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Abstract

Migraine is a ubiquitous neurologic disease that afflicts people of all ages. Its molecular pathogenesis involves
peptides that promote intracranial vasodilation and modulate nociceptive transmission upon release from sensory
afferents of cells in the trigeminal ganglion and parasympathetic efferents of cells in the sphenopalatine ganglion.
Experimental data have confirmed that intravenous infusion of these vasoactive peptides induce migraine attacks in
people with migraine, but it remains a point of scientific contention whether their site of action lies outside or
within the central nervous system. In this context, it has been hypothesized that transient dysfunction of brain
barriers before or during migraine attacks might facilitate the passage of migraine-inducing peptides into the
central nervous system. Here, we review evidence suggestive of brain barrier dysfunction in migraine pathogenesis
and conclude with lessons learned in order to provide directions for future research efforts.
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Introduction
Migraine is a prevalent neurological disorder that is
characterized by recurrent headache attacks of moderate
to severe intensity and accompanying symptoms such as
nausea, vomiting, photo-, and phonophobia [1]. Its
pathogenesis is to be explained within the framework of
the trigeminovascular system [2]. This system includes
the trigeminal ganglion and its peripheral axonal projec-
tions that innervate pain-sensitive intracranial structures,
e.g. meninges [3]. In addition, central axonal projections
arise from trigeminal ganglion cells and convey nocicep-
tive impulses to second-order trigeminovascular neurons
in the brain stem [3]. These neurons, in turn, project to
third order trigeminovascular neurons in the thalamus,
which then convey nociceptive impulses to a wide array

of cortical areas that are involved in pain processing, e.g.
the somatosensory cortex [3].
A point of scientific contention is whether the molecu-

lar mechanisms that initiate migraine attacks lie outside
or within the central nervous system (CNS) [1]. Upon
activation, peripheral projections of the trigeminal nerve
release neurotransmitters that elicit vasodilation and
modulate nociceptive transmission, e.g. calcitonin gene-
related peptide (CGRP) and pituitary adenylate cyclase-
activating polypeptide (PACAP) [3]. Intravenous
administration of these neurotransmitters can induce
migraine attacks in individuals with migraine, whereas
healthy volunteers most often develop no more than
mild headache [4]. Based on this, it becomes a question
of key interest whether these neuropeptides can cross
the blood-brain barrier (BBB) and initiate migraine at-
tacks from within the CNS. If not, this would favor a
peripheral origin of migraine.
In this Review, we examine evidence suggestive of

brain barrier dysfunction in migraine. Furthermore, we
discuss whether neuropeptides that induce migraine
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attacks have their site of action within the CNS. Lastly,
we review some of the outstanding research questions
and provide directions for future research efforts.

Brain barriers
The brain has multiple barriers to restrict non-selective
passage of solutes into brain parenchyma [5]. In the
meninges, the arachnoid barrier impedes the leakage of
solutes from fenestrated blood vessels into the subarach-
noid space that is filled with cerebrospinal fluid (CSF).
Blood vessels in the subarachnoid space consist of endo-
thelial cells that are connected by tight junctions with
similar barrier characteristics as blood vessels in brain
parenchyma but without surrounding pericytes and
astrocytic end-feet [6]. This hinders passage of solutes
from the blood to the CSF and is called the blood-CSF-
barrier (BCSFB). The arterioles that branch from the
subarachnoid blood vessels penetrate the brain paren-
chyma and constitute the brain microvasculature. The
microvasculature is part of the BBB, a dynamic interface
comprised of vascular cells (e.g. endothelium, pericytes),
glial cells (e.g. astrocytes), and neurons [5–7].
As a rule of thumb, hydrophilic molecules of less

than 620 Da cross the BBB via diffusion along the
paracellular route, and small lipophilic molecules dif-
fuse freely through the lipid membranes. However,
the majority of these freely diffusing lipophilic mole-
cules are rapidly removed from endothelial cells by
efflux transporters and do not reach the brain paren-
chyma. All other solutes require transporters located
on endothelial cells [5]. Solutes also enter the CNS
via the circumventricular organs (CVOs) that are free
of BBB and located near the ventricular system [8].
The CVOs include the following structures: area post-
rema, median eminence, pineal gland, pituitary gland,
subcommissural organ, subfornical organ, and vascular
organ of lamina terminalis [8]. Their leakiness allows
accumulation of circulating agents, but a barrier com-
prised of tanycytes with tight junctions prevents the
passage of agents into the CSF [6].

Blood-brain barrier dysfunction in migraine pathogenesis
The hypothesis of BBB dysfunction in migraine was first
proposed by Harper and colleagues in 1977 [9]. The au-
thors speculated that a leaky BBB allowed circulating
agents in the peripheral blood to enter the CNS and fa-
cilitate transmission of nociceptive impulses that ultim-
ately yield the perception of migraine pain. However,
there is currently very limited experimental evidence in
favor of this hypothesis. Three magnetic resonance im-
aging (MRI) studies found no evidence of a leaky BBB
during and outside of spontaneous migraine attacks
(Table 1) [10–12]. Two of the studies used gadolinium-
based dynamic contrast-enhanced (DCE) MRI to assess

disruption of the BBB in five regions of interest, being
the anterior, middle, and posterior cerebral area, brain
stem, posterior pons, and whole brain [10, 11]. Patients
were scanned during a spontaneous migraine attack as
well as on an attack-free day. No changes suggestive of
BBB dysfunction were identified in 19 patients with mi-
graine without aura [14] or 19 patients with migraine
with aura [15] when comparing data during and outside
of migraine attacks. There was also no association be-
tween BBB permeability and any headache feature (e.g.,
location, intensity). However, post hoc power analysis
showed that BBB permeability changes of less than 35%
in patients with migraine without aura and changes of
less than 11% in patients with migraine with aura could
not be excluded [10, 11]. Another limitation is that early
and/or transient changes in BBB permeability may not
have been detected, as median time from onset of attack
to MRI scan was 6.5 h in patients with migraine without
aura [14] and 7.6 h in patients with migraine with aura
[15]. In a third DCE-MRI study, differences in BBB per-
meability were assessed in 35 patients with migraine
with/without aura and 21 healthy non-headache controls
[12]. Patients with migraine were scanned outside of at-
tacks and the authors found no changes in BBB perme-
ability when comparing the two groups. Although they
did find a lower fractional plasma volume in the left
amygdala of patients with migraine when compared with
healthy controls [12], it is unclear whether this finding
has any relevance to BBB dysfunction during migraine
attacks.
BBB permeability has also been assessed during pro-

voked migraine attacks using positron emission tomog-
raphy – computed tomography (PET-CT) with the
radioligand 11C-dihydroergotamine (11C-DHE) (Table 1)
[13]. Migraine attacks were induced by intravenous infu-
sion of the nitric oxide donor glyceryl trinitrate (GTN)
which is a potent vasodilator known to provoke migraine
attacks in 80% of patients with migraine [16]. It should
be noted that patients were eligible for study inclusion
only if they developed a migraine attack after GTN infu-
sion whereas subjects in the control group had to re-
main free of pain following GTN infusion [13]. The
authors reported no changes suggestive of BBB dysfunc-
tion when comparing scans before and during provoked
attacks, or when comparing scans of patients to those of
controls. However, the limited spatial resolution of PET
and the usage of 11C-DHE tracer (584 Da) might impede
the detection of minor changes in BBB permeability
[13]. Taken together, it seems evident that neuroimaging
studies provide no evidence for BBB dysfunction during
migraine attacks, although early transient or minor
changes in BBB permeability cannot be fully excluded.
Dysfunction of the BBB has been evaluated by the ac-

tivity of matrix metallopeptidases (MMPs) since some
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members of this protease family seem to be impli-
cated in breakdown of the BBB [17]. In a rodent
study, cortical spreading depression (CSD) led to BBB
disruption and an increase in MMP-9 levels in cor-
tical homogenates ipsilateral to the induced CSD [18].
However, CSD was induced by three pinpricks after
removing large parts of the calvarium bilaterally and
opening the dura mater. This procedure had evidently
caused neuroinflammatory responses which, in turn,
limits the significance of the study findings. Similarly,
there is conflicting data from studies that have
assessed plasma MMP-9 levels in human subjects.
Some studies report elevated plasma MMP-9 levels in
migraine patients compared with controls [14, 15]
while others find no association between plasma
MMP-9 levels and migraine [19, 20]. Thus, it is not
possible to draw any firm conclusions based on mea-
surements of plasma MMP-9. A few limitations
should also be noted. First, MMPs are produced by
various cell types inside and outside the nervous sys-
tem. It is therefore unknown whether MMPs that are
produced in intracerebral cells reach the peripheral
circulation. Second, MMP measurements are not a

specific measure of BBB dysfunction since intracere-
bral levels of MMP-3 and MMP-9 expression were el-
evated in an animal model of epileptic seizures while
no changes in BBB permeability were observed [21].
Lastly, elevated levels of MMP-9 have been reported
in various disorders that are not presumed to have al-
terations in BBB permeability, e.g. idiopathic atrial
fibrillation [22] and rheumatoid arthritis [23].
An aspect that merits emphasis is the special case of

migraine with aura. CSD is widely recognized as the
neurobiological substrate of aura and is characterized by
a self-propagating cortical wave of electrophysiological
hyperactivity following by inhibition [24].
Based on animal data, it seems evident that CSD in-

duces inflammatory processes within the brain and men-
inges which, in turn, appears to increase the firing rate
of first and second order trigeminovascular neurons
[25–27]. A recent PET-MRI study using the ligand 11C-
PBR28 observed strong extra-axial inflammatory signals
in the meninges overlying the occipital lobe during mi-
graine with visual aura in 11 migraine patients [28]. Re-
petitive episodes of neuroinflammation in migraine
patients could result in a leaky BBB and allow passage of

Table 1 Human experimental studies of BBB integrity in migraine

Study Method Study
population

Outcomes Limitations

Amin
et al.,
2017 [10]

Gadolinium-based-DCE-MRI at rest and during
spontaneous migraine attacks. Permeability
assessed in five different brain regions located
in the anterior, middle, and posterior cerebral
area, brain stem and posterior pons.

19 MO No changes in BBB permeability on
attack versus headache-free days.
No changes in BBB permeability
between pain and non-pain side.

Power of study caused a
detection limit of 35%.
Permeability assessed using a
604 Da hydrophilic molecule.
Median time of onset of attack
to scan was 6.5 h.

Hougaard
et al. 2017
[11]

Gadolinium-based-DCE-MRI at rest and during
spontaneous migraine attacks. Permeability
assessed in five different brain regions located
in the anterior, middle, and posterior cerebral
area, brain stem and posterior pons.

19 MA No changes in BBB permeability on
attack versus headache-free days.
No changes in BBB permeability
between pain and non-pain side. No
difference in affected or non-affected
hemispheres.

Power of study caused a
detection limit of 11%.
Permeability assessed using a
604 Da hydrophilic molecule.
Median time of onset of attack
to scan was 7.6 h and no
patients were scanned during
aura symptoms.

Kim et al.,
2019 [12]

Gadolinium-based-DCE-MRI was performed
on migraine patients outside of attacks and
compared with scans of healthy controls

21 MA
14 MO
21 Healthy
controls

No difference in gadolinium BBB
permeability between patients and
controls.
Lower fractional plasma volume in left
amygdala in migraine patients

Permeability assessed using a
604 Da hydrophilic molecule.
Age of control group was not
matched with migraine group.
Changes in amygdala cannot be
directly correlated to changes in
BBB integrity.

Schankin
et al.,
2016 [13]

PET-scan and the radioligand 11C-
dihydroergotamine at rest and during GTN-
induced migraine attacks.

2 MA
4 MO
6 Heathy
controls

No binding of the radioligand to brain
parenchyma at rest or during GTN-
induced attacks in migraineurs or
healthy controls.

Limited spatial resolution of PET
Permeability assessed with 11C-
DHE with a molecular size of
583.7 g/mol.
GTN-induced migraine attacks
instead of spontaneous attacks.

BBB Blood-Brain Barrier, Da Dalton, DCE-MRI Dynamic Contrast-Enhanced Magnetic Resonance Imaging, GTN Glyceryl trinitrate, H Hour, MO Migraine without aura,
MA Migraine with aura, PET Positron Emission Tomography
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neuropeptides into the brain parenchyma [29, 30].
Further studies are needed to evaluate whether CSD-
induced inflammatory processes are associated with
changes in brain barrier permeability.

Provoked migraine attacks
The trigeminovascular system is widely considered the
anatomical and physiological substrate of migraine
pathogenesis [1]. Within this framework, parasympa-
thetic efferents of cells in the sphenopalatine ganglion
and sensory afferents of cells in the trigeminal ganglion
release, upon activation, various peptides that promote
dilation of intracranial arteries and modulate nociceptive
transmission [1]. Decades of research have established
that intravenous infusion of certain naturally occurring
peptides can induce migraine attacks in patients with
migraine while healthy volunteers develop most often no
more than a mild headache [4]. This raises the question
of whether these peptides induce migraine attacks out-
side or within the CNS.
The following peptides have been implicated in mi-

graine pathogenesis [31]: adrenomedullin (ADM), amy-
lin, calcitonin gene-related peptide (CGRP), pituitary
adenylate cyclase-activating polypeptide (PACAP), and
vasoactive intestinal polypeptide (VIP). All are potent
vasodilators and induce migraine attacks when adminis-
tered by intravenous infusion to patients with migraine
[31, 32]. They mediate their effects via G protein-
coupled receptors that, in turn, activate the cyclic adeno-
sine monophosphate (cAMP)-dependent signaling
pathway [31]. Preclinical evidence suggests that this
pathway results in the opening of ATP-sensitive potas-
sium (KATP) channels, and it has been hypothesized that
opening of potassium channels might be the final
common pathway in the genesis of a migraine pain [1].
Collectively, the neuropeptides have receptor-binding
sites that are expressed at multiple levels of the trigemi-
novascular system (Table 2) of which the extracerebral
vasculature, extracranial vasculature and the trigeminal
ganglion is not brain barrier protected.
Direct binding of neuropeptides to Aδ-fibers or

neurons in the trigeminal ganglion and subsequent
hyperexcitability has been suggested as the pain-
initiating mechanism in migraine. However, based on
the suggested intracellular pathway with KATP chan-
nels as the end station direct binding to nerve fibers
would result in hyperpolarization, and thus the vascu-
lature might be a more relevant site of action. Other
ganglia without barrier protection may also be in-
volved in migraine pathogenesis, and preclinical data
has suggested that activation of the sphenopalatine
ganglion causes release of PACAP and VIP from its
efferent fibers [1]. This mechanism is bypassed in
provoked migraine attacks where the neuropeptides

are given intravenously but could play a role in spon-
taneous attacks. It merits emphasis that ADM, amylin,
and CGRP belong to the same family of peptides
[33]. The same is also true for PACAP and VIP [34].
The molecular size of the aforementioned peptides

suggests a very limited ability to cross the brain bar-
rier (Table 3) [5]. This accords with animal studies
that have radiolabeled all peptides, except for CGRP,
and quantified the degree of BBB passage [40, 41, 43,
50, 69–71]. In rodents, injection of radiolabeled ADM
does not cross the BBB [69], whilst the peak brain
uptake of injected radiolabeled amylin is 0.11–0.13%
[40, 70]. Furthermore, injection of radiolabeled
PACAP yields a brain uptake of less than 0.07% in
rodents for both its isoforms (i.e. PACAP-38 and
PACAP-27) [43], while injection of radiolabeled VIP
results in brain uptake of 0.15% in mice and no brain
uptake in rats [41, 50].
Another method to investigate possible brain barrier

passage of migraine-inducing peptides involves the
study of their vascular responses. In this context, dila-
tion of the middle cerebral artery (MCA) has often
been used as a surrogate marker of BBB penetration.
The MCA is surrounded by the BCSFB and branches
into smaller vessels that penetrate the brain paren-
chyma. These small vessels are surrounded by the
BBB and constitute the cerebral microvasculature.
Based on this, it is assumed that lack of MCA dila-
tion by migraine-inducing peptides would suggest no
or very limited BBB passage. This, in turn, would in-
dicate that the site of action of migraine-inducing
peptides is located outside of the CNS.
The vascular responses of migraine-inducing pep-

tides have been extensively studied in vitro using ro-
dent or human MCA. These studies have found that
ADM, CGRP, both PACAP isoform, and VIP did not
elicit dilation of the rat MCA following luminal appli-
cation [35, 45, 48, 59], whilst amylin induced only a
weak dilator response [71]. Although these preclinical
studies provide evidence against a central side of ac-
tion of migraine-inducing substances, it should be
recognized that tissue preparation can affect trans-
porters located in the endothelium which, in turn,
might affect tissue permeability.
This issue is avoided when assesing vasodilation

in vivo by using ultrasound or magnetic resonance
angiography (MRA). Ultrasound of brain arteries
detects changes in blood velocity, a factor inversely
proportional to the diameter of the blood vessel.
Since the blood flow is also dependent on the vascu-
lar diameter, a decrease in MCA velocity only reflects
vasodilation if the single photon-emission computed
tomography (SPECT)-determined regional cerebral
blood flow (rCBF) is unchanged [54].
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A decrease in ultrasound assessed MCA velocity and
no change in SPECT-determined rCBF has been re-
ported after CGRP and VIP infusion [36, 51] whereas in-
fusion of ADM did not affect any of the two parametres
[39]. This suggests CGRP- and VIP-induced vasodilation
of the MCA and possibly BCSFB passage. A decrease in
MCA velocity was also reported after infusion of
PACAP-38, and PACAP-38 has previously been reported
not to affect rCBF in healthy volunteers [47, 72]. Al-
though some of the ultrasound-based studies indicate
BCSFB permeability, the results should be interpreted
with caution since this method assesses vasodilation
indirectly.
MRA enables visualization of extra- and intracerebral

arteries and direct measurement of arterial circumfer-
ences. MRA studies performed on healthy controls and
migraine patients report dilation of the MMA after infu-
sion of CGRP, PACAP-27, PACAP-38, and VIP but no
change of the MCA circumference [37, 46, 49, 53, 73].
This is consistent with no BCSFB passage and suggestive
of a peripheral site of action. Lack of brain barrier per-
meability of the neuropeptides might also explain the
lack of CNS side effects in human experimental studies
with intravenous infusion of migraine-inducing peptides.
It should also be noted that CGRP infusion did not
modulate blood-oxygen-level-dependent (BOLD) re-
sponses in the visual cortex of healthy volunteers which
is consistent with no or very limited passage of CGRP
across the BBB [74]. Taken together, the available ex-
perimental data favors the assertion that migraine-

inducing neuropeptides bind to their receptors outside
of the BBB.

Therapies targeting CGRP-signaling
The recent advent of small molecule CGRP receptor an-
tagonists, gepants, and monoclonal antibodies (mAbs)
targeting CGRP or its receptor have expanded the thera-
peutic armamentarium for migraine. Important ques-
tions have since been raised on whether these drugs can
cross the BBB and exert their therapeutic effects from
within the CNS [75]. This seems unlikely based on the
available data from an in vivo PET study in which the
authors reported very low human CGRP receptor occu-
pancy following administration of telcagepant at an effi-
cacious dose – suggestive of a peripheral site of action
for telcagepant [76]. This finding accords well with the
observation of reduced mechanical sensitivity thresholds
in rodents following intraperitoneal, but not intra-
cerebroventricular, injection of olcegepant and a mAb
against CGRP [77]. Furthermore, intravenous injection
of fluorescently-labeled fremanezumab yielded labeling
of sensory and autonomic ganglia as well as the dura
mater, whereas no fluorescent signal was observed in
structures within the CNS [78].
Collectively, it seems evident that therapies targeting

CGRP signaling are unlikely to cross the BBB which,
in turn, indicates that BBB passage is not needed to
achieve therapeutic benefits with medications for mi-
graine. It might indeed be advisable to develop drugs
that do not cross the BBB to avoid adverse effects

Table 2 Receptor binding sites within the trigeminovascular system. The table gives an overview of seven different migraine-
inducing substances and their various binding sites within the trigeminovascular system. In this table, the trigeminovascular system
is divided into the following structures: extracranial vasculature, intracranial vasculature, the trigeminal ganglion, the spinal trigeminal
nucleus, and thalamus. The binding sites have been detected by usage of polymerase chain reaction, in-situ hybridization, western
blot, or immunostaining in human , monkey , pig , or rodent tissues

Studied substance Extracranial
vasculature

Intracranial vasculature Trigeminal
ganglion

Spinal
trigeminal
nucleus

Thalamus

Extracerebral Intracerebral

CGRP [33, 88-92]

Adrenomedullin [33, 88, 91, 93]

Amylin [33, 91]

PACAP [34, 94-97]

VIP [34, 95, 97]

Levcromakalim [98-102]

MaxiPost [103-105]
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associated with CNS depression. For example, lasmi-
ditan (serotonin (5-HT) 1F receptor agonist) is an
acute medication for migraine that can cause CNS-
related side effects (incl. Dizziness, sedation, and tem-
porary driving impairment) which are likely to limit
its use in clinical practice [79–81].

Outstanding research questions
The current evidence obtained from both neuroimaging
and biochemical markers in humans suggests no disrup-
tion of the brain barriers in migraine. However, the lim-
ited sensitivity of the applied methods requires more
studies to assess the relationship between brain barrier
dysfunction and migraine pathophysiology. Future stud-
ies could use the newly developed sensitive modified
DCE-MRI method that considers the arterial input func-
tion and cerebral blood flow [82] since both these pa-
rameters could be affected in migraine. This method has
identified BBB dysfunction in early stages of cognitive
dysfunction [82]. Additionally, soluble PDGFRβ, a bio-
marker of BBB pericyte injury, could be analyzed in mi-
graine patients [83].

The limited brain barrier passage of migraine-inducing
neuropeptides suggests a peripheral origin of migraine.
However, migraine attacks can also be induced in mi-
graine patients by administration of vasoactive molecules
with BBB permeability (e.g. GTN or cilostazol [16, 61,
62]), and several questions concerning migraine origin
remain unanswered. One of them is the presence of pre-
monitory symptoms (PS) in migraine which might be
suggestive of initial activation of central structures in
migraine attacks. The underlying mechanisms of PS are
still unclear. Infusion of GTN to migraine patients in-
duced PS in 36% (12/33) of patients prior to triggered
migraine attacks [84]. In another study, GTN was found
to induce PS in a selected group of patients known to
have migraine with PS while PET-scans showed activa-
tion in various different brain areas, including hypothal-
amus [85]. In this study, however, no control group was
included, and thus changes may relate to GTN adminis-
tration rather than migraine. Furthermore, none of these
studies compared PS in patients who reported and did
not report migraine attacks. A study assessing the inci-
dence of PS in migraine patients after administration of

Table 3 Brain Barrier Permeability of Migraine-Inducing Substances

Substance Size
(Dalton)

Permeability Migraine
induction
rate

MCA changes
in rodents

MCA changes in humans

In vitro
Changes after luminal
administration in vascular
models

In vivo
Assessed by ultrasound and
SPECT

In vivo
Assessed by
MRA

CGRP 3791.3 Unknown 57% [31] No dilation [35] MCA velocity drop [36]
rCBF no changes [36]

No changes
[37]

Adrenomedullin 6028.8 Unknown 55% [38] No dilation [35] MCA no changes [39]
rCBF no changes [39]

Unknown

Amylin 3904.5 0.11–0.13% Inj/g brain
(rodents) [40, 70]

41% [42] Weak dilatory response [35] Unknown Unknown

PACAP27 3147.6 0.066% in brain
parenchyma
(rodents) [43]

55% [44] No dilation [45] Unknown No changes
[46]

PACAP38 4534.3 0.053% in brain
parenchyma
(rodents) [43]

58% [47] No dilation [45, 59] MCA velocity drop [47]
rCBF not measured [47]

No changes
[49]

VIP 3326.8 None (rodents) [50]
0.15% Inj/g brain
(rodents) [41]

71% [32] No dilation [45, 59] MCA velocity drop [51, 52]
rCBF no changes [51]

No changes
[53]

GTN 227.09 Yes 80% [16] Unknown MCA velocity drop [54]
rCBF no changes [54]

Dilation [55,
56]

Sildenafil 474.6 0.028% Inj/g brain
(rodents) [57]

83% [58] No dilation [59, 60] MCA no changes [58]
rCBF no changes [58]

Unknown

Cilostazol 369.5 Yes 86% [61], 88%
[62]

Unknown MCA velocity drop [63]
rCBF no changes [63]

Dilation [64]

Levcromakalim 286.3 Yes 100% [65] Unknown Unknown Dilation [66]

MaxiPost 359.7 Yes 95% [67] Unknown MCA velocity drop [68]
rCBF not measured [68]

Unknown

CGRP Calcitonin Gene-Related Peptide, GTN Glyceryl Trinitrate, Inj/g Injection/g, MCA Middle Cerebral Artery, MRA Magnetic Resonance Angiography, PACAP27
Pituitary adenylate cyclase-activating peptide 27, PACAP38 Pituitary adenylate cyclase-activating peptide 38, rCBF Regional Cerebral Blood Flow, SPECT Single
Photon Emisson Computed Tomography, VIP Vasoactive Intestinal Peptide. Molecular sizes obtained from PubChem (pubchem.ncbi.nlm.nih.gov)
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trigeminal signaling molecules reported no PS after
CGRP infusion but PS in 48% of patients after PACAP-
38 infusion [86]. However, CGRP and PACAP38 did not
induce more PS in patients who developed an attack
compared to those who did not develop an attack [86],
and this aspect must be studied in healthy subjects. Fur-
ther studies are needed to clarify the presence of a pre-
monitory phase in migraine which may contribute to the
discussion of migraine origin.
Additionally, several outstanding questions relate to

migraine aura. Although CSD is accepted as the sub-
strate of migraine aura, it is still unknown how CSD
arises in a seemingly otherwise healthy cerebral cortex
of migraine patients, and how it is related to the head-
ache phase of migraine. The unpredictable and short-
lasting nature of migraine aura makes it difficult to study
patients during symptoms and thereby answer outstand-
ing research questions on this matter. However, recently
a randomized, double-blind, placebo-controlled, cross-
over study reported that administration of the KATP-
channel opener levcromakalim induced aura in 10 of 17
(59%) patients suffering from migraine with aura and
migraine attacks in 14 of 17 (82%) the patients [87]. The
authors suggest that KATP-channel opening most likely
induces CSD and migraine headache via separate path-
ways since levcromakalim efficiently triggers migraine
without aura [65] and this even in some patients who
have previously experienced aura symptoms during all
their migraine attacks [87]. However, the trigger of mi-
graine aura is still unknown and future research efforts
are required to fully understand the initiation CSD and
its relation to the headache phase of migraine.

Conclusion
Brain barrier disruption has been hypothesized to play
an important role in the genesis of migraine attacks. The
current evidence suggests, however, that there is limited
experimental data in favor of this hypothesis. Nonethe-
less, it cannot be excluded that, in particular, CSD might
be associated with inflammatory processes within the
brain and meninges, ultimately causing transient brain
barrier disruption. Further studies are warranted to as-
certain whether early transient changes in BBB perme-
ability occur during the early phases of a migraine
attack.
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