to Sham
intervention (Additional files 1, 2, 3, 4, 5, 6, 7 and 8).

Table 3 shows the Greenhouse-Geisser univariate test re-
sults; a significant intragroup-by-time effect and group-by-
time interaction effect following eight weeks of SR-WBV
and DVG intervention on IRFD. Significant between groups
effects were both seen after 4 weeks (p < 0.05) and 8 weeks
(p <0.05) in IRFD right and left leg extension and right and
left leg flexion manoeuvres (Table 5).

Significant effects (p <0.001) and large ES>0.14 in
the right and left leg knee extension and knee flexion

Table 3 ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes IMVC (N)

Pillai’s trace LIN-D ] p ES ()
(I,Z = SSBet/SSTot)
IMVC right ex (N) (time ~ 0.001 0.006 0994  0.001
effects)
IMVC right ex (N) 0.28 541 0.01* 0.28
(interaction effects)
IMVC left ex (N) 0.01 0.007 0.993 0.001
(time effects)
IMVC left ex (N) 034 7.16 0.003* 051
(interaction effects)
IMVC right flex (N) 027 1.62 0232 027
(time effects)
IMVC right flex (N) 0.001 0.003 0997  0.001
(interaction effects)
IMVC left flex (N) 0.15 254 0.097 0.5
(time effects)
IMVC left flex (N) 0.001 0.001 0999  0.001
(interaction effects)
0.09 133 0282 009

SPPB: Short Physical Performance Battery; °: significant difference p < 0.05, *:
siginificant difference after Bonferroni adjustment p < 0.0125; ES: effect size
(N2 =.01; small effect, n2 =.06; moderate effect, n2 =.14; large effect)

IMVC: isometric maximum voluntary contraction; °: significant difference
p < 0.05, *: siginificant difference after Bonferroni adjustment p < 0.0125; ES: effect
size (N2 =.01; small effect, n2 =.06; moderate effect, n2 =.14; large effect)
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Table 4 ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes IRFD (N/ms)

Pillai's trace LIN-D ] p ES (09
(rz = SSBet/SSTot)
IRFD right ex (N/ms) 0.001 0.005 0.995 0.001
(time effects)
IRFD right ex (N/ms) 0.238 4.37 0.022* 024
(interaction effects)
IRFD left ex (N/ms) 043 10.73 0.001* 043
(time effects)
IRFD left ex (N/ms) 0.02 0.03 097 0.002
(interaction effects)
IRFD right flex (N/ms) 0.68 29.38 0.001* 068
(time effects)
IRFD right flex (N/ms) 145 6.30 0.007* 059
(interaction effects)
IRFD left flex (N/ms) 0.85 5261 0.001* 085
(time effects)
IRFD left flex (N/ms) 0.52 9.65 0.001* 052

(interaction effects)

IRFD: isometric rate of force development; °: significant difference p < 0.05, *:
siginificant difference after Bonferroni adjustment p < 0.0125; ES: effect size
(N2 =.01; small effect, n2 =.06; moderate effect, n2 =.14; large effect)

movements were shown for IRFDsub at 0-30 ms, 0-50 ms,
0-100 ms and 100-200 ms (Additional files 9, 10, 11, 12,
13, 14, 15 and 16).

Discussion

This study aimed to assess the effects of SR-WBV &
Video Dance Game Training that was accompanied with
motivational instructions in LTC elderly on lower ex-
tremity physical function and leg muscle properties. We
hypothesised that an intervention program that targets
motor control will effect on physical functioning and
muscle strength levels of LTC elderly. The results of the
study demonstrate that a combination of SR-WBV and
DVG may be used as a skilling-up exercise for LTC eld-
erly because of significant SPPB score change values in
IG (+58.8 %) compared to SG (- 4.0 %) and concomitant
significant strength improvements seen in Fsub, IRFD,
and IRFDsub in IG compared to SG.

Coaching the LTC participants in both groups with a
professional exercise instructor to enhance exercise par-
ticipation, aimed to ensure that the targeted exercise fre-
quencies and levels would be reached, and to prevent
attrition. This approach showed to be rather succesfull.
We demonstrated the feasibility of a motivational ap-
proach through high adherence rates for LTC dwelling
older people randomised in this clinical trial. Our target of
75 % compliance for the 8-weeks training project was by
far attained. Furthermore, no individuals were considered
non-compliant for the training. Thus, compliance with
the exercise interventions and retesting was excellent.
Compared with median rates for recruitment, attrition
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and adherence in falls prevention interventions in institu-
tional settings for clinical trials [82] we achieved better
rates. However, we report on values after 8 training weeks.
Nyman and Victor [82] and Fuchs and colleagues [64] re-
port values that may be expected by 12 months. In future
trials with LTC individuals the follow-up period for the as-
sessment of adherence and attrition should, therefore,
preferably be extended to a similar time frame to facilitate
comparability with reference values.

Previous studies in elderly individuals have referred to
the usefulness of WBYV training on both muscle strength
[83-87] and balance [88-91]. Playing certain types of
Video Games had an effect on muscle strength [92], bal-
ance [93], and gait [94]. However, few studies found re-
sults with similar high effect sizes as this study. The
combination of SR-WBV and DVG might, therefore, be
more effective in activating the sensorimotor system
compared to published studies that investigated solely
training using one of these approaches [51, 83, 92-95].
However, future studies that compare both approaches
against each other are needed to substantiate or refute
this assumption. It is known that traditional strengthen-
ing improves muscle strength as a result of an improved
neural drive and muscle hypertrophy [96-98]. Gruber
and Gollhofer [72] postulated that sensorimotor training
had a large influence on the neuromuscular system at
the initiation of production of rate of force development
and neuromuscular activation at the onset of voluntary
actions. The motoneuron outputs induced by sensori-
motor training comprise elevated central motor drive,
motoneuron recruitment or firing frequency, alterations
in synchronisation of motor unit firing, and reduced pre-
synaptic inhibition [72, 99]. However, the increase in
IRFD after sensorimotor training is not associated with
an increase in maximum voluntary contraction [72]. As
a sensorimotor training method, SR-WBV and DVG
seems, therefore, to mainly affect the neural drive.

The results of the present study potentially have import-
ant functional consequences. Age-related degenerative
processes, referred to as dynapenia, are considered a con-
tributing factor to loss of independence in daily living
[20]. High RED is important in various activities of daily
life where a sudden strength capacity is required, and to
counteract sudden perturbations, e.g., in postural control
to avoid falls [98, 100]. A typical contraction time involved
in such movements is between 50 to 250 ms. In contrast,
the time to reach maximum strength in most human mus-
cles is over 300 ms, e.g., for knee extensors [101]. On the
basis of the previously described reasoning it seems plaus-
ible that IMVC did not significantly change during sen-
sorimotor training. However, physical performance
improved significantly. RFD is more closely related to
physical performance than IMVC [102, 103]. The result of
this study is in accordance with Bottaro et al. [104], who
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Table 5 Between group effects at BASE, 4 W and 8 W on SPPB, IMVC and IRFD

2

2

BASE p/n 4W p/n? 8 W p/n
SPPB (Score) (IG) 29+17 0.16/0.07 56+29 0.01%/0.21 713+32 0.004*/0.26
SPPB (Score) (SG) 39+15 34+12 37412
IMVC right ex (N) (IG) 136.0 £ 584 0.62/0.01 1384 +56.0 0.81/0.002 180.1+71.2 0.10/0.09
IMVC right ex (N) (5G) 1579+ 757 1344+ 590 1478+628
IMVC left ex (N) (IG) 1404 + 893 0.97/0.001 163.1 781 0.12/0.08 1946 +90.2 0.04°/0.26
IMVC left ex (N) (SG) 1325+ 560 1195+ 540 126.1 +65.7
IMVC right flex (N) (IG) 61.0%290 0.88/0.001 7444307 0.29/0.04 8704385 0.08/0.11
IMVC right flex (N) (SG) 64.1 4310 670+317 67.0+312
IMVC left flex (N) (IG) 7354426 0.37/0.03 7904448 0.15/0.07 869+ 368 003°/0.15
IMVC left flex (N) (SG) 603 + 245 6044253 644+165
IRFD right ex (N/ms) (IG) 046+03 0.70/0.005 056+03 0.02%/0.06 072+04 0.004%/0.25
IRFD right ex (N/ms) (SG) 041403 040402 039+0.1
IRFD left ex (N/ms) (IG) 048+ 04 0.97/0.001 069+05 0.02%/0.19 082+05 0.001*/041
IRFD left ex (N/ms) (SG) 038+03 034+0.1 029+0.1
IRFD right flex (N/ms) (IG) 0.13+0.1 0.14/0.08 025+0.1 0.01%/0.23 039+15 <0.001*/0.64
IRFD right flex (N/ms) (SG) 0.19+0.1 0.15+0.1 0.15+0.1
IRFD left flex (N/ms) (IG) 0.17+0.1 0.97/0.001 026+02 0.02*/0.19 039+02 <0.001*/0.42
IRFD left flex (N/ms) (SG) 0.15+0.1 0.14+0.1 0.15+0.1

IG: intervention group, SG: sham group, SPPB: Short Physical Performance Battery, IMVC: isometric maximal voluntary contraction, ex: extension, flex: flexion, N:
Newton, IRFD: isometric rate of force development, N/ms: NewtoN/mseconds, °: significant difference between groups p < 0.05, *: siginificant difference between
groups after Bonferroni correction p < 0.025, n*: effect size: n?=.01; small effect, n> = .06; moderate effect, n =.14; large effect

were able to find an increase in RFD in parallel with an
improvement in physical performance.

This study presents a mean change after four weeks of
about 2.7 points and after eight weeks of 4.2 points on
the SPPB scale in the IG. After four weeks the SG shows
a mean change of about -0.5 and after eight weeks a
mean change —0.2 points on the SPPB scale. Changes of
about 1 point on the SPPB scale are substantial [105].
From a clinical standpoint, low SPPB point scores have a
predictive value in activities in daily living [69], loss of
mobility [106], admission to nursing facilities, disability
[66, 69], hospitalization [107] and mortality [108]. In
addition, physical performance measures have been used
to test the efficacy of preventive strategies [109]. An im-
provement on the SPPB point scale through SR-WBV
and DVG may reduce the risk of major mobility disabil-
ity. Maintaining mobility is a central component in sus-
taining independence in daily living. Drey et al. [105]
described that muscle strength and muscle power during
follow up interventions have been shown to be equally
beneficial for increasing physical function in elderly indi-
viduals. Future studies should be designed with adequate
follow up measures to further investigate and record the
possible impact of SR-WBV and DVG on the activities
of daily living.

An additional advantage of this current study over pre-
vious WBYV or DVG investigations in the elderly is the use
of the classification system defined by Zeyfang and Braun
[110]. Elderly individuals are not a homogeneous group.
There are biologically elderly individuals who still feel
young at heart, having a high physical fitness and perform-
ance level, and anticipating a few decades of life expect-
ancy ahead of them. On the other spectrum frail elderly
can be situated. Therefore, functional status of participat-
ing older individuals should be emphasized in training
studies. To manage elderly individuals’ needs in consider-
ation of diagnostic or treatment goals or maintenance of
health, the framework “Go-Go, Slow-Go and No-Go”
could be used. This classification was introduced by Zey-
fang and Braun [110] classifying older adults as “being an
independent person” (Go-Go); “being a needy person with
a slight handicap” (Slow-Go); and “being a person in need
of care with severe functional limitation” (No-Go). The
need for care may be defined as depending permanently
on assistance (No-Go) or depending on support in every-
day activities such as dressing, body care, eating, using the
toilet, mobility, and planning the day (Slow-Go) [111]. A
systematic review indicated that older adults categorized
in these groups react differently when provided with the
same training stimuli [38]. Our study reflects the need to
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consider the functional status of the included participants.
Bautmans et al. [88] included all residents in a nursing
home within dependence categories “O” (do not need as-
sistance), “A” (need assistance in two ADLs: washing and
dressing) and “B” (require assistance in three ADLs) ac-
cording to the scale of Katz et al. [112]. When their partic-
ipants are categorised with our classification it becomes
apparent that only Go-Go and Slow-Go elderly were in-
cluded. This finding is reflective of the observation that
there are only few studies [51, 83, 95, 113] that have fo-
cused separately on the Go-Go, Slow-Go and No-Go clas-
sification of older individuals.

There are some limitations in this study that should be
mentioned. It was a single blind study. Studies where the
examiner is not blinded might be at a higher risk of at-
trition [114] or assessment bias [115]. Future studies
should, therefore, try to replicate our findings using a
design where the examiner is blinded. No long-lasting
effects follow-up measurements were obtained on the
impact of the program on functional performance,
strength or fall rates. Future studies should carry out
such follow-up measurements to evaluate lasting effects.
Furthermore, we used performance (SPPB) and impair-
ment level (lower body muscle strength) based measures
as proxies for PA [116, 117]. Although these measures
are correlated and randomised clinical trial intervention
studies in older adults show that PA improves measures
of physical performance [109, 118] future studies should
include quantified measures of PA instead of proxy
measures.

Conclusions

During SR-WBV and DVG intervention, three times a
week within eight weeks physical performance and rate
of force development improved significantly compared
to sham intervention in No-Go (need-of-care) elderly
residing in LTC. The results of this study indicate that
SR-WBYV and DVG can be used as a skilling up training
regime for No-Go elderly individuals. Future investiga-
tions are warranted and should include follow-up mea-
sures, together with additional measures of functional
strength, balance, gait and fall risk.

Endnotes

'The ADL Hierarchy Scale of the RAI groups activities
of daily living according to the stage of the disablement
process in which they occur. Early loss ADLs (for ex-
ample, dressing) are assigned lower scores than late loss
ADLs (for example, eating). The ADL Hierarchy ranges
from 0 (no impairment) to 6 (total dependence); source:
Morris JN, Fries BE, Morris SA. (1999) Scaling ADLs
within the MDS. Journals of Gerontology: Medical Sci-
ences 54(11):M546-M553)

Page 9 of 12

Additional files

Additional file 1: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes Fsub 30 ms (N). (DOCX 18 kb)

Additional file 2: Outcome Fsub 30ms (N) data and between group
comparison at BASE, 4 W and 8 W. (DOCX 19 kb)

Additional file 3: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes Fsub 50 ms (N). (DOCX 19 kb)

Additional file 4: Outcome values af Fsub 50ms (N) data and between
group comparison at BASE, 4 W and 8 W. (DOCX 19 kb)

Additional file 5: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes Fsub 100 ms (N). (DOCX 18 kb)

Additional file 6: Outcome values af Fsub 100ms (N) data and between
group comparison at BASE, 4 W and 8 W. (DOCX 20 kb)

Additional file 7: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes Fsub 2000 ms (N). (DOCX 18 kb)

Additional file 8: Outcome values af Fsub 200ms (N) data and between
group comparison at BASE, 4 W and 8 W. (DOCX 19 kb)

Additional file 9: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes IRFDsub 0-30 ms (N/ms). (DOCX 18 kb)

Additional file 10: Outcome values af IRFDsub 0-30 ms (N/ms) data and
between group comparison at BASE, 4 W and 8 W. (DOC 36 kb)

Additional file 11: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the secondary
outcomes IRFDsub 0-50 ms (N/ms). (DOC 30 kb)

Additional file 12: Outcome values af IRFDsub 0-50 ms (N/ms) data and
between group comparison at BASE, 4 W and 8 W. (DOC 36 kb)

Additional file 13: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes IRFDsub 0-100 ms (N/ms). (DOC 30 kb)
Additional file 14: Outcome values af RFDsub 0-100 ms (N/ms) data
and between group comparison at BASE, 4 W and 8 W. (DOC 36 kb)

Additional file 15: ANOVA with repeated measurements (ranks)
intergroup-by-time effects and group-by-time interaction for the
secondary outcomes IRFDsub 100-200 ms (N/ms). (DOC 30 kb)

Additional file 16: Outcome values af RFDsub 100-200 ms (N/ms) data
and between group comparison at BASE, 4 W and 8 W. (DOC 35 kb)
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ADLs, activity of daily living; ANOVA, analyses of varianc; DVG, dance video
game; ES, effect size; Fsub, Submaximal force; Hz, hertz; IG, intervention group;
IMVC, isometric voluntary contraction; IRFD, isometric rate of force
development; IRFDsub, submaximal IRFD values, Long-term care; LTC, MMSE,
Mini-Mental Status Examination; ms, millisseconds; N, Newton; N/ms, Newton/
milliseconds; RAI, Resident Assessment Instrument; RFD, rate of force develop-
ment; SH, sham group; SPPB, Short Physival Performance Battery; SR-WBV, sto-
chastic resonance whole-body vibration; WBV, whole-body vibration.
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