
Grech et al. The Journal of Headache and Pain          (2022) 23:127  
https://doi.org/10.1186/s10194-022-01494-w

REVIEW

Alterations in metabolic flux in migraine 
and the translational relevance
Olivia Grech1, Matilde Sassani1,2, Gisela Terwindt3, Gareth G. Lavery4, Susan P. Mollan5 and 
Alexandra J. Sinclair1,2* 

Abstract 

Background:  Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the 
development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies 
have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude 
to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance 
of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine.

Main body:  Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibit-
ing hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose 
hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the 
incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency 
and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related 
peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in 
metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic 
function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet 
unknown.

Conclusion:  Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy 
stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of 
altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal 
studies in identifying targets of biomarker or therapeutic development.
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Background
Migraine is a highly prevalent and disabling disorder, 
affecting over 1 billion people worldwide [1] and ranking 
the leading cause of disability amongst neurological con-
ditions [2]. In addition to economical loss, migraine sig-
nificantly reduces quality of life, [3] and is often comorbid 

with stress, anxiety and depression [4]. In recent years 
there has been development of effective migraine thera-
peutics which target the release of the nociceptive neuro-
peptide, calcitonin gene related peptide (CGRP). Although 
these agents are effective at reducing migraine days and 
improving quality of life [5], the factors which contribute 
towards the precipitation of headache attack in those with 
migraine remain unclear.

Migraine is a prevalent feature of both mitochondrial 
and metabolic disorders (lifetime prevalence of 61% for 
mitochondrial [6] and 1-year prevalence of 11.9% in men 
and 22.5% in women with metabolic disorders [7]), which 
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suggests migraine may be a common clinical manifesta-
tion of brain energy dysfunction [8]. Moreover, advance-
ment in metabolic imaging and monitoring techniques 
has led to the hypothesis that the metabolic flux is altered 
in migraine patients, [9] leading to an energetic deficit 
which could underlie headache susceptibility. This review 
aims to evaluate animal and clinical studies which pro-
vide evidence of the perturbations in metabolic flux in 
migraine. Furthermore, it will discuss the translational 
relevance of these studies and identify altered energetic 
pathways which may serve as biomarkers or targets for 
therapeutic development. 

Current understanding of migraine pathogenesis
Sensitization of the trigeminovascular system and corti-
cal hyperexcitability are two mechanisms thought to be 
crucial to pathophysiology of migraine.

The trigeminovascular system is composed of trigemi-
nal sensory neurons innervating the dura mater as well as 
cerebral and pial blood vessels. They synapse in the pars 
caudalis of the ipsilateral spinal trigeminal nucleus. The 
main projection of these nociceptive fibres is the ventral 
posteromedial thalamic nucleus, which then relays to 
the primary sensory cortex. This system is fundamen-
tal to nociception and migraine pathophysiology [10]. 
Trigeminal afferents express a range of receptors, such 
as transient receptor potential (TRP) channels, which 
are targets of nociceptive and vasoactive agents able to 
promote allodynia and hyperalgesia and, hence, induce 
headache attacks [11]. An important molecule released 
by afferents is calcitonin gene-related peptide (CGRP) 
[12], a 37-amino acid peptide implicated in migraine and 
a target of recent effective migraine therapeutics [13–17].

Hyperexcitability of the cerebral cortex is also thought to 
contribute towards migraine pathophysiology [18]. It has 
been hypothesised that hyperexcitability of trigeminovas-
cular neurons may account for headache during migraine 
attacks in the absence of aura. Hyperresponsiveness of the 
visual cortex may result in photophobia or of the audi-
tory cortex which corresponds to avoidance of noise [19]. 
Moreover, Familial Hemiplegic migraine (FHM), features 
mutations in calcium, ATP or sodium channels which 
result in a lowered threshold for neuronal activation. One 
mechanism of hyperexcitability which may contribute 
toward headache pathophysiology is cortical spreading 
depression (CSD): a wave of depolarisation across the cor-
tical surface, leading to release in neuropeptides and alter-
ations in cerebral blood flow [20, 21]. Functional imaging 
studies have associated this neurophysiological event with 
migraine aura: [22] a period of temporary visual distur-
bances and focal neurological symptoms that can precede 
a migraine attack [23]. Mechanistic insights from ani-
mal studies suggest that CSD can also activate meningeal 

nociceptors and, hence, may contribute towards headache 
pain [24]. Cortical spreading depression is of particular 
importance to this review as it is a metabolically stressful 
event and has been hypothesised to be triggered by or lead 
to, an energetic imbalance in migraine patients [25].

Dysfunctional glucose metabolism in migraine
Glucose is the major energy substrate of the brain. It 
diffuses across the blood–brain-barrier via the glucose 
transporter GLUT1 and can be taken up by neurons via 
GLUT3 [26]. Its major metabolic pathways are: glycolysis 
(yielding ATP molecules as well as pyruvate or lactate), 
glycogenesis (providing glycogen stores which can be uti-
lised during hypoglycaemia or ischaemia) and the pen-
tose phosphate pathway (involved in ribose-5-phosphate 
and NADPH metabolism). Pyruvate can be metabolised 
in the tricarboxylic acid (TCA) cycle following its oxida-
tive decarboxylation into Acetyl CoA via the highly regu-
lated and irreversible pyruvate dehydrogenase reaction 
(Fig. 1).

Glucose metabolism is fine-tuned within and among 
cells to ensure maintenance of adequate concentra-
tions of substrates. At rest, the metabolism of the brain 
is compartmentalised between neurons and astrocytes; 
neurons can rely on both glycolytic and oxidative metab-
olism, whereas astrocytes tend to be primarily glycolytic 
and can metabolically support neurons [27]. At times 
of increased energy demand, glycolysis is upregulated 
in neurons as the pathway can provide ATP at a faster 
rate than mitochondrial oxidative phosphorylation [28]. 
Hypoglycaemia leading to depleted glucose supply or 
dysfunctions in glucose uptake and glycolysis can have 
deleterious effects on cerebral function and have been 
demonstrated in migraine.

In vivo murine models have been useful in providing 
in-depth understanding of mechanisms linking abnor-
mal glycolysis and migraine (Table 1). In rodents, hypo-
glycaemia induced by food deprivation or insulin was 
shown to reduce CSD threshold whilst increasing its 
duration [29, 30]. Spontaneous depolarisation events, 
which are analogous to anoxic depolarisation, have 
also been recorded in hypoglycaemic rats [31]. These 
studies propose the theory that inability to maintain 
ionic homeostasis, due to depleted ATP production, 
may increase excitability of cortical tissue and, there-
fore, susceptibility to CSD. In contrast, hyperglycaemia 
provided a protective effect, increasing the electrical 
threshold and reducing the frequency of potassium 
chloride-induced CSDs [29]. In other models however, 
both glucagon (increasing blood glucose) and insu-
lin (decreasing blood glucose) inhibited dural-evoked 
neuronal firing in the trigeminocervical-complex 
[32]. These studies were very useful to determine that 
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trigeminal nerves are glucose responsive, and suggest a 
role for hormones regulating metabolic homeostasis in 
pain (further detailed in sections below) [32].

In clinical practice, migraineurs often report that 
attacks are precipitated by fasting or skipping meals, [33] 
and indeed food deprivation was associated with head-
ache in 58% of patients with frequent migraine or ten-
sion type headache [34]. In addition to being a migraine 

trigger, hypoglycaemia is thought to have a causative role 
in fasting headache, defined as occurring following 16 h 
of fasting and resolving within 72 h of food intake [23]. 
Another example is the GLUT1 deficiency syndrome: it 
results in impaired facilitated diffusion of glucose into the 
brain and can cause epileptic encephalopathy, however, 
there are milder phenotypes that demonstrate hemiplegic 
migraine [35, 36]. It is plausible that GLUT1 deficiency 

Fig. 1  Hypothesised alterations in metabolic flux which may contribute to migraine pathophysiology. The activity of numerous vital metabolic 
pathways is altered in migraine patients, which may lead to the upregulation of nociceptive peptides. Moreover, metabolic hormones including 
insulin and amylin act on receptors implicated in nociception in trigeminal nerves and vasodilation in endothelial cells, pathways which are 
both involved in migraine pathophysiology. α-KG; α-ketoglutarate, ADP; Adenosine di-phosphate, AMY1; Amylin type 1 receptor, ATP; Adenosine 
tri-phosphate, CGRP; Calcitonin gene related peptide, CoQ; CoenzymeQ10, Cyt c; Cytochrome C, FAD; Flavin adenine dinucleotide, GLUT; Glucose 
transporter, TCA; tricarboxylic acid cycle
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causes a reduction of the major energetic substrate of the 
brain and may trigger headache attacks via insufficient 
ATP production. Interestingly, hemiplegic migraines 
resolved with a modified Atkins diet which supplies 
ketone bodies as an alternative energy source [35]. This 
observation further supports the theory that metabolic 
imbalances are highly relevant to migraine and may be 
corrected by providing appropriate metabolic support.

The gold standard to assess cerebral glucose uptake 
in vivo in patients is 18F-Fluorodeoxyglucose PET (18F-
FDG PET) which has provided further evidence for the 
role of downregulated glycolysis in migraine. The cer-
ebral areas affected by glucose hypometabolism appear 
to be different in episodic migraineurs compared to 
chronic patients. In episodic migraineurs both with and 
without aura, hypometabolism has been detected in tem-
poral [37], and fronto-temporal [38] regions involved in 
pain processing, whereas prefrontal cortex appears to be 
implicated in chronic patients [39]. Hypometabolism was 
also associated with disease duration in patients with and 
without aura, [37, 39] suggesting that repeated migraine 
attacks and activation of nociceptive regions may lead 
to abnormalities in glucose metabolism. Hypometabo-
lism was improved in episodic migraine patients follow-
ing external trigeminal nerve stimulation, which also 
decreased migraine attack frequency [38]. These studies 
suggest that improving glucose availability and utilisa-
tion may offer a prophylactic solution in some migraine 
patients and is an avenue to be explored further to 
expand available migraine treatment options.

Lactate
In the absence of sufficient oxygen, lactate is produced via 
anaerobic glycolysis of pyruvate (Fig. 1), hence, it has often 
been used as a pathological marker of hypoxia. However, 
lactate is routinely produced by specific cells and is an 
important signalling molecule involved in regulating neu-
ronal plasticity, excitation, and homeostasis [40].

Results of animal and clinical studies suggest that lac-
tate excess may be related to CSD. This hypothesis was 
corroborated in rat proton magnetic resonance spectros-
copy (1H-MRS) studies during CSD, [41] and also sup-
ported by analyses of metabolites in brain tissue which 
demonstrated increased lactate, reduced glucose and pH. 
These results suggest the occurrence of lactic acidosis 
in neuronal tissue, therefore it is possible that vascular 
changes during CSD may lead to tissue hypoxia and the 
preferential use of anaerobic processes [42]. Not only is 
anaerobic glycolysis less efficient at ATP production, but 
it is plausible that it may also delay the recovery period, 
which is particularly energy intense. Interestingly, some 
studies have shown that during the metabolically chal-
lenging period following a CSD, lactate is produced in 

excess by astrocytes and utilised as an energy substrate 
by neurons [43]. Although healthy neuronal tissue dem-
onstrates plasticity to changes in energetic flux in  vivo, 
this process may become pathological during chronifica-
tion of migraine and repeated CSD events, possibly via an 
impaired astrocytic-neuronal interaction.

Further evidence for the role of lactate in migraine 
comes from studies conducted in humans  (Table  1). 
Upregulated lactate concentrations have been shown 
in migraine patients both with and without aura dur-
ing interictal periods in direct measurements of serum 
and plasma [44–46]. Interestingly, exercise can be 
a trigger of migraine attacks in some migraineurs, 
and, although the exact pathophysiology remains 
unknown, excessive lactate production may contribute 
towards aetiology. For example, in a study including 20 
chronic migraine patients and 20 controls, lactate was 
increased in migraine in comparison to controls dur-
ing aerobic exercise (although significant results did 
not survive correction for multiple comparisons) [47]. 
1H-MRS studies, which allows direct detection of lac-
tate in vivo in brain, have also demonstrated increased 
lactate in familial hemiplegic migraine [48] and in 
migraine with aura, [49, 50] although not in migraine 
without aura. These observations strengthen the link 
between CSD (which is associated to aura) and lactate 
in migraine [51].

Lipid metabolism: cholesterol
Lipids can also be utilised as an energy source and are 
stored by astrocytes. Lipid droplets can be metabolised 
via fatty acid β-oxidation to produce acetyl-CoA which 
can then be oxidised in the TCA (Fig. 1). Fatty acids can 
also cross the blood–brain-barrier, and following oxida-
tion, provide metabolic support to neurons in the form of 
ketones, NADH, acetyl CoA, and FADH2.

Dysregulation of lipid metabolism has become evi-
dent in migraine, since obesity has been associated with 
a higher risk, [52] increased frequency, [53] worse prog-
nosis and chronification of migraine [54, 55]. CGRP 
has also demonstrated a key role in lipid metabolism 
and energy homeostasis, since high fat meals lead to 
increased plasma CGRP concentrations [56]. Moreover, 
plasma CGRP concentrations were increased in obese 
women compared to normal weight controls [56]. The 
expression of several neurotransmitters and oestrogen 
receptors in adipose tissue, [57] has led to the theory that 
the hypothalamic-pituitary-adipose axis may contribute 
towards headache pathology. It is possible that CGRP has 
a pivotal role in this axis. Whilst CGRP monoclonal anti-
bodies are effective at treating migraine, their long-term 
effects on bodyweight are still unknown and would need 
further investigation.
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Alterations in blood lipids has been identified in 
migraine patients (particularly cholesterol and low-den-
sity lipoprotein -LDL-), [58–61] with higher lipid content 
in serum being associated with elevated frequency and 
severity of attacks (Table 1) [59, 60, 62].

Importantly, such direct associations with cholesterol 
and LDL may provide an explanation for the increased 
cardiovascular and stroke risk in migraine [63, 64]. 
There is a significant association between stroke and 
migraine with aura, [64, 65] and although some studies 
identified stronger associations between elevated total 
cholesterol and triglycerides and migraine with aura, 
[60], others found that patients exhibited lipid altera-
tions independent of aura symptoms [59]. Both total 
and LDL cholesterol were reduced in patients after ther-
apy, [62] suggesting that perturbed lipid metabolism is 
reversible. It is not yet known if increased cholesterol 
in migraine is a cause, an effect or correlations are due 
to underlying common factors. However, metabolite 
measurements in blood from mice following CSD also 
demonstrate alterations in lipid metabolism including 
increased prostaglandin and anti-inflammatory lipid 
mediators [66]. Additional studies in murine model are 
needed to further elucidate links between migraine, 
aura subtypes and cholesterol metabolism as well as 
pathophysiology. They could translate into changes into 
clinical practice as lowering total cholesterol and LDL 
may improve migraine [62].

Secondary headache and lipid metabolism
An association between obesity and headache is also 
evident in secondary headache disorders including idi-
opathic intracranial hypertension (IIH). IIH is character-
ised by raised intracranial pressure and features headache 
with migraine-like characteristics [67]. Over 90% of IIH 
patients are obese, [68] and the incidence of the disease 
is increasing in parallel with rising obesity rates [69]. In 
newly diagnosed female IIH patients, higher BMI and 
moderate weight gain of 5% were associated with greater 
risk of IIH [70]. Moreover, adiposity was found to be 
associated with disease activity and insulin resistance 
in IIH, with adipocytes being transcriptional primed for 
gaining adipose mass [71]. Weight loss via surgical or 
diet interventions is therapeutic in IIH and was associ-
ated with improvement in headache measures [72, 73]. 
Investigating the metabolic pathways underpinning the 
pathogenesis of IIH would be beneficial to development 
of biomarkers and therapeutic targets.

Fatty acid metabolism
Prolonged activity neurons leads to upregulated 
β-oxidation and consequently increased reactive oxygen 
species (ROS) and peroxidated fatty acids [74, 75]. Using 

high throughput mass spectrometry methods, plasma 
fatty acids were found to be differentially metabolized 
in chronic migraine patients compared to controls, with 
levels correlating with depression [76]. Improving fatty 
acid metabolism may also provide therapeutic benefits. 
This has been suggested in preliminary studies testing the 
effects of supplementation with Palmitoylethanolamide 
(PEA), an endogenous fatty acid amide found within the 
central nervous system and able to stimulate fatty acid 
oxidation [77]. PEA supplementation reduced number of 
headache attacks per month and pain intensity in paedi-
atric patients with migraine without aura, [78] whereas it 
reduced pain intensity (when given in combination with 
non-steroidal anti-inflammatory analgesics) in migraine 
with aura [79]. Moreover, diets rich in omega 3 fatty acids 
(such as containing 1.5  g of eicosapentaenoic acid and 
docosahexaenoic acid a day) were also found to reduce 
headache frequency compared with a normal intake of 
fatty acids (150  mg of eicosapentaenoic acid and doco-
sahexaenoic acid a day) [80].

Fatty acids also play a role in modulating neuroinflam-
mation, which is a function potentially of benefit in neu-
rodegenerative diseases [81]. Hence, supplementing the 
diet with sources of fatty acids is a migraine treatment 
approach that needs exploring in further randomised tri-
als which may show benefits in other conditions as well.

Mitochondrial function and oxidative phosphorylation
Healthy neurons rely primarily on oxidative phosphoryla-
tion for energy, a process hosted by mitochondria which 
are vital organelles.

For the investigation of mitochondrial function in vivo, 
most models utilise CSD as a mechanism of migraine. 
Use of two-photon fluorescent imaging to measure the 
ratio of autofluorescent reduced NADH to non-fluores-
cent NAD+ allows quantification of changes in mito-
chondrial redox potential [82]. Using this method, it has 
been possible to observe an initial surge in NADH oxida-
tion and ATP production followed by a prolonged period 
of depleted oxidation [42, 83, 84]. It is plausible that this 
prolonged period of reduced NADH utilisation may be 
due to the limited supply of oxygen in neural tissue due 
to vascular changes during CSD [42]. Moreover, repeti-
tive CSD events were able to gradually decrease baseline 
fluorescent changes, suggesting that chronic CSD events 
may lead to long-term alterations in the oxidative capac-
ity of the tissue [84]. In addition to reduced oxidative 
capacity, CSD also resulted in a decreased mitochon-
drial membrane potential and therefore activity of the 
ATP synthase in rats [85]. Dural exposure to inflamma-
tory soup resulted in a reduced spare respiratory capac-
ity, specifically in the trigeminal nucleus caudalis in acute 
brain slices [86]. In these models, reduced mitochondrial 
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function not only resulted in depleted ATP supply, but 
also in increased production of reactive oxygen species 
and calcium influx, which may all contribute towards the 
pathology of headache besides altering metabolic flux.

The modality of choice to investigate mitochondrial 
function in  vivo in humans is 31-Phosphorus magnetic 
resonance spectroscopy (31P-MRS). Studies in migraine 
have consistently highlighted primary mitochondrial dys-
function in patients as evidenced by increased ADP in 
those with aura and FHM [87–89] and decreased phos-
phorylation potential (indicating reduced available free 
energy) in both patients with and without aura (Table 1) 
[90–92]. Together these results are consistent with those 
reported in 31P-MRS studies of mitochondrial cytopa-
thies and some neurodegenerative conditions such as 
amyotrophic lateral sclerosis [93, 94]. Results suggest 
an imbalance between energy demand and production 
which may be the underlying reason for inability to main-
tain optimal intracellular ionic milieu and the reduced 
threshold for migraine attack. 31P-MRS data in patients 
may reciprocate findings in CSD animal models, since 
migraine with aura patients most frequently demonstrate 
alterations in mitochondrial function. Results regard-
ing changes in ATP concentrations remain divided, with 
most studies either not reporting ATP levels, or concen-
trations remaining unchanged or similar to that of con-
trols [95]. ATP may remain constant whilst free energy 
is reduced since depleted ATP is demonstrated mostly 
in necrotic tissue, [96, 97] which is not typically a fea-
ture of migraine. Some further indirect evidence was 
provided by analysis of the transcriptome of peripheral 
blood mononuclear cells from migraine patients, which 
also revealed alteration in pathways linked to oxidative 
phosphorylation, with the majority of altered genes being 
downregulated compared to controls [46].

Lastly, a strong argument for dysfunction in oxidative 
phosphorylation in migraine is provided by the therapeu-
tic benefits of coenzyme Q10 (CoQ10) supplementation. 
CoQ10 is an electron acceptor in the electron transport 
chain which has been shown to improve mitochondrial 
respiration in mitochondrial cytopathies [98]. Several 
trials have demonstrated the ability of CoQ10 to reduce 
migraine attack duration, [99] frequency, [100] severity 
and migraine days per month [101]. In addition to act-
ing in the electron transfer chain, CoQ10 also has an 
anti-inflammatory role which may be favourable in the 
treatment of migraine, and was able to reduce nitric 
oxide (NO), [102] TNF-α and CGRP in a placebo-con-
trolled trial [103]. Reduction in attack frequency, [104] 
and severity [104, 105] was also accomplished with use 
of riboflavin further supporting the role of dysfunctional 
oxidative phosphorylation in migraine. Riboflavin is a 
precursor of both FAD flavin adenine dinucleotide (FAD) 

an electron donor involved in complex II and flavin mon-
onucleotide (FMN), a component of complex I.

Insulin
Insulin has become a hormone of interest in migraine 
since numerous studies have identified insulin resistance 
in patients [106–109]. Resistance was also associated 
with migraine disease duration in a study which reported 
metabolic syndrome in 31.9% of chronic migraine 
patients [109]. Although there were no differences found 
between those with or without aura, identification of a 
single nucleotide polymorphism in the insulin recep-
tor gene has been found to be associated with migraine 
aura, further implicating the role of insulin function in 
hyperexcitability involved in migraine aetiology [110]. 
However, until studies are conducted comparing insulin 
function in migraine patients with obesity or diabetes 
versus obese or diabetes controls, it remains difficult to 
attribute changes in insulin resistance solely to migraine.

Animal studies have revealed that insulin may poten-
tially modulate the release of CGRP. In particular, insu-
lin can induce the release of CGRP via sensitization of 
neuronal Transient Receptor Potential Cation Channel 
Subfamily V Member 1 (TRVP1—Fig. 1) [111]. Insulin is 
also able to sensitize vascular TRPV1 receptors to induce 
vasodilation, a similar effect shown in isolated mesenteric 
blood vessels of rats [112]. In addition to their activa-
tion, vascular TRPV1 receptors are also sensitized to its 
agonists following insulin interaction, inducing a more 
pronounced vasoconstrictive effect when activated with 
capsaicin [111].

CGRP is also able to regulate insulin secretion [113] 
via TRPV1 activation, [114] potentially suggesting a 
feedback loop between excessive nociception and altered 
insulin function. TRPV1 knockout mice demonstrated 
glucose intolerance, whereas agonism of TRVP1 in 
wild type mice induced insulin secretion [114]. Moreo-
ver, CGRP infusions in rat and dog models have exhib-
ited multiple markers of insulin resistance including 
increased plasma glucose, [115] decreased glucose 
uptake, [116] impaired glycogen synthesis in muscle, 
[117] and increased hepatic glucose production [116]. 
Ex  vivo investigation of pancreatic islets in a model of 
diabetes and diet-induced obesity exhibited CGRP’s abil-
ity to block glucose-stimulated insulin secretion, insu-
lin-2 gene expression and reduce glycolytic capacity 
[118]. One may speculate as to whether insulin dysfunc-
tion may be a predisposing feature of metabolic abnor-
malities in migraine, or if it is a result of chronic CGRP 
exposure. Investigating the effects of disturbed insulin 
secretion such as in type-2 diabetes patients on CGRP 
concentrations and migraine prevalence would provide 
further evidence of a reciprocal relationship.
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Although antagonism of CGRP signalling has demon-
strated significant efficacy in migraine prophylaxis, the 
effects on insulin function have not yet been assessed 
in patients. CGRP receptor antagonism in mice has 
shown moderate improvements in oral glucose toler-
ance [119]. CGRP-α knockout mice exhibited improved 
insulin sensitivity and glucose handling in response to a 
high-fat diet [120]. In other models of diabetes and diet-
induced obesity, the use of antibodies to block CGRP-α 
also improved glucose tolerance, insulin sensitivity and 
resulted in weight loss [118]. The α isoform of CGRP may 
have a more dominant role in glucose handling, since 
inhibition of both α and β isoforms upregulated insulin 
secretion but did not affect plasma glucose concentra-
tions [121]. Since CGRP antagonism has shown promis-
ing results at improving glucose and insulin metabolism 
in vivo, it would be important to probe putative benefits 
in metabolism in patients with migraine.

Amylin
Amylin is a pancreatic hormone co-released with insulin 
in response to food intake [122]. It lowers serum glucose 
by reducing glycogen release and may have a direct role 
in trigeminal nerve sensitisation, since it shares a sub-
stantial amino acid similarity to CGRP [123]. Both amylin 
and CGRP can bind to theAMY1 receptor which is 
located throughout the trigeminovascular system [124]. 
It has also been shown to be present in elevated concen-
trations in migraine patients [125]. Moreover, a recent 
provocation study demonstrated that infusion of the 
amylin analogue Pramlintide, induced migraine attack in 
migraine without aura patients [126]. Similar studies in 
mice also indicated sensitisation following amylin infu-
sion by decreasing Von Frey thresholds and increasing 
aversion of bright light, particularly in female mice [126]. 
Squint-detecting assays, used as an automated measure 
of grimacing and pain, also detected increased squinting 
in female mice following amylin injection [127].

Whilst CGRP has become a popular target for migraine 
therapeutics, the therapeutic potentials of amylin antag-
onism have not yet been fully explored. Pramlintide, an 
amylin receptor agonist, is currently licensed for dia-
betes in the United States [128]. It may be important to 
consider headache as a side effect in diabetic patients, 
since its off-target effects may include activation of the 
trigeminovascular system.

Conclusion
The pathophysiology of migraine is evolving and may also 
feature mitochondrial and metabolic deficits. Moreover, 
migraine is prevalent in those with mitochondrial disor-
ders and structural and biochemical impairments in elec-
tron transfer chain have been identified in migraineurs 

[129]. Interesting, CGRP a major nociceptive peptide 
involved in migraine demonstrates a reciprocal relation-
ship with multiple metabolic pathways including glucose 
and lipid utilisation. It is still uncertain as to whether met-
abolic deficits result in excessive CGRP-mediated nocic-
eption or vice versa. Attributing metabolic perturbations 
exclusively to migraine may be difficult, since common 
migraine comorbidities also feature some metabolic altera-
tions such as obesity and depression [130]. However, both 
clinical and in  vivo evidence suggests that an imbalance 
between energetic demand and supply may contribute 
towards migraine pathology. Therefore, perturbation of 
metabolic pathways which exacerbate this imbalance may 
be the basis for the metabolic component of migraine.
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