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Abstract

Background: Migraine is a common brain disorder but reliable diagnostic biomarkers in blood are still lacking. Our
aim was to identify, using proton nuclear magnetic resonance (1H-NMR) spectroscopy, metabolites in serum that
are associated with lifetime and active migraine by comparing metabolic profiles of patients and controls.

Methods: Fasting serum samples from 313 migraine patients and 1512 controls from the Erasmus Rucphen Family
(ERF) study were available for 1H-NMR spectroscopy. Data was analysed using elastic net regression analysis.

Results: A total of 100 signals representing 49 different metabolites were detected in 289 cases (of which 150
active migraine patients) and 1360 controls. We were able to identify profiles consisting of 6 metabolites predictive
for lifetime migraine status and 22 metabolites predictive for active migraine status. We estimated with subsequent
regression models that after correction for age, sex, BMI and smoking, the association with the metabolite profile in
active migraine remained. Several of the metabolites in this profile are involved in lipid, glucose and amino acid
metabolism.

Conclusion: This study indicates that metabolic profiles, based on serum concentrations of several metabolites,
including lipids, amino acids and metabolites of glucose metabolism, can distinguish active migraine patients from
controls.

Keywords: 1H-NMR spectroscopy, Migraine, Biomarker, Blood, Serum

Introduction
Migraine is a common multifactorial brain disorder with a
lifetime prevalence of 15–20%, causing disability worldwide
and a three times higher prevalence in woman compared to
men [1, 2]. Migraine is characterized by recurrent episodes
of severe often unilateral pulsating headache accompanied by
nausea, vomiting and/or photo- and phonophobia lasting for
4–72 h [3]. Although much progress has been made with

unravelling its (non) genetic disease mechanisms [4], a diag-
nosis of migraine is still made by interview and physical
examination or questionnaire, as no diagnostic biomarker is
available. The lack of biomarkers, for instance in a biofluid
such as blood, has also hampered the development of novel
treatments.
Metabolomics is an established valuable approach for

biomarker identification and has been successful in re-
vealing the metabolic underpinnings of various human
diseases [5–10]. Validated biomarkers can greatly im-
prove diagnosis, prognosis and assessing effectivity of
treatment of patients, as was already shown for several
diseases other than migraine [11, 12]. Various attempts
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have been made to identify reliable biomarkers (either
clinical, genetic, radiological or biochemical) in migraine
[13–16], without much success, also not for biochemical
studies in blood [17] or cerebrospinal fluid [14]. Espe-
cially the identification of metabolites in an easily access-
ible body fluid such as peripheral blood is urgently
needed [18]. When using metabolomics either a targeted
approach that typically focuses on one or more related
selected pathways of interest or an untargeted approach
that aims to simultaneously measure as many metabo-
lites as possible from a biological sample, can be
employed. Several biochemical studies in migraine in the
past two decades explored the targeted approach by
examining a limited number of compounds, such as
amino acids [19, 20], inflammatory markers [21–23],
vasoactive neuropeptides [24–26], and (cardio) vascular
risk factors [27–29], because of their presumed role in
migraine pathophysiology. More recently, mainly be-
cause of the advent of novel treatment antagonizing cal-
citonin gene-related peptide (CGRP) or its receptor [30,
31], the field of biomarker research in peripheral blood
regained interest [32], with reports of promising possible
peripheral biomarkers in migraine [33, 34].
To search for migraine metabolite profiles in serum we

used an untargeted, hypothesis-free, approach and performed
high-throughput proton nuclear magnetic resonance (1H-
NMR) spectroscopy. This method allows for a rapid, robust,
simultaneous identification and quantification of a variety of
metabolites in large numbers of samples [35]. Here we ana-
lysed metabolite profiles in serum samples of migraine pa-
tients and controls from the Erasmus Rucphen Family
population, a large Dutch population-based family study from
the Southwest of the Netherlands in which we previously had
identified migraine cases [36]. We set out to investigate
whether metabolites identified by 1H-NMR spectroscopy are
associated with migraine by comparing metabolic profiles of
migraine patients and controls in a “real-life variation” cohort.

Material and methods
Study population
The study included participants from the Erasmus Ruc-
phen Family (ERF) study [37, 38]. This study population
is based on a genetically isolated community in the
Southwest of the Netherlands. In brief, the ERF study
population includes 3465 living descendants of 22 cou-
ples that had at least six children baptized in the com-
munity church between 1850 and 1900. Hence, study
participants were all members of a large extended pedi-
gree and all of European ancestry. All individuals 18
years and older were invited to participate.

Migraine diagnoses
Migraine was diagnosed using a validated three-stage screen-
ing procedure [2], based on International Classification of

Headache Disorder formerly ICHD-II, now ICHD-III criteria
[3, 39]. Details on the migraine case-finding procedure have
been published previously [36]. In short, first, participants
filled out a five-item screening questionnaire on headache
and aura symptoms. Next, screen-positives completed an
additional detailed questionnaire on headache and aura
symptoms. Finally, the diagnosis was validated with a tele-
phone interview by a physician trained in headache disorders.
Probable migraine patients were excluded. ERF participants
who were negative for severe headache and/or migraine
based on the aforementioned three-stage screening proced-
ure were included as controls [2, 36]. Samples from partici-
pants were collected after overnight fasting.

1H-NMR spectroscopy metabolite profiling: data
processing and quality control
Venous blood samples had been drawn by venipuncture
from the median cubital vein from participants of the
ERF study after at least 8 h fasting period. Samples were
centrifuged at 1000–2000 x g for 10 min at 4 °C and
serum was aliquoted in cryovials and stored at − 80 °C
until further use. The 1H-NMR data were generated as
part of a larger project and described by Vaarhorst et al.
[40]. All 1H-NMR spectroscopy experiments had been
acquired on a 600MHz Bruker Avance II spectrometer
(Bruker) equipped with a 5-mm triple resonance inverse
(TCI) cryogenic probe head with Z-gradient system and
automatic tuning and matching. All experiments were
recorded at 310 K. Temperature calibration was done
prior to each batch of measurements using the method
of Findeisen et al. [41]. The duration of the π/2 pulses
were automatically calibrated for each individual sample
using a homonuclear-gated nutation experiment on the
locked and shimmed samples after automatic tuning and
matching of the probe head [42].
Then, stored samples were thawed at 4 °C and mixed

by inverting the containers ten times. Samples (300 μL)
were mixed with 300 μL 75mM disodium phosphate
buffer in H2O/D2O (80/20) (pH 7.4), containing 6.15
mM NaN3 and 4.64mM sodium 3-[trimethylsilyl] d4-
propionate (TSP), using a Gilson 215 liquid handler in
combination with a Bruker SampleTrack system (Bruker,
Karlsruhe, Germany). Samples were transferred into 5-
mm SampleJet NMR tubes (Bruker) in 96-tube racks
using a modified Gilson 215 tube filling station (Gilson,
Middleton, WI, USA) and kept at 6 °C on a SampleJet
sample changer (Bruker) while queued for acquisition.
For water suppression pre-saturation of the water res-

onance with an effective field of γB1 = 25 Hz was applied
during the relaxation delay [43]. J-resolved spectra
(JRES) [44] were recorded with a relaxation delay of 2 s
and a total of one scan for each increment in the indir-
ect dimension. A data matrix of 40 × 12,288 data points
was collected covering a sweep width of 78 × 10,000 Hz.
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A sine-shaped window function was applied and the data
was zero-filled to 256 × 16,384 complex data points prior
to Fourier transformation. The resulting data matrix was
tilted along the rows by shifting each row (k) by
0.4992*(128-k) points and symmetrised about the central
horizontal lines to compensate for the skew of the multi-
plets in the F1 dimension. For T2-filtered 1H-NMR
spectra, a standard 1D Carr-Purcell-Meiboom-Gill
(CPMG) pulse sequence [45, 46] was used with a relax-
ation delay of 4 s. A pulse train of 130 refocusing pulses
with individual spin echo delays of 0.6 ms were applied
resulting in a total T2 filtering delay of 78 ms. A total of
73,728 data points covering a spectral width of 12,019
Hz were collected using 16 scans. The Free Induction
Delay (FID) was zero-filled to 131,072 complex data
points and an exponential window function was applied
with a line broadening factor of 1.0 Hz prior to Fourier
transformation. The spectra were automatically phase
and baseline corrected.

Quality control, scaling and calibration of the NMR spectra
Further data processing was performed in Matlab®
(R2009a; The Mathworks Inc., Natick, MA, USA) and
described in Vaarhorst et al. [40]. In brief, the spectra
and associated data were converted into Matlab files
using in-house code. First, the spectra were combined
into one file while removing superfluous information.
For CPMG this included dropping the imaginary part of
the spectrum, while for the JRES spectra the sum projec-
tion along the indirect dimension was taken. Quality
control (QC) on the set of 1H-NMR spectra was carried
out by examining a set of spectroscopic parameters such
as shim values and intensity of the water signal, and sub-
sequently visually inspecting the spectra. Spectra that
failed the quality control were not included for further
analysis. The remaining spectra were scaled with respect
to the sensitivity of the receiver coil. This sensitivity is
inversely proportional to the pulse length, which is
dependent on the tuning of the RF coil. After subtract-
ing a constant value as a simple baseline correction, the
spectra were calibrated with respect to the anomeric res-
onance of α-D-glucose (δ = 5.23 ppm) [47]. Since there
are small deviations of the signal position in the different
1H-NMR spectra, alignment was performed using the
correlation optimized warping algorithm by Tomasi
et al. [48]. This was performed actively for the CPMG
spectra, after which the same warping was applied to the
JRES projection. The peaks in the JRES projection were
automatically deconvoluted by fitting the spectra with
mixed Gauss-Lorentz line shapes using the Simplex
method. As the fitting algorithm incidentally converges
to a local minimum, values further from the median
than three times the interquartile range were discarded.
Using partial least square regression, the remaining

signal intensities were used to build a linear model that
predicts the intensities directly from the non-warped
spectrum, yielding also reasonable values for the cases
where the deconvolution or warping algorithms failed.
Finally, metabolites were assigned using information

from the Human Metabolome Database (HMDB) and
the Pearson correlation coefficients between the peak in-
tensities [49].

Statistical analyses and data processing
Student’s t-test and Chi-square tests were used to com-
pare demographic characteristics between cases and
controls. Raw 1H-NMR signal data were processed as
follows. Values below [mean - 4 * SD] and above
[mean + 4 * SD] were filtered out. Then normality was
assessed and data were log10-transformed when neces-
sary, using SPSS software version 20.0 (SPSS Inc., IBM,
Armonk, NY, USA). Signal data was adjusted for kinship
by linear regression in GenABEL version 1.7–0, using R
version 2.14.2 (R Foundation for Statistical Computing,
Vienna, Austria) [50]. Finally, the residuals from this lin-
ear regression model were transformed into Z-scores to
approximate normality using SPSS software version 25.0
(SPSS Inc., IBM, Armonk, NY, USA). To reduce the di-
mensionality of the data and due to possible correlations
between the parameters, elastic net regression was used
to select a subset of the most informative signals for: (1)
lifetime migraine diagnosis, and (2) a diagnosis of active
migraine (defined as having at least one severe migraine
in the last 12 months). Of note, patients likely had many
attacks in the last year as is typical in migraine patients
when they still have migraines, but data are lacking to
assess how many attacks they had and when the last at-
tack was before blood withdrawal nor do we know
whether they were on medication. Hence we consider
our migraine cases a sample with “real-life variation”
with respect to attack frequency and severity. The R
package glmnet was used with alpha set to 0.5 and 50-
fold cross-validation using R software version 3.6.1 [51].
In this cross-validation step we validated the selection of
the signals by performing our regression analysis on 50
randomly chosen samples of our study population. Elas-
tic net regression reduces variance and error and in-
creases bias and the predictive power, which leads to
better long-term prediction. However, the inferential
capability decreases, which makes interpretation difficult
as there are no uncertainties in terms of confidence in-
tervals or hypothesis testing.
In an attempt to interpret our findings, we performed

subsequent regression models. Because we had to per-
form the regression models within the unique cohort the
exact p-values of these models are no longer valid, al-
though the results may provide at least some informa-
tion whether metabolites may be involved. For the
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regression models we entered the metabolites of the
metabolic profiles in a logistic regression model to deter-
mine the weights for each signal for this population. The
linear predictor of the logistic regression model was used
as a “weighted metabolite score” (sum of regression coef-
ficients multiplied by the corresponding covariate
values). This score was used in a second logistic regres-
sion analysis to calculate odds ratios (ORs), p-values and
the proportion of explained variance. To determine
whether we had to correct our logistic regression model
we independently assessed the influence of sex, age,
body mass index (BMI) and smoking status on the
“weighted metabolite score”, by visually inspecting strati-
fication plots and performing a linear model, where the
“weighted metabolite score” was modelled as a function
of migraine status. We included age, sex, BMI and
current smoking status as covariates in the logistic re-
gression model. To validate the findings from the previ-
ous analysis we performed analysis of variance
(ANOVA) in which we compared the performance of
the full model with the identified scores for migraine
with the performance of a model containing only infor-
mation on age, sex, BMI and smoking.

Results
Study population
We conducted a case-control study with in the ERF popula-
tion cohort and included 2088 participants in the study of
which 360 were lifetime migraine patients and 1728 without
severe headache served as controls. Eight-hour fasting serum
samples were available from 313 migraine patients and 1512
controls that were used for 1H-NMR spectroscopy profiling
(see Fig. 1).

Signal detection, assignment and processing
A total of 100 metabolite signals were detected in the
JRES projection and quantified in the 1H-NMR spectra
[37]. For 82 signals, metabolites could be assigned.
These 82 signals represented 49 different metabolites
(See Additional file 1 for signal assignment). The other
18 signals could not be annotated. In total, good-quality
1H-NMR spectra were obtained from 289 migraine pa-
tients and 1360 controls. For 19 signals (out of 100) out-
liers were removed and nine signals were log10-
transformed (See Additional file 1). The remaining data
points of the 100 signals were used for the association
analyses with migraine.

Demographic characteristics
The demographic characteristics of the study population of
whom good 1H-NMR data were obtained are shown in
Table 1. Migraine patients tended to be younger (p= 0.013)
and more often were female than controls (p < 0.001). In
addition, lifetime migraine patients more often than controls

were smokers (44.6% cases vs. 35.1% controls p= 0.006). No
difference in BMI was observed between cases and controls
(p= 0.934). Of the 289 lifetime migraine patients, 150 (52%)
reported at least one severe migraine attack in the 12months
preceding the interview and were assigned to the group of
“active migraine patients”. The active migraine patients con-
sisted of 124 women (83%), had a mean age of 44 (SD±
11.4), 71 (47.3%) were currently smoking and had a mean
BMI of 26 (SD± 4.9). Next, we assessed the influence of age,
sex, BMI and smoking (see Additional file 2) on the weighted
metabolite score. All covariates showed to be of influence on
the weighted metabolite score and were added to the logistic
regression model.

Association of metabolites with lifetime migraine
diagnosis
Elastic net regression analysis of all 289 migraine patients
and 1360 controls for all 100 signals identified six 1H-NMR
signals as the best prediction subset. These signals were rep-
resentative of four different metabolites (isoleucine, methio-
nine, 1,5-anhydrosorbitol and creatine) and one unknown
signal (Table 2). Subsequent logistic regression analysis
showed support for association (odds ratio (OR) = 2.72; 95%
confidence interval (CI) 1.97–3.75; p= 1.28 × 10− 9) explain-
ing 3.9% of the variance in migraine status (Nagelkerke R2).
After correction for age, sex, BMI and smoking the associ-
ation no longer showed support for association (OR= 1.49;
95% CI 0.99–2.23; p= 0.051).

Association of metabolites with active migraine diagnosis
Next, we performed an elastic net regression on all 150
active migraine patients and 1360 controls for all 100
signals. This analysis identified 22 predictive signals. The
subsequent logistic regression analysis was performed on
146 cases and 1343 controls, as not all subjects had suffi-
cient signal data for all 22 signals. The regression
showed support for association between the signal data
and active migraine status (OR = 2.72; 95% CI 2.09–3.54;
p = 1.35 × 10− 13) explaining 8.5% of the variance, this as-
sociation remained after correction for sex, age, BMI
and current smoking status (OR = 1.84; 95% CI 1.34–
2.53; p = 1.64 × 10− 4) with a total explained variance of
12.3% (Nagelkerke R2). Hosmer and Lemeshow shows a
good fit of the final model (p = 0.688). The outcome of
our ANOVA analysis (p = 7.1 × 10− 5) added to the evi-
dence for involvement of these metabolites in active mi-
graine patients. The majority of the 22 signals have been
annotated to metabolites, but four remained unknown
(Table 2). The known metabolites that were relevant to
distinguish metabolic profile of migraine patients from
controls were cholesterol, isoleucine, leucine, lipids
(CH2 and CH*2CH=CH), acetate, pyruvate, methionine,
dimethylglycine, 1,5-anhydrosorbitol, valine, myoinositol,
glucose, serine, creatinine, and proline. Our data
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suggests that there is a metabolic profile for active mi-
graine that distinguishes them from controls even after
correcting for age, sex, BMI and smoking status. Re-
markable is that five of the six signals predictive for life-
time migraine status are also predictive for active
migraine status (Table 2).

Discussion
Here we investigated metabolites identified by 1H-NMR
spectroscopy in serum of migraine patients and controls
to assess whether metabolic profiles can distinguish the
two groups. We identified 22 metabolites that were

predictive for active migraine and estimated that they
would remain predictive after correction for age, sex,
BMI and smoking status. Active migraine status was
linked with metabolic profiles with more (22) metabo-
lites, when compared with lifetime migraine (6), suggest-
ing that active migraine patients may have a more
disturbed metabolic profile compared to lifetime mi-
graine patients, at least among the 100 measured metab-
olites. Although, based on our study, it is not possible to
directly interpret the p-values nor to make association
on an individual metabolite level among the total 22
compounds associated with active migraine, it is

Fig. 1 Flow chart of the patient flow and analysis steps

Table 1 Demographic characteristics

Variable Lifetime migraine patients
(N = 289)

Controls
(N = 1360)

p-value Active migraine patientsb

(N = 150)
p-value

Age (years) 46.5 ± 12.1 48.7 ± 14.5 0.013c* 44.0 ± 11.4 < 0.001c*

Female sex (%) 220 (76.1) 673 (49.5) < 0.001d* 124 (82.7) < 0.001d*

BMI 26.9 ± 5.0 26.8 ± 4.6 0.934c 26.3 ± 4.9 0.219c

Smokinga (yes) (%) 129 (44.9) 481 (36.0) 0.006d* 71 (47.3) 0.008d*

MO patients 163 (56.4) – – 77 (51.3) –

Values are expressed as absolute values and percentage or mean ± SD. Numbers and proportions may not add up to total of 100 due to rounding or missing
values; aDefined as currently cigarette smoking; bDefined as having at least one severe migraine attack in the last 12 months; cStudent’s t-test; dChi-square Test;
*Significant p-values (p < 0.05). Missing values in lifetime migraine patients for BMI (n = 2), smoking status (n = 2) and in controls for BMI (n = 24) smoking status
(n = 27). MO =migraine without aura, BMI = body mass index
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remarkable that the majority of these 22 metabolites
have been (indirectly) implicated in migraine before. In
our study, we found metabolites involved in lipid metab-
olism namely; cholesterol, and two types of lipids (CH2
and CH*2CH=CH). A number of studies have previously
implicated lipid metabolism in migraine for instance, ep-
idemiologic studies have shown that obesity is a risk fac-
tor for migraine and that there is a comorbidity of
cerebrovascular and cardiovascular disease and migraine
[52, 53]. Some studies found an elevated total choles-
terol, LDL-cholesterol, or triglycerides, and decreased
levels of HDL-cholesterol in migraine [54, 55], whereas
several other studies found no significant differences in
lipid profiles [54, 56]. A recent meta-analysis encom-
passing 2800 migraine patients and 7353 controls from
eight Dutch cohorts, using a different 1H-NMR metabo-
lomics platform in a systematic approach, also showed
alterations in HDL metabolism, in that study defined by
a decreased level of lipoprotein A1 and a decreased free
cholesterol to total lipid ratio in small HDL subspecies
[55]. Neurovascular and endothelial dysfunction are be-
lieved to be an underlying cause for the increased risk in
cerebrovascular and cardiovascular diseases in migraine

patients [57, 58]. At the basis of this involvement lies a
possible higher prevalence of risk factors, such as hyper-
tension and hyperlipidaemia, in migraine patients [57].
Also the involvement of lipids in migraine pathophysi-
ology has been shown in various studies [54, 55]. Re-
gardless, the exact role lipids play is complex and needs
further investigation.
Glucose is another metabolite we found that has previously

been associated with migraine either directly or via metabol-
ically associated pathways. Glucose levels and insulin metab-
olism, as well as mitochondrial dysfunction have been
known to play a role in migraine pathology [59, 60]. Still, no
association was found between migraine and diabetes type 2
[59, 61, 62]. It has been suggested that outside attacks, mi-
graine patients have an impaired insulin sensitivity and
higher fasting plasma insulin levels compared to controls [63,
64]. Recently it was shown that glucose levels were higher
during a spontaneous migraine attack compared to outside
of an attack [65]. Both 1,5-anhydrosorbitol and myoinositol,
which were part of our prediction model, are involved in glu-
cose metabolism. 1,5-Anhydrosorbitol is a naturally occur-
ring monosaccharide found in nearly all foods and
myoinositol, which is a carbocyclic sugar that is abundant in

Table 2 1H-NMR signals associated with lifetime migraine patients and active migraine patients

Lifetime migraine patients Active migraine patients

Metabolite Chemical shift (ppm) Metabolite Chemical shift (ppm)

Isoleucine 0.92847 Cholesterol 0.89006

Isoleucine 0.99919 Isoleucine 0.92847

Unknown 1.40660 Unknown 0.95118

Methionine 2.63742 Leucine 0.95702

1,5-Anhydrosorbitol 3.58832 Isoleucine 0.99919

Creatine 3.92001 Lipids (CH2)† 1.26482

Unknown 1.40660

Acetate 1.90859

Lipids (CH*2CH=CH)† 2.22215

Pyruvic acid 2.36196

Methionine 2.63742

Dimethylglycine 2.91618

Unknown 3.35396

1,5-Anhydrosorbitol 3.58832

Valine 3.59782

Myoinositol 3.62232

Glucose 3.72103

Serine 3.95567

Creatinine 4.04386

Proline 4.12106

Unknown 4.50117

Glucose 5.22921

Ppm parts per million; †The term in parenthesis indicates the structural feature of the lipids measured by 1H-NMR spectroscopy
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brain and other mammalian tissues, is synthesized from glu-
cose 6-phosphate. Pyruvate is the conjugate base of pyruvic
acid and is a key intermediate in several metabolic pathways
throughout the cell. Pyruvic acid can be produced from glu-
cose through glycolysis and it can supply energy to the cell
via the Krebs cycle in the mitochondria. One study has inves-
tigated the lactic and pyruvic acid levels in the plasma of the
migraine patients it was shown that both were significantly
higher in migraine patients than in normal controls [66].
In addition, multiple amino acids were part of our pre-

diction model for active migraine status, namely leucine,
isoleucine, methionine, valine, proline and serine. Over
the last decades, multiple amino acids have been hypoth-
esized to play a role in migraine pathophysiology [19].
Leucine, isoleucine and valine are branched-chain amino
acids (BCAAs), BCAAs have emerged as potential bio-
markers of disease as they are associated with risk of
cardiovascular disease, end-stage renal failure, and ische-
mic stroke [67]. In a small study of 37 migraine patients
and 40 controls elevated levels of isoleucine in blood
serum were found [68]. A recent study investigated
amine pathways in 20 patients with migraine without
aura, and 20 healthy subjects in serum with liquid chro-
matography coupled to mass spectrometry (LC-MS)
[69]. This LC-MS study found decreased levels of leu-
cine, isoleucine and methionine in migraine patients
compared to controls. The valine, proline and serine
concentration was not assessed directly in this study
[69]. Although glutamate/glutamine has been repeatedly
linked to migraine [70, 71], in our study the levels of
glutamine/glutamate were not part of the predictive pro-
file for migraine status.
As far as we know the other metabolites we found to

be associated with active migraine status (acetate,
dimethylglycine and creatinine) have thus far not been
associated with migraine. Acetate is a monocarboxylic
acid anion, which is metabolized mostly in peripheral
tissues. Dimethylglycine, which is a derivative of the
amino acid glycine, but it can also be a by-product of
the metabolism of choline. Dimethylglycine has been
suggested as a treatment for mitochondrial diseases [72]
and in that sense might be associated with the migraine-
glucose dysregulation. Creatine is involved in the con-
version from adenosine diphosphate (ADP) back to ATP
in muscle and is synthesized mainly in the liver from
amino acids glycine and arginine.
We here identified a metabolite profile predictive for

active migraine, a finding supported by the observation
that several of its metabolites have already been reported
in literature to be individually (in) directly associated
with migraine. We would like to emphasize again that
the focus of this study was to explore whether metabol-
ite profiles can be linked to migraine status and less to
show direct clinical relevance of individual metabolites.

A limitation of our study is that, the set of metabolites we
studied using our metabolic profiling method covers only a
small part of the human metabolome. Future, complemen-
tary, studies using different, more advanced, platforms may
identify additional metabolites associated with migraine sta-
tus. Additionally, in our study population we know to what
extent patients are related and have the opportunity to cor-
rect for this. Future studies have to show to what extent our
findings are also applicable to well-selected groups of mi-
graine patients, for instance, with respect to frequency of at-
tacks, time of last attack to blood withdrawal, possible
comorbidities, etc. Another possible limitation is that in our
study, model selection by elastic net regression was used for
predictor selection to eliminate high correlations among pre-
dictors. This might lead to reduced transferability of predic-
tion models, because correlation structures of predictors can
vary between studies. Although we corrected for age, sex,
BMI and smoking in our analysis, we cannot exclude a re-
sidual confounding effect of this variable nor of any other
variable that we have not tested. Another limitation is that
we used the same population for discovery of the associated
signals and for assessing the magnitude of the association.
Ideally, a replication study, to validate our findings, should be
performed.

Conclusions
In conclusion, using hypothesis-free metabolic profiling,
by measuring a large set of metabolites using 1H-NMR
spectroscopy, we identified a metabolomic profile con-
sisting of 22 metabolite signals (lipids, amino acids and
metabolites of glucose metabolism) that was predictive
for active migraine status.

Abbreviations
1H-NMR: Proton nuclear magnetic resonance spectroscopy; ERF: Erasmus
Rucphen Family; JRES: J-resolved spectra; CPMG: Purcell-Meiboom-Gill;
OR: Odds ratio; CI: Confidence interval; CGRP: Calcitonin gene-related
peptide

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s10194-021-01357-w.

Additional file 1. File with an overview of signals identified in the 2-
dimensional J-resolved 1H-NMR spectrum and performed transformations

Additional file 2. File with ratio stratification plots for sex, age BMI and
smoking status in lifetime migraine patients and active migraine patients

Acknowledgements
Thanks to all study participants from the Erasmus Rucphen Family and their
relatives, general practitioners, and neurologists for their contributions. We
thank Dr. Oleg A. Mayboroda, from the Center for Proteomics and
Metabolomics (LUMC), in which the NMR analyses were done, for critical
reading of the manuscript and Dr. Boukje de Vries for technical help and
support.

Authors’ contributions
AMJMvdM, GMT designed the study design. PH and AVEH were involved in
the 1H-NMR measurements and/or annotation. PH, AVEH and LSV performed

Harder et al. The Journal of Headache and Pain          (2021) 22:142 Page 7 of 10

https://doi.org/10.1186/s10194-021-01357-w
https://doi.org/10.1186/s10194-021-01357-w


the statistical analyses. All authors contributed to the interpretation of results.
AVEH made the figures and wrote the initial draft of the manuscript. All
authors critically revised and approved the final version for submission.

Funding
This work was supported by grants from the Netherlands Organization for
Scientific Research (NWO) (907–00-217, G.M.T; VIDI 91711319, G.M.T.); the
Centre for Medical Systems Biology.
(CMSB) and Netherlands Consortium for Systems Biology (NCSB), both within
the framework of the Netherlands Genomics Initiative (NGI)/NWO (to
A.M.J.M.v.d.M.); and the FP7 EU project EUROHEADPAIN (no. 602633) (to
A.M.J.M.v.d.M. and G.M.T.). They had no role in the design or conduct of the
study. The ERF study is part of EUROSPAN (European Special Populations
Research Network) FP6 STRP (no.018947 LSHG-CT-2006-01947) and also re-
ceived funding from the European Community’s Seventh Framework
Programme (FP7/2007–2013)/grant agreement HEALTH-F4–2007-201413 by
the European Commission under the programme “Quality of Life and Man-
agement of the Living Resources” of 5th Framework Programme (no. QLG2-
CT-2002-01254) as well as FP7 project EUROHEADPAIN (nr 602633).

Availability of data and materials
The data used and/or analysed during the current study are available from
the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
The study was approved by the medical ethics committee of Erasmus
University Medical Centre. All subjects provided written informed consent
prior to the study.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Departments of Human Genetics, Leiden University Medical Centre, Leiden,
The Netherlands. 2Department of Neurology, Leiden University Medical
Centre, Leiden, The Netherlands. 3Department of Clinical Genetics, Genome
Diagnostic laboratory, Amsterdam Reproduction & Development research
institute, Amsterdam University Medical Centre, Amsterdam, The
Netherlands. 4Einthoven Laboratory for Experimental Vascular Medicine,
Leiden University Medical Centre, Leiden, The Netherlands. 5Department of
Internal Medicine, Division of Endocrinology, Leiden University Medical
Centre, Leiden, The Netherlands. 6Department of Epidemiology, Erasmus
Medical Centre, Rotterdam, The Netherlands. 7Nuffield Department of
Population Health, Oxford University, Oxford, UK.

Received: 2 April 2021 Accepted: 10 November 2021

References
1. GDB 2019 Diseases and Injuries Collaborators (2020) Global burden of 369

diseases and injuries in 204 countries and territories, 1990–2019: a
systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:
1204–1222

2. Launer LJ, Terwindt GM, Ferrari MD (1999) The prevalence and
characteristics of migraine in a population-based cohort: the GEM study.
Neurology. 53(3):537–542. https://doi.org/10.1212/WNL.53.3.537

3. (2018) Headache classification Committee of the International Headache
Society (IHS) the international classification of headache disorders, 3rd
edition. Cephalalgia. 38(1):1–211. https://doi.org/10.1177/0333102417738202

4. Ferrari MD, Klever RR, Terwindt GM, Ayata C, van den Maagdenberg AM
(2015) Migraine pathophysiology: lessons from mouse models and human
genetics. Lancet Neurol 14(1):65–80. https://doi.org/10.1016/S1474-4422(14
)70220-0

5. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox
CS, Jacques PF, Fernandez C, O'Donnell CJ, Carr SA, Mootha VK, Florez JC,
Souza A, Melander O, Clish CB, Gerszten RE (2011) Metabolite profiles and

the risk of developing diabetes. Nat Med 17(4):448–453. https://doi.org/10.1
038/nm.2307

6. Kaddurah-Daouk R, Krishnan KR (2009) Metabolomics: a global biochemical
approach to the study of central nervous system diseases.
Neuropsychopharmacology. 34(1):173–186. https://doi.org/10.1038/npp.2
008.174

7. Orešič M, Hyötyläinen T, Herukka SK, Sysi-Aho M, Mattila I, Seppänan-Laakso
T, Julkunen V, Gopalacharyulu PV, Hallikainen M, Koikkalainen J, Kivipelto M,
Helisalmi S, Lötjönen J, Soininen H (2011) Metabolome in progression to
Alzheimer's disease. Transl Psychiatry 1(12):e57. https://doi.org/10.1038/tp.2
011.55

8. Patel S, Ahmed S (2015) Emerging field of metabolomics: big promise for
cancer biomarker identification and drug discovery. J Pharm Biomed Anal
107:63–74. https://doi.org/10.1016/j.jpba.2014.12.020

9. Shah SH, Sun JL, Stevens RD, Bain JR, Muehlbauer MJ, Pieper KS et al (2012)
Baseline metabolomic profiles predict cardiovascular events in patients at
risk for coronary artery disease. Am Heart J 163:844–850.e841

10. Deng Y, Huang C, Su J, Pan CW, Ke C (2021) Identification of biomarkers for
essential hypertension based on metabolomics. Nutr Metab Cardiovasc Dis
31(2):382–395. https://doi.org/10.1016/j.numecd.2020.11.023

11. Chan D, Ng LL (2010) Biomarkers in acute myocardial infarction. BMC Med
8(1):34. https://doi.org/10.1186/1741-7015-8-34

12. Riely GJ, Marks J, Pao W (2009) KRAS mutations in non-small cell lung
cancer. Proc Am Thorac Soc 6(2):201–205. https://doi.org/10.1513/pats.2
00809-107LC

13. De Vries B, Haan J, Frants RR, Van den Maagdenberg AM, Ferrari MD (2006)
Genetic biomarkers for migraine. Headache. 46(7):1059–1068. https://doi.
org/10.1111/j.1526-4610.2006.00499.x

14. van Dongen RM, Zielman R, Noga M, Dekkers OM, Hankemeier T, van den
Maagdenberg AM et al (2017) Migraine biomarkers in cerebrospinal fluid: a
systematic review and meta-analysis. Cephalalgia. 37(1):49–63. https://doi.
org/10.1177/0333102415625614

15. Gormley P, Anttila V, Winsvold BS, Palta P, Esko T, Pers TH et al (2016) Meta-
analysis of 375,000 individuals identifies 38 susceptibility loci for migraine.
Nat Genet 48(8):856–866. https://doi.org/10.1038/ng.3598

16. Schwedt TJ, Chiang CC, Chong CD, Dodick DW. Functional MRI of migraine.
Lancet Neurol. 2015;14:81–91.

17. Frederiksen SD, Bekker-Nielsen Dunbar M, Snoer AH, Deen M, Edvinsson L
(2020) Serotonin and neuropeptides in blood from episodic and chronic
migraine and cluster headache patients in case-control and case-crossover
settings: a systematic review and Meta-analysis. Headache. 60(6):1132–1164.
https://doi.org/10.1111/head.13802

18. Ferroni P, Barbanti P, Spila A, Fratangeli F, Aurilia C, Fofi L, Egeo G, Guadagni
F (2019) Circulating biomarkers in migraine: new opportunities for precision
medicine. Curr Med Chem 26(34):6191–6206. https://doi.org/10.2174/092
9867325666180622122938

19. Ferrari MD, Odink J, Bos KD, Malessy MJ, Bruyn GW (1990) Neuroexcitatory
plasma amino acids are elevated in migraine. Neurology. 40(10):1582–1586.
https://doi.org/10.1212/WNL.40.10.1582

20. Martinez F, Castillo J, Rodriguez JR, Leira R, Noya M (1993) Neuroexcitatory
amino acid levels in plasma and cerebrospinal fluid during migraine attacks.
Cephalalgia. 13(2):89–93. https://doi.org/10.1046/j.1468-2982.1993.1302089.x

21. Guldiken S, Guldiken B, Demir M, Kabayel L, Ozkan H, Turgut N, Hunkar R,
Kat S (2011) Soluble CD40 ligand and prolactin levels in migraine patients
during interictal period. J Headache Pain 12(3):355–360. https://doi.org/10.1
007/s10194-011-0306-8

22. Vanmolkot FH, de Hoon JN (2007) Increased C-reactive protein in young
adult patients with migraine. Cephalalgia. 27(7):843–846. https://doi.org/1
0.1111/j.1468-2982.2007.01324.x

23. Pavelek Z, Soucek O, Krejsek J, Sobisek L, Klimova B, Masopust J et al (2020)
The role of the immune system and the biomarker CD3 + CD4 + CD45RA-
CD62L- in the pathophysiology of migraine. Sci Rep 10(1):12277. https://doi.
org/10.1038/s41598-020-69285-4

24. Fusayasu E, Kowa H, Takeshima T, Nakaso K, Nakashima K (2007) Increased
plasma substance P and CGRP levels, and high ACE activity in migraineurs
during headache-free periods. Pain. 128(3):209–214. https://doi.org/10.1016/
j.pain.2006.09.017

25. Cernuda-Morollon E, Larrosa D, Ramon C, Vega J, Martinez-Camblor P,
Pascual J (2013) Interictal increase of CGRP levels in peripheral blood as a
biomarker for chronic migraine. Neurology. 81(14):1191–1196. https://doi.
org/10.1212/WNL.0b013e3182a6cb72

Harder et al. The Journal of Headache and Pain          (2021) 22:142 Page 8 of 10

https://doi.org/10.1212/WNL.53.3.537
https://doi.org/10.1177/0333102417738202
https://doi.org/10.1016/S1474-4422(14)70220-0
https://doi.org/10.1016/S1474-4422(14)70220-0
https://doi.org/10.1038/nm.2307
https://doi.org/10.1038/nm.2307
https://doi.org/10.1038/npp.2008.174
https://doi.org/10.1038/npp.2008.174
https://doi.org/10.1038/tp.2011.55
https://doi.org/10.1038/tp.2011.55
https://doi.org/10.1016/j.jpba.2014.12.020
https://doi.org/10.1016/j.numecd.2020.11.023
https://doi.org/10.1186/1741-7015-8-34
https://doi.org/10.1513/pats.200809-107LC
https://doi.org/10.1513/pats.200809-107LC
https://doi.org/10.1111/j.1526-4610.2006.00499.x
https://doi.org/10.1111/j.1526-4610.2006.00499.x
https://doi.org/10.1177/0333102415625614
https://doi.org/10.1177/0333102415625614
https://doi.org/10.1038/ng.3598
https://doi.org/10.1111/head.13802
https://doi.org/10.2174/0929867325666180622122938
https://doi.org/10.2174/0929867325666180622122938
https://doi.org/10.1212/WNL.40.10.1582
https://doi.org/10.1046/j.1468-2982.1993.1302089.x
https://doi.org/10.1007/s10194-011-0306-8
https://doi.org/10.1007/s10194-011-0306-8
https://doi.org/10.1111/j.1468-2982.2007.01324.x
https://doi.org/10.1111/j.1468-2982.2007.01324.x
https://doi.org/10.1038/s41598-020-69285-4
https://doi.org/10.1038/s41598-020-69285-4
https://doi.org/10.1016/j.pain.2006.09.017
https://doi.org/10.1016/j.pain.2006.09.017
https://doi.org/10.1212/WNL.0b013e3182a6cb72
https://doi.org/10.1212/WNL.0b013e3182a6cb72


26. Cernuda-Morollón E, Martínez-Camblor P, Alvarez R, Larrosa D, Ramón C,
Pascual J (2015) Increased VIP levels in peripheral blood outside migraine
attacks as a potential biomarker of cranial parasympathetic activation in
chronic migraine. Cephalalgia. 35(4):310–316. https://doi.org/10.1177/03331
02414535111

27. Hamed SA, Hamed EA, Ezz Eldin AM, Mahmoud NM (2010) Vascular risk
factors, endothelial function, and carotid thickness in patients with
migraine: relationship to atherosclerosis. J Stroke Cerebrovasc Dis 19(2):92–
103. https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.04.007

28. Kurth T, Ridker PM, Buring JE (2008) Migraine and biomarkers of
cardiovascular disease in women. Cephalalgia. 28(1):49–56. https://doi.org/1
0.1111/j.1468-2982.2007.01467.x

29. Tietjen GE, Khubchandani J, Herial N, Palm-Meinders IH, Koppen H, Terwindt
GM, van Buchem MA, Launer LJ, Ferrari MD, Kruit MC (2018) Migraine and
vascular disease biomarkers: a population-based case-control study.
Cephalalgia. 38(3):511–518. https://doi.org/10.1177/0333102417698936

30. Edvinsson L, Haanes KA, Warfvinge K, Krause DN (2018) CGRP as the target
of new migraine therapies - successful translation from bench to clinic. Nat
Rev Neurol 14(6):338–350. https://doi.org/10.1038/s41582-018-0003-1

31. Edvinsson L, Warfvinge K (2019) Recognizing the role of CGRP and CGRP
receptors in migraine and its treatment. Cephalalgia. 39(3):366–373. https://
doi.org/10.1177/0333102417736900

32. Ramon C, Cernuda-Morollon E, Pascual J (2017) Calcitonin gene-related
peptide in peripheral blood as a biomarker for migraine. Curr Opin Neurol
30(3):281–286. https://doi.org/10.1097/WCO.0000000000000440

33. Greco R, De Icco R, Demartini C, Zanaboni AM, Tumelero E, Sances G et al
(2020) Plasma levels of CGRP and expression of specific microRNAs in blood
cells of episodic and chronic migraine subjects: towards the identification of
a panel of peripheral biomarkers of migraine? J Headache Pain 21(1):122.
https://doi.org/10.1186/s10194-020-01189-0

34. Hagen K, Stovner LJ, Zwart JA (2020) High sensitivity C-reactive protein and
risk of migraine in a 11-year follow-up with data from the Nord-Trondelag
health surveys 2006-2008 and 2017-2019. J Headache Pain 21(1):67. https://
doi.org/10.1186/s10194-020-01142-1

35. Dunn WB, Broadhurst D, Begley P, Zelena E, Francis-McIntyre S, Anderson N
et al (2011) Procedures for large-scale metabolic profiling of serum and
plasma using gas chromatography and liquid chromatography coupled to
mass spectrometry. Nat Protoc 6(7):1060–1083. https://doi.org/10.1038/
nprot.2011.335

36. Stam AH, de Vries B, Janssens AC, Vanmolkot KR, Aulchenko YS, Henneman
P et al (2010) Shared genetic factors in migraine and depression: evidence
from a genetic isolate. Neurology. 74(4):288–294. https://doi.org/10.1212/
WNL.0b013e3181cbcd19

37. Aulchenko YS, Heutink P, Mackay I, Bertoli-Avella AM, Pullen J, Vaessen N,
Rademaker TAM, Sandkuijl LA, Cardon L, Oostra B, van Duijn CM (2004)
Linkage disequilibrium in young genetically isolated Dutch population. Eur J
Hum Genet 12(7):527–534. https://doi.org/10.1038/sj.ejhg.5201188

38. Sleegers K, de Koning I, Aulchenko YS, van Rijn MJ, Houben MP, Croes EA
et al (2007) Cerebrovascular risk factors do not contribute to genetic
variance of cognitive function: the ERF study. Neurobiol Aging 28(5):735–
741. https://doi.org/10.1016/j.neurobiolaging.2006.03.012

39. Headache Classification Subcommittee of the International Headache, S.
The International Classification of Headache Disorders: 2nd edition.
Cephalalgia: an international journal of headache. 2004;24 Suppl 1:9–160

40. Vaarhorst AA, Verhoeven A, Weller CM, Bohringer S, Goraler S, Meissner A
et al (2014) A metabolomic profile is associated with the risk of incident
coronary heart disease. Am Heart J 168(1):45–52 e47. https://doi.org/10.101
6/j.ahj.2014.01.019

41. Findeisen M, Brand T, Berger S (2007) A H-1-NMR thermometer suitable for
cryoprobes. Magn Reson Chem 45(2):175–178. https://doi.org/10.1002/mrc.1941

42. Wu PSC, Otting G (2005) Rapid pulse length determination in high-
resolution NMR. J Magn Reson 176(1):115–119. https://doi.org/10.1016/j.
jmr.2005.05.018

43. Price WS (1999) Water signal suppression in NMR spectroscopy. Annu Rep
NMR Spectrosc 38:289–354. https://doi.org/10.1016/S0066-4103(08)60040-X

44. Aue WP, Karhan J, Ernst RR (1976) Homonuclear broad-band decoupling
and 2-dimensional J-resolved Nmr-spectroscopy. J Chem Phys 64(10):4226–
4227. https://doi.org/10.1063/1.431994

45. Meiboom S, Gill D (1958) Modified spin-Echo method for measuring nuclear
relaxation times. Rev Sci Instrum 29(8):688–691. https://doi.org/10.1063/1.1
716296

46. Nicholson JK, Foxall PJD, Spraul M, Farrant RD, Lindon JC (1995) 750-Mhz H-
1 and H-1-C-13 Nmr-spectroscopy of human blood-plasma. Anal Chem
67(5):793–811. https://doi.org/10.1021/ac00101a004

47. MacIntyre DA, Jimenez B, Lewintre EJ, Martin CR, Schafer H, Ballesteros CG
et al (2010) Serum metabolome analysis by H-1-NMR reveals differences
between chronic lymphocytic leukaemia molecular subgroups. Leukemia.
24(4):788–797. https://doi.org/10.1038/leu.2009.295

48. Tomasi G, van den Berg F, Andersson C (2004) Correlation optimized
warping and dynamic time warping as preprocessing methods for
chromatographic data. J Chemom 18(5):231–241. https://doi.org/10.1002/
cem.859

49. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu YF, Djoumbou Y,
Mandal R, Aziat F, Dong E, Bouatra S, Sinelnikov I, Arndt D, Xia J, Liu P,
Yallou F, Bjorndahl T, Perez-Pineiro R, Eisner R, Allen F, Neveu V, Greiner R,
Scalbert A (2013) HMDB 3.0-the human metabolome database in 2013.
Nucleic Acids Res 41(Database issue):D801–D807. https://doi.org/10.1093/na
r/gks1065

50. Aulchenko YS, Ripke S, Isaacs A, Van Duijn CM (2007) GenABEL: an R library
for genome-wide association analysis. Bioinformatics. 23(10):1294–1296.
https://doi.org/10.1093/bioinformatics/btm108

51. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized
linear models via coordinate descent. J Stat Softw 33(1):1–22. https://doi.
org/10.18637/jss.v033.i01

52. Bigal ME, Lipton RB (2006) Obesity is a risk factor for transformed migraine
but not chronic tension-type headache. Neurology. 67(2):252–257. https://
doi.org/10.1212/01.wnl.0000225052.35019.f9

53. Linstra KM, Ibrahimi K, Terwindt GM, Wermer MJ, MaassenVanDenBrink A
(2017) Migraine and cardiovascular disease in women. Maturitas. 97:28–31.
https://doi.org/10.1016/j.maturitas.2016.12.008

54. Tietjen GE, Khubchandani J (2015) Vascular biomarkers in migraine.
Cephalalgia. 35(2):95–117. https://doi.org/10.1177/0333102414544976

55. Onderwater GLJ, Ligthart L, Bot M, Demirkan A, Fu J, van der Kallen CJH,
Vijfhuizen LS, Pool R, Liu J, Vanmolkot FHM, Beekman M, Wen KX, Amin N,
Thesing CS, Pijpers JA, Kies DA, Zielman R, de Boer I, van Greevenbroek
MMJ, Arts ICW, Milaneschi Y, Schram MT, Dagnelie PC, Franke L, Ikram MA,
Ferrari MD, Goeman JJ, Slagboom PE, Wijmenga C, Stehouwer CDA,
Boomsma DI, van Duijn CM, Penninx BW, 't Hoen PAC, Terwindt GM, van
den Maagdenberg AMJM, on behalf of the BBMRI Metabolomics
Consortium (2019) Large-scale plasma metabolome analysis reveals
alterations in HDL metabolism in migraine. Neurology. 92(16):e1899–e1911.
https://doi.org/10.1212/WNL.0000000000007313

56. Rubino E, Vacca A, Govone F, Gai A, Boschi S, Zucca M, de Martino P,
Gentile S, Pinessi L, Rainero I (2017) Investigating the role of adipokines in
chronic migraine. Cephalalgia. 37(11):1067–1073. https://doi.org/10.1177/
0333102416665871

57. Bigal ME, Kurth T, Hu H, Santanello N, Lipton RB (2009) Migraine and
cardiovascular disease: possible mechanisms of interaction. Neurology.
72(21):1864–1871. https://doi.org/10.1212/WNL.0b013e3181a71220

58. Paolucci M, Altamura C, Vernieri F (2021) The role of endothelial dysfunction
in the pathophysiology and cerebrovascular effects of migraine: a narrative
review. J Clin Neurol 17(2):164–175. https://doi.org/10.3988/jcn.2021.17.2.164

59. Rainero I, Govone F, Gai A, Vacca A, Rubino E (2018) Is migraine primarily a
Metaboloendocrine disorder? Curr Pain Headache Rep 22(5):36. https://doi.
org/10.1007/s11916-018-0691-7

60. Yorns WR Jr, Hardison HH (2013) Mitochondrial dysfunction in migraine. Semin
Pediatr Neurol 20(3):188–193. https://doi.org/10.1016/j.spen.2013.09.002

61. Burch RC, Rist PM, Winter AC, Buring JE, Pradhan AD, Loder EW, Kurth T (2012)
Migraine and risk of incident diabetes in women: a prospective study. Cephalalgia.
32(13):991–997. https://doi.org/10.1177/0333102412453954

62. López-de-Andrés A, Luis Del Barrio J, Hernández-Barrera V, de Miguel-Díez J,
Jimenez-Trujillo I, Martinez-Huedo MA et al (2018) Migraine in adults with
diabetes; is there an association? Results of a population-based study. Diabetes
Metab Syndr Obes 11:367–374. https://doi.org/10.2147/DMSO.S170253

63. Cavestro C, Rosatello A, Micca G, Ravotto M, Marino MP, Asteggiano G et al
(2007) Insulin metabolism is altered in migraineurs: a new pathogenic
mechanism for migraine? Headache. 47(10):1436–1442. https://doi.org/1
0.1111/j.1526-4610.2007.00719.x

64. Rainero I, Limone P, Ferrero M, Valfrè W, Pelissetto C, Rubino E, Gentile S, Lo
Giudice R, Pinessi L (2005) Insulin sensitivity is impaired in patients with
migraine. Cephalalgia. 25(8):593–597. https://doi.org/10.1111/j.1468-2982.2
005.00928.x

Harder et al. The Journal of Headache and Pain          (2021) 22:142 Page 9 of 10

https://doi.org/10.1177/0333102414535111
https://doi.org/10.1177/0333102414535111
https://doi.org/10.1016/j.jstrokecerebrovasdis.2009.04.007
https://doi.org/10.1111/j.1468-2982.2007.01467.x
https://doi.org/10.1111/j.1468-2982.2007.01467.x
https://doi.org/10.1177/0333102417698936
https://doi.org/10.1038/s41582-018-0003-1
https://doi.org/10.1177/0333102417736900
https://doi.org/10.1177/0333102417736900
https://doi.org/10.1097/WCO.0000000000000440
https://doi.org/10.1186/s10194-020-01189-0
https://doi.org/10.1186/s10194-020-01142-1
https://doi.org/10.1186/s10194-020-01142-1
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1038/nprot.2011.335
https://doi.org/10.1212/WNL.0b013e3181cbcd19
https://doi.org/10.1212/WNL.0b013e3181cbcd19
https://doi.org/10.1038/sj.ejhg.5201188
https://doi.org/10.1016/j.neurobiolaging.2006.03.012
https://doi.org/10.1016/j.ahj.2014.01.019
https://doi.org/10.1016/j.ahj.2014.01.019
https://doi.org/10.1002/mrc.1941
https://doi.org/10.1016/j.jmr.2005.05.018
https://doi.org/10.1016/j.jmr.2005.05.018
https://doi.org/10.1016/S0066-4103(08)60040-X
https://doi.org/10.1063/1.431994
https://doi.org/10.1063/1.1716296
https://doi.org/10.1063/1.1716296
https://doi.org/10.1021/ac00101a004
https://doi.org/10.1038/leu.2009.295
https://doi.org/10.1002/cem.859
https://doi.org/10.1002/cem.859
https://doi.org/10.1093/nar/gks1065
https://doi.org/10.1093/nar/gks1065
https://doi.org/10.1093/bioinformatics/btm108
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1212/01.wnl.0000225052.35019.f9
https://doi.org/10.1212/01.wnl.0000225052.35019.f9
https://doi.org/10.1016/j.maturitas.2016.12.008
https://doi.org/10.1177/0333102414544976
https://doi.org/10.1212/WNL.0000000000007313
https://doi.org/10.1177/0333102416665871
https://doi.org/10.1177/0333102416665871
https://doi.org/10.1212/WNL.0b013e3181a71220
https://doi.org/10.3988/jcn.2021.17.2.164
https://doi.org/10.1007/s11916-018-0691-7
https://doi.org/10.1007/s11916-018-0691-7
https://doi.org/10.1016/j.spen.2013.09.002
https://doi.org/10.1177/0333102412453954
https://doi.org/10.2147/DMSO.S170253
https://doi.org/10.1111/j.1526-4610.2007.00719.x
https://doi.org/10.1111/j.1526-4610.2007.00719.x
https://doi.org/10.1111/j.1468-2982.2005.00928.x
https://doi.org/10.1111/j.1468-2982.2005.00928.x


65. Zhang DG, Amin FM, Guo S, Vestergaard MB, Hougaard A, Ashina M (2020) Plasma
glucose levels increase during spontaneous attacks of migraine with and without
Aura. Headache. 60(4):655–664. https://doi.org/10.1111/head.13760

66. Okada H, Araga S, Takeshima T, Nakashima K (1998) Plasma lactic acid and
pyruvic acid levels in migraine and tension-type headache. Headache. 38(1):
39–42. https://doi.org/10.1046/j.1526-4610.1998.3801039.x

67. Batch BC, Hyland K, Svetkey LP (2014) Branch chain amino acids: biomarkers
of health and disease. Curr Opin Clin Nutr Metab Care 17(1):86–89. https://
doi.org/10.1097/MCO.0000000000000010

68. Domitrz I, Koter MD, Cholojczyk M, Domitrz W, Baranczyk-Kuzma A,
Kaminska A (2015) Changes in serum amino acids in migraine patients
without and with Aura and their possible usefulness in the study of
migraine pathogenesis. CNS Neurol Disord Drug Targets 14(3):345–349.
https://doi.org/10.2174/1871527314666150225144300

69. Ren C, Liu J, Zhou J, Liang H, Wang Y, Sun Y, Ma B, Yin Y (2018) Low levels
of serum serotonin and amino acids identified in migraine patients.
Biochem Biophys Res Commun 496(2):267–273. https://doi.org/10.1016/j.
bbrc.2017.11.203

70. Cananzi AP, Dandrea G, Perini F, Zamberlan F, Welch KMA (1995) Platelet
and plasma-levels of glutamate and glutamine in migraine with and
without Aura. Cephalalgia. 15(2):132–135. https://doi.org/10.1046/j.1468-2
982.1995.015002132.x

71. Zielman R, Wijnen JP, Webb A, Onderwater GLJ, Ronen I, Ferrari MD, Kan
HE, Terwindt GM, Kruit MC (2017) Cortical glutamate in migraine. Brain.
140(7):1859–1871. https://doi.org/10.1093/brain/awx130

72. Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF (2012)
Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012:
Cd004426

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Harder et al. The Journal of Headache and Pain          (2021) 22:142 Page 10 of 10

https://doi.org/10.1111/head.13760
https://doi.org/10.1046/j.1526-4610.1998.3801039.x
https://doi.org/10.1097/MCO.0000000000000010
https://doi.org/10.1097/MCO.0000000000000010
https://doi.org/10.2174/1871527314666150225144300
https://doi.org/10.1016/j.bbrc.2017.11.203
https://doi.org/10.1016/j.bbrc.2017.11.203
https://doi.org/10.1046/j.1468-2982.1995.015002132.x
https://doi.org/10.1046/j.1468-2982.1995.015002132.x
https://doi.org/10.1093/brain/awx130

	Abstract
	Background
	Methods
	Results
	Conclusion

	Introduction
	Material and methods
	Study population
	Migraine diagnoses
	1H-NMR spectroscopy metabolite profiling: data processing and quality control
	Quality control, scaling and calibration of the NMR spectra

	Statistical analyses and data processing

	Results
	Study population
	Signal detection, assignment and processing
	Demographic characteristics
	Association of metabolites with lifetime migraine diagnosis
	Association of metabolites with active migraine diagnosis

	Discussion
	Conclusions
	Abbreviations
	Supplementary Information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

