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Abstract

Migraine is a brain disorder characterized by a piercing headache which affects one side of the head, located mainly
at the temples and in the area around the eye. Migraine imparts substantial suffering to the family in addition to the
sufferer, particularly as it affects three times more women than men and is most prevalent between the ages of 25 and
45, the years of child rearing. Migraine typically occurs in individuals with a genetic predisposition and is aggravated by
specific environmental triggers. Attempts to study the biochemistry of migraine began as early as the 1960s and were
primarily directed at serotonin metabolism after an increase of 5-hydroxyindoleacetic acid (5-HIAA), the main
metabolite of serotonin was observed in urine of migraineurs. Genetic and biochemical studies have primarily
focused on the neurotransmitter serotonin, considering receptor binding, transport and synthesis of serotonin and
have investigated serotonergic mediators including enzymes, receptors as well as intermediary metabolites. These
studies have been mainly assayed in blood, CSF and urine as the most accessible fluids. More recently PET imaging
technology integrated with a metabolomics and a systems biology platform are being applied to study serotonergic
biology. The general trend observed is that migraine patients have alterations of neurotransmitter metabolism
detected in biological fluids with different biochemistry from controls, however the interpretation of the biological
significance of these peripheral changes is unresolved. In this review we present the biology of the serotonergic
system and metabolic routes for serotonin and discuss results of biochemical studies with regard to alterations in
serotonin in brain, cerebrospinal fluid, saliva, platelets, plasma and urine of migraine patients.

Keywords: Migraine with aura, Migraine without aura, Cortical spreading depression, Serotonin, Metabolomics,
Melatonin, Tryptophan, Triptans, SERT, Kyneurine pathway
Review
Introduction
Migraine is a painful neurological disease whose mani-
festation results from an interplay of enviro-genomic
factors and the severity of symptoms often propels suf-
ferers to abuse medication. Migraine reigns as the 8th

most burdensome disease in the world and the 4th most
in women according to the 2012 Global Burden of Dis-
ease study [1]. The clinical features of migraine accord-
ing to IHS classification include intense, pulsating head
pain localized to one side of the head that can effectively
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disable its sufferer for up to 72 h [2]. Accompanying
symptoms of migraine in addition to the headache in-
clude nausea, vomiting, and hypersensitivity to lights,
sounds and/or smells, all of which can be aggravated by
physical activity [2]. The disease is believed to develop in
genetically vulnerable populations, disabling an esti-
mated 12% of Caucasian people, varying in accordance
with genetic background, climatic region, socioeconomic
status, life-style, presence of other diseases and the gen-
eral health of the sourced population [3, 4]. There is also
a well-established overrepresentation of the disease in
females, affecting ~3 times more females than males due
to a complex interplay of hormonal and enviro-genomic
exposures [5].
Migraine is diagnosed by specialized physicians utiliz-
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criteria (ICHD-3, beta version currently available at
https://www.ichd-3.org/) [2]. Acceptance of these criteria
has facilitated modern day molecular genetic research by
standardising diagnosis of headache and headache-related
disorders in absence of any clearly identifiable pathology,
biomarkers and diagnostic tests. Migraine is classified into
two main types, distinguished by the presence of a variety
of sensory disturbances (termed aura) that can occur in the
early stages of the headache: migraine with aura (MA) or
migraine without aura (MO) [2]. Migraine is a complex dis-
order that evolves due to a combination of multiple genes
and external factors such as gene-environment, gene-
nutrient, gene-gene interactions and epigenetics that result
in multiple presentations of the disorder making it difficult
to pinpoint the relevant genomic risk factors [6].
Literature on the pathophysiology of migraine con-

tinues to evoke a disorder of neurovascular origin as
demonstrated by the involvement of cranial neurovascu-
lar anatomical structures. This neurovascular scaffold
encompasses three main domains: a neural domain (i.e.,
hyperexcitability and CSD-like neural events) [7, 8], vas-
cular domain (intracranial constriction and vasodilation)
and a nociceptive domain (activation of trigeminal struc-
tures, a network of neurons that sense pain signals and
release of several ‘migraine mediators’, neuropeptides,
such as CGRP). These three domains describe the main
aspects of the current model of the pathobiology of mi-
graine [9–11]. Genetic studies have focused on investi-
gating genetic variability in multiple neurotransmitter
systems which interact and overlap at different levels.
Neurotransmitters regulate intracellular signal trans-

duction events as well as neural function, morphology
and circuit formation [12]. Interruptions in intra- and
interneuronal signalling due to inappropriate activation
or inactivation of regulatory proteins, including nuclear
transcription factors can alter the electrophysiological
signalling of neurons resulting in structural and func-
tional changes [13–15]. This hypothesis of ‘malfunction-
ing ion channels’ that set the electrical activity in nerve
cells that form circuits modulating pain was revived by
the discovery of mutations in the potassium channel
TRESK [15]. Similarly, the recognition that the three
main types of Familial Hemiplegic Migraine are caused
by mutations in ion channels implies that ion channel
dysfunction may be the primary cause for migraine
symptoms in non-familial cases as well [16]. In this re-
view we considered the biology of the serotonergic sys-
tem and its metabolism and results of biochemical
studies regarding the content of serotonin in the brain,
cerebrospinal fluid (CSF), saliva, platelets, plasma and
urine of migraine patients and we link the evidence to-
gether in a biochemical model that considers the appli-
cation of metabolomics for guiding future research on
the pathobiology of migraine.
Serotonergic biology and genetics
Biochemical, genetic and pharmacological studies have
investigated potential dysfunction of neurotransmitters in
migraine susceptibility. The involvement of serotonin in
migraine has been known for many years following Sicu-
teri’s observations of an increase of 5-hydroxyindoleacetic
acid (5-HIAA), the main metabolite of serotonin, in the
urine of 15 patients during migraine attacks [17]. This was
the first indication of an anomaly of serotonin metabolism
in migraineurs and since then, many scientific research
studies have focused on the genetic components of the se-
rotonergic system (see Table 1). Receptors, transporters
and enzymes are the key molecular mediators that
regulate and maintain serotonin levels in the brain and
periphery. Serotonin is distributed in neuronal and several
non-neuronal tissues of the cardiovascular system, gastro-
intestinal, renal systems and the blood [18]. Serotonin reg-
ulates a wide array of physiological functions via a specific
set of receptors which are mostly G protein-coupled
receptors (except receptor 5HT3 which is a ligand gated
cation channel) that activate an intracellular second mes-
senger cascade to mediate excitatory or inhibitory neuro-
transmission [19]. Serotonin receptors have been localized
in vestibular and trigeminal ganglion cells in monkey [20].
Current research on the biology of the serotonergic

system in disease is focusing on genetic alterations in
synaptic and post-receptor signalling proteins that affect
serotonergic neurotransmission by increasing or decreas-
ing serotonin’s actual or effective availability in the CNS
(See Table 1) [21]. Genetic variability at the level of gene
transcription, mRNA processing and translation or post-
translational modification as well as intracellular traffick-
ing in the genetic components of the serotonergic system
may generate gene products that may lead to structural
and functional changes in brain circuits and provoke
disease [22]. The two most studied components of the
serotonergic system that have come into the spotlight in
determining susceptibility to migraine as well as multiple
neuropsychiatric disorders are the serotonin transporter
(SERT, also known as SLC6A4), which reuptakes sero-
tonin from the synapse, and monoamine oxidase A
(MAOA), an important enzyme that degrades serotonin
and metabolizes triptans [23]. Both these proteins are im-
portant in regulating levels of serotonin in the brain and
carry polymorphisms in their promoter regions that cause
differential transcriptional activity and thus impact drug
metabolism [22, 24–26].
Several association studies have investigated genetic

variants that may alter the functions of genes involved in
serotonin functionality and regulation. The serotonin
transporter gene SERT has been extensively studied. In
this gene, two polymorphisms have been of particular
interest. The first polymorphism consists of a 17 bp vari-
able number of tandem repeats known as (STin2 VNTR)
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in intron 2 with two common alleles (STin2.10 and
STin2.12) composed of 10 or 12 repeat units respectively
[27]. To get a clearer picture, Schurks et al., [27] consid-
ered five studies that evaluated the 5-HTT VNTR STin2
polymorphism and concluded the STin2 12/12 genotype
may be influential in determining migraine susceptibility
among populations of European descent. A further meta-
analysis by Liu et al., [28] reviewed 15 studies and found
that the 5-HTT VNTR STin2 12/12 genotype confers an
increased risk for migraine in the general population.
The second polymorphism is a 44-bp insertion/deletion

functional polymorphism in the promoter region known as
5-HTTLPR. There are two common allelic forms, and the
14 repeat containing short variant (S) is associated with
slower clearing of serotonin from the synaptic cleft [29].
Analysis of this polymorphism has provided conflicting re-
sults. The S allele has shown association with migraine in
some studies [30–33] while in other studies no evidence of
association was identified [34, 35]. In a meta-analysis of 10
studies of Europeans and Asians Schurks et al., reported no
overall association between the 5-HTTLPR polymorphism
and migraine, although gender and migraine aura status
may influence results among Europeans [29]. Although
various polymorphisms in serotonin related genes have
showed altered allelic distribution in different migraine
populations there has been, to date, insufficient evidence to
confirm a specific serotonin receptor gene being directly
associated with the disorder [36, 37].
Genetic studies continue to provide new data regarding

the involvement of serotonin in migraine and in particular
support the idea that migraine is a polygenic disorder as
recently reported in a large meta-analysis of 375,000 indi-
viduals by Gormley et al., [38] that identified 38 suscepti-
bility loci for migraine. Thompson et al. identified a
positive association at the 5-HT1D receptor locus in 64
extended families with migraine with aura [39]. The locus
1p36 for the 5-HT1D gene is a candidate locus because it
is a target of triptan drugs and it was also considered in
the context of the association of PRDM16 in MO which is
located proximally to 1p36. Recently, a significant associ-
ation was identified between migraine and a functional
polymorphism rs3813929 localised in the promoter region
of the serotonin receptor gene 5-HT2C [40]. The T allele
of this polymorphism affects the transcription rate of the
5-HT2C receptor and was more common in a Turkish
population with migraine [41].
Additionally, genetic research has explored serotonin

synthesis and its role in migraine. Serotonin is synthe-
sized in a short metabolic pathway consisting of two
enzymes: tryptophan hydroxylase (TPH) and amino acid
decarboxylase (DDC) (See Table 1) [42]. The TPH2 gene
is an obvious candidate to genotype because in theory
low activity of this enzyme may decrease the amount of
serotonin available in the brain. However, a study by
Jung et al., [43], did not find a positive association with
migraine for two SNPs (rs1487275 and rs1386486) in the
TPH2 gene (TPH1 is the peripheral form, TPH2 is the
neuronal form) in a population of 503 migraineurs and
515 healthy controls [43]. Although this study does not
support TPH2 as a key player in the migraine circuit
TPH2 is emerging as a therapeutic target for stress dis-
orders and abnormalities in TPH activity have been im-
plicated in a variety of psychiatric disorders [44–46].
Conceivably, there may be other effects, including epi-
genetic, gene regulatory and or expression effects affect-
ing this locus yet to be determined [44]. These data
together with TPH2 knockout mice have provided add-
itional insights into the role of TPH enzymes in regulat-
ing brain-specific serotonin deficiency [47–49].
Migraine therapy and triptans
Triptans are currently the most effective drugs in treat-
ing migraine and are the supporting pillar of migraine
therapy [50]. Triptans amplify the serotonin signal by
stimulating serotonin receptors located in cranial blood
vessels and nerve endings and relieve pain by constrict-
ing blood vessels and inhibiting the release of peptides,
including CGRP [51] and substance P as well as acting
in other ways not yet known [52]. At the cellular level
triptans alleviate migraine symptoms by binding to sero-
tonin 5-HT1b, d and f receptors along pain signaling
circuits and are effective due to high receptor specificity
and disease specificity [53]. Recent studies [54–56] con-
tinue to reveal triptans complex actions including meta-
analyses comparing the effectiveness of triptans alone or
in combination with other drugs [57]. Although triptans
are the most effective drugs for migraine they exhibit
therapeutic variability in different patient groups. The
different levels of drug response can be explained by
different metabolic routes, rates and efficiency.
In a meta-analysis by Cameron et al., 133 randomized

controlled trials were included and the conclusion from
this study was that triptans are generally better than
ergots and provide equal or better pain relief when
compared with non-steroidal anti-inflammatory drugs
(NSAIDs), acetylsalicylic acid (ASA) and acetaminophen
[57]. Triptans used in combination with ASA or acet-
aminophen, or by alternative administration methods
(injectables) yielded slightly better outcomes than stand-
ard dose triptan tablets. Thorlund et al., evaluated the
efficacy of seven triptans in a multiple treatment com-
parison meta-analysis by examining data from 74
double-blinded randomized clinical trials comparing
triptans to either placebo or to another triptan [58].
Among the seven different triptans tested, eletriptan was
the best triptan and all triptans were found better than
placebo [58]. This result was also upheld by a recent
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report showing that triptans still have the most favorable
efficacy-tolerability profile [59].
The hunt for better more specific drugs continues par-

ticularly in the era of pharmacogenetic research whose
goal is to evaluate the impact of genetic constitution on
migraine drug response [60]. Pharmacogenetics recog-
nizes that numerous genes (drug metabolizing enzymes
and drug transporters) play a role in the mechanism of
drug response, resistance, toxicity, drug transport or
drug targeting and ultimately affect how patients
metabolize and consequently respond to different drug
regimens [61, 62]. This information can help inform
doctors prescribing practices ie. responders versus non-
responders, avoiding adverse drug reactions, optimizing
drug dose for the individual and ultimately guide pre-
scription of the ‘right’ triptan to the ‘right’ patient [63].
In a study by Terazzino et al., the STin2 VNTR poly-

morphism in the SERT gene was shown to be associated
with a higher risk of inconsistent response to triptans in
migraine patients [64]. However the authors caution
some limitations in their study such as a small sample
size but nevertheless support future pharmacogenetic
testing to identify algorithms for more effective treat-
ment [64]. Recently, Christensen et al. identified a single
risk variant, rs2651899 in the PRDM16 gene among 12
single nucleotide polymorphisms (SNPs) genotyped
chosen based on prior GWAS findings by Antilla [65] to
be significantly associated with efficacy of triptans [60].
To explore the role of genetic factors in drug metabol-
ism Gentile et al., 2010 genotyped polymorphisms in
CYP450 and MAOA, genes that are involved in Phase I
metabolic reactions, and in target mechanisms (GNB3)
of triptans and reported a significant correlation between
MAOA uVNTR polymorphism and a chronic migrain-
ous population [66, 67]. Serotonin receptors are also
targeted by other drugs besides triptans and in a study
by Brandl et al., polymorphisms in serotonergic genes
(HTR2A, SERT) were found to be associated with anti-
psychotic treatment response [68].
In addition to pharmacogenomics a new paradigm has

emerged ‘pharmacometabolomics’ for characterizing the
metabolic (pharmacokinetic and pharmacodynamic) re-
sponse to a drug taking into account both environmental
and genomic factors [69]. Although there is still a pau-
city of studies in this domain, recent studies are using
both metabolomic and genomic data to study selective
serotonin reuptake inhibitor (SSRI) treatment outcomes
in patients with major depressive disorder (MDD) by use
of a “pharmacometabolomic-informed” pharmacoge-
nomic research strategy [70]. In a follow up study in
2016, Gupta et al., uncovered two main SNP signals in
two candidate genes (TSPAN5 and ERICH3) which were
associated with the clinical response to SSRI therapy in
MDD patients [71]. Functional genomic studies assessed
serotonin pathway enzyme expression after knockdown
(KD) or over-expression (OE) of TSPAN5 and ERICH3 in
neurally-derived cell lines by qRT-PCR and quantitative
Western blot. KD of TSPAN5 was associated with a sig-
nificant decrease of mRNA and protein levels for the sero-
tonin pathway enzymes TPH1, TPH2, DDC, MAOA, as
well as the serotonin transporter SLC6A4. Both TSPAN5
and ERICH3 proteins affect serotonin concentrations in
cell culture media. The identification of ERICH3 and
TSPAN5 in the regulation of serotonin or variation in
SSRI response is novel and recent studies have reported
TSPAN5 may also promote Notch signalling [72].
Although specific SNPs in genes that metabolize trip-

tans have yet to be identified, current pharmacogenetics
studies indicate that defining the effect SNPs have on
drug metabolism and treatment response may have value
in classifying patients into groups of poor metabolizers
to predict therapeutic responses and to evaluate sex dif-
ferences. Several studies have shown that SNPs in genes
of most metabolic enzymes can affect enzyme activities
and may account for inter-individual variation, in drug
bioavailability and efficacy and consequently can bear a
role in therapy response [63]. Results of future testing
the clinical utility of SNPs and genetic variability in the sig-
nalling components of the serotonergic system as well as
additional genes involved in triptan metabolism will impact
patient care and may be useful to personalize medicine.

Metabolic routes of serotonin

Tryptophan - Indole-kynurenine-niacin pathway
Tryptophan is a requisite precursor necessary for various
metabolic reactions primarily the synthesis of serotonin,
proteins, melatonin, tryptamine and kynuramines [82,
83]. In the body, tryptophan is metabolized, via two
basic pathways, the indole-kynurenine-niacin pathway
and the serotonin-melatonin pathway [84]. The majority
of tryptophan, 99% is metabolized and degraded along
the kynurenine pathway which generates neuroactive
compounds collectively called the kynurenines that
antagonize the NMDA receptors [85]. Several studies of
neurological diseases have reported kynurenine pathway
(KP) metabolites and/or enzyme activity to be up- and/
or down-regulated in relation to disease [86, 87]. Re-
cently Curto et al., identified an association of fluctua-
tions of kynurenine metabolites in serum samples from
21 cluster headache patients [88]. Curto et al., also iden-
tified altered kynurenine pathway metabolites in serum
of chronic migraine patients [89]. Indeed activation or
inhibition of kynurenine pathway enzymes and accumu-
lation of kynurenines within the CNS has been
considered a therapeutic strategy [90]. However, the po-
tential of this therapeutic strategy has not yet been tried
in migraine [91].
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To investigate central and peripheral serotonin turn-
over in neurological disorders and in depressed mood,
researchers have adopted the tryptophan depletion tech-
nique (Acute Tryptophan Depletion ATD) [82]. Initial
studies in healthy volunteers showed that depletion of
tryptophan is correlated with a decline in central sero-
tonin turnover [92, 93]. The tryptophan-serotonin rela-
tionship has been confirmed in animal models [94–96]
and was first demonstrated in 1970, indicating this
mechanism may be potentially important in serotonin
related pathologies in humans [97, 98]. Changes in the
composition of the blood plasma in the periphery can in-
fluence functioning of the nervous system and affect vari-
ous serotonin-dependent brain functions and mood states
like depression [99–101]. Changes in diet and nutrition
can lead to changes in brain levels of the precursors for
neurotransmitter synthesis and influence the rates at
which neurons synthesize neurotransmitters [101]. Tryp-
tophan depletion increases nausea, headache and photo-
phobia in migraine sufferers [102]. Two studies in the 70s,
tested L-tryptophan treatment in headache patients and
reported headache indices were markedly lower with sup-
plementation of L-tryptophan than with placebo [103,
104]. The utility of tryptophan for both research and clin-
ical purposes has been underexplored. Further analysis of
the relationship of plasma tryptophan with brain serotonin
metabolism in both normal and diseased states will be
beneficial to understanding the complex serotonergic bio-
chemistry of migraine.

Tryptophan - Serotonin-melatonin pathway Mela-
tonin is a hormone that is synthesised at night-time from
the precursor tryptophan in the pineal gland. Endogenous
melatonin plays an important function in regulating circa-
dian rhythms for proper sleep-wake cycles as well as many
neuronal and hormonal functions [105, 106]. Multiple
studies have demonstrated altered levels of melatonin se-
cretion at night in the plasma or urine of migraine pa-
tients with cluster headache, migraine with and without
aura, menstrual migraine, and chronic migraine relative to
controls that spurred further investigation of melatonin as
a prophylactic therapy [107–113]. Melatonin has also been
found to be altered in other central nervous system (CNS)
disorders, such as stroke, obsessive-compulsive disorder,
mood and schizophrenia [114, 115]. Melatonin has
regulatory effects on gastrointestinal tract motility and
sensation, has sleep promoting effects and mood regu-
lation and anti-stress effects [116]. Consequently, it is
not surprising that melatonin supplements have shown
potential in diminishing pain intensity in migraine co-
morbid conditions such as fibromyalgia and irritable
bowel syndrome [116, 117].
Melatonin has been considered to hold therapeutic

properties on headache profiles due to its normalizing
effects on circadian rhythms and sleep and was further
pursued in controlled trials because it is non-toxic, low
cost and easily available over the counter in most coun-
tries (see Table 2) [118, 119]. Bougea et al., [120] con-
ducted the longest trial lasting for a period of 6 months
and demonstrated a positive effect in a children patient
group. Studies on melatonin use in migraine have had
some limitations, such as lack of adequate control and
placebo, had a small sample size and throughout some
of the trials the patients were permitted to take rescue
medication for symptomatic relief of migraine during
the trial period, limiting the comparisons that can be
made. The future of melatonin-based therapy may also in-
clude melatonin receptor agonists and the design of trials
with a longer follow up period, standardized designs,
controls and IHS guidelines to establish the utility of
melatonin-based therapy as a prophylactic therapy [121].

Tryptophan and tryptamine Tryptamine is another
functional neuromodulator produced from tryptophan me-
tabolism and structurally related to serotonin [126, 127].
D’Andrea et al., [115] identified low levels of tryptamine in
the plasma of 73 chronic migraine CM patients and 13
chronic tension-type headache (CTTH) patients relative to
a group of 37 healthy subjects [128]. In contrast the levels
of circulating 5-HTand 5-HIAA were within normal range.
The low tryptamine plasma levels found in CM and
CTTH patients lead the authors to the conclusion that
these two primary chronic headaches are characterized
by “neurotransmitter and neuromodulator metabolic
abnormalities in a hyperexcitable and hypoenergetic
brain” due to insufficient serotonergic control of the
pain threshold [129]. The role of tryptophan and tyro-
sine metabolism in migraine headache is reviewed in
D’Andrea et al., [129–131].

PET imaging studies of serotonin
In the study of neurological disorders such as migraine,
a recognizable limitation with investigating in vivo the
biochemistry of CNS functioning is access to neuronal
brain tissue of affected patients for controlled experi-
mental study [132]. In view of the non-existence of
high-quality post-mortem brain tissue samples to study
CNS functioning in vivo, peripheral blood is being pro-
posed as a valid surrogate for genetic studies of migraine
[133], along with cerebrospinal fluid, saliva, platelets,
plasma and urine to study neurotransmitter function.
Given that migraine is a complex multi-faceted disorder,
it makes sense to take a multi-dimensional approach
that considers the whole organism.
The continued development and increasing availability

of positron emission tomography (PET) and single posi-
tron emission computerized tomography (SPECT), and
radio-ligands has enabled the study of serotonergic
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biology in vivo [134, 135]. Due to high sensitivity and
better anatomic resolution, imaging techniques have
provided an entry point to study perturbed functional
networks in neurologic and psychiatric disorders [136]
and obtain more information about the distribution,
density and activity of single receptor molecules in rela-
tion to migraine-specific actions of triptans [137]. Three
studies, have thus far employed the non-invasive method
[138] PET imaging using the tracer α-[11C] methyl-L
tryptophan (11C-AMT) for measuring serotonin synthe-
sis in the human brain [139]. This method is based on
the regional trapping of tracer 11C-AMT concentration
and uses in vivo measurements of 11C-AMT plasma with
reference to the brain trapping constant (K*, mL/g/mi-
nute) [138]. Using this method, Chugani et al., [127] re-
ported a trend of elevated serotonin synthesis capacity in
three female patients with MO after migraine patients
were treated prophylactically with beta-adrenergic antago-
nists propranolol or nadolol, thought to be due to antag-
onism of the 5-HT1A receptor on serotonergic neurons
[140]. Additionally, two other PET studies demonstrated
that serotonin receptors/transporters can be upregulated
interictally (in between attacks) in migraine [141, 142].
Sakai et al., performed a similar study in six migraine pa-

tients with PET imaging, scanning participants during an
attack, after administering sumatriptan and in between at-
tacks [143]. Statistically significant changes were reported
only in the migraine group treated with sumatriptan. Sero-
tonin synthesis was significantly reduced, with a 33% re-
duced uptake of 11C-AMT in a majority of brain regions,
similar effects were also reported in rats [143, 144]. The ob-
served decrease in serotonin synthesis could be the body’s
physiological adaptation to the presence of triptan which
mimics the effect of serotonin. In a recent study, Sakai
et al. tested the hypothesis of serotonergic dysfunction in
migraine by scanning six female migraine subjects with
MO at baseline and after oral administration of 40 mg of
eletriptan, the triptan with the highest lipophilicity [145]. In
the migraine group who received eletriptan, a significantly
reduced (16.3%) global K* value for serotonin was obtained
in the migraine subjects in the interictal phase of their con-
dition [145]. Park et al., in a pilot study of eight female mi-
graine patients investigated the availability of SERT in the
brain stem and concluded that migraineurs who experience
more painful headaches have lower serotonin neurotrans-
mission and additionally reported an age-related decline of
SERT availability [146]. In summary, the results from these
studies suggest that brain serotonin synthesis rate may be
altered in migraineurs and that triptans are effective on
pain pathways by decreasing brain serotonin synthesis.

Biochemical studies of serotonin in CSF and saliva
The underlying hypothesis motivating studies of CSF is
that because CSF is in direct contact with the brain
interstitial fluid, serotonin and biochemical changes in
the brains of migraine patients may best be reflected in
this fluid [147]. Studies examining CSF are few, however,
because they require spinal puncture, a costly and inva-
sive procedure. Two studies, measuring serotonin activ-
ity in CSF can be found, one by Barrie et al., [135] which
indicated no change in 5HIAA levels in CSF of migraine
patients with respect to the controls and [148] one study
by Kangasni et al., [149] reported an increase in 5HIAA
levels in CSF (see Table 4).
Saliva has been used as a diagnostic tool to evaluate

neurotransmitter function because it contains a variety
of neuropeptides, integrating with the trigeminovascular
and neuroendocrine systems [150–152]. There have
been more studies trying to use saliva in the diagnostic
and therapeutic assessment of migraine, e.g. the studies
of Cady et al. [153] and Bellamy et al. [154] on CGRP in
saliva of migraineurs. To date only one study by Marukawa
et al., reported higher concentrations of serotonin and
substance P in TTH patients [155]. The clinical useful-
ness of saliva has not yet been established, additional
studies may be able to develop protocols able to make
use of this easily accessible fluid, perhaps through cor-
rect timing of sampling [156].

Biochemical studies of serotonin in platelets
Interest in investigating platelets and peripheral biochem-
ical factors is based on their interaction and proximity
with the vascular endothelium. The vascular endothelium
is a metabolically and physiologically active tissue that is
semi-permeable and is important in regulating vascular
tone [157]. Neurotransmitters and other vasoactive agents
capable of modulating the nerve and vascular systems are
actively produced by the vascular endothelium and can
disrupt endothelial function [158]. Complex functional in-
teractions that cause changes in endothelial function,
vascular oxidative stress, promote platelet activation and
enhance the inflammatory process can change the coagu-
lant properties of blood producing alterations in neuro-
vascular function and platelets may be an important part
of these processes [159–162]. Attention has turned to the
role of platelets in migraine due to the association and co-
morbidity of migraine with several cerebrovascular disor-
ders, including arterial dissection, ischemic stroke, and
cardiovascular disease as well as the increased risk of
thromboembolic events and the favourable effects of anti-
platelet medication [163, 164].
Platelets carry the largest reserve of serotonin which

they capture from enterochromaffin cells [165]. In the
gastrointestinal tract, serotonin acts as a key signalling
molecule mediating many GI functions, including peri-
stalsis, secretion, vasodilation and perception of pain or
nausea, vomiting, which are common symptoms experi-
enced by migraineurs [166–168]. Additionally, platelets
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express SERT proteins (membrane-bound serotonin-
selective reuptake transporter) that are identical to brain
SERT [169]. Due to its role in clearing serotonin from
the synaptic cleft, SERT plays a central role in neuro-
transmission and a broad role in brain activity making it
a sought after therapeutic target of multiple neuro-
psychiatric disorders [170]. SERT knockout mice display
notable reduction (60–80%) in serotonin concentration
in several brain regions [171] and markedly depleted
serotonin tissue stores [172–174].
Numerous studies have found an association between

migraine and a dysfunction in platelets (see Tables 3 and
4). The platelet changes that have been described in migrai-
neurs include increased platelet-to-platelet aggregation and
up-regulation of platelet-leukocyte aggregates. Morpho-
logical differences in platelets of migraineurs reported
include: 1) containing more ADP; 2) having more dense
granules and; 3) showing qualitative differences in their
serotonin release reaction and clumping [175]. The con-
temporary literature is not conclusive on the relationship
between platelet serotonin content and migraine however it
generally agrees that the distorted behaviour of platelets
presents with subtle changes in various functions (reviewed
in [176]). In a case study of two sisters with hemiplegic
migraine, low levels of systemic serotonin, including the
CSF serotonin metabolite 5-hydroxyindoleacetic acid
and low platelet serotonin levels were described [177].
Interestingly, administration of 5-hydroxytryptophan (a
precursor of serotonin) and carbidopa ameliorated the
sisters’ clinical symptoms.
For the most part, investigations report increased

platelet activation and it is argued that these changes
could reflect parallel biochemical changes in the CNS
(see Tables 3 and 4). Patterns of platelet behaviour/acti-
vation have also been found to differ in migraine
subgroups, a finding that could indicate different patho-
mechanisms [178, 179]. There is, however, no platelet
phenotype that can be used as a direct diagnostic bio-
marker for migraine [180]. It is difficult to draw final
conclusions for platelet biology studies in migraine as
they have investigated different aspects of platelet biol-
ogy and have at times reported contrasting results. The
general state of affairs is that platelet anomalies are not
considered to be causal for migraine and that this topic
merits additional investigation to gain a fuller under-
standing [181].

Biochemical studies of serotonin in plasma
Data regarding serotonin levels in plasma of migraineurs
should be treated with caution due to differing defini-
tions of plasma serotonin and determination of sero-
tonin content in plasma. This is because normal blood
plasma is composed of two distinguishable fractions
namely platelet-rich-plasma (PRP) and platelet-poor
plasma (PPP) [182]. Platelet-rich-plasma is blood plasma
that is mostly bound to platelets whereas platelet-poor
plasma refers to the fraction of freely circulating sero-
tonin which is said to be distinct to PRP. This fraction
of blood plasma contains a very low number of platelets
and is identified as the extraplatelet pool [183]. This por-
tion of plasma is difficult to assay consistently owing to
the difficulty of preparing PPP without causing release
of serotonin from platelets and without platelet contam-
ination. Additionally, whether or not a study is using
PPP or a less refined plasma subset is often unclear, add-
ing to uncertainty [183]. This is perhaps demonstrated
in the contrasting results that have been obtained with a
few studies reporting elevated levels of plasma serotonin,
specifically studies by Dvilansky et al., 1976, Ferrari
et al., 1989 and Milovanovic et al., 1999 [184–186] (see
Tables 3 and 4). Conversely studies by Curran et al.,
[187], Rydzewski, [188] and Nagata et al., [189] reported
lower levels of plasma serotonin in migraineurs than in
controls during the attack. More consistency and stan-
dardised methods of assaying blood plasma in biochem-
ical studies are required in order to move forward.

Biochemical studies of serotonin in urine
In addition to the studies examining serotonin metabol-
ism in CSF, saliva, platelets and plasma there have been
several studies using urine as a proxy for serotonin activ-
ity in the brain. These were often the first studies and
were fundamental in highlighting a possible serotonin-
dependent mechanism urging further investigation [17].
Four out of seven independent studies observed an in-
crease in the urinary excretion of the main metabolite of
serotonin, 5-hydroxyindoleacetic acid (5-HIAA), in asso-
ciation with migraine attacks [17, 149, 190, 177] (see
Table 5). Two studies [186, 191] reported a decrease in
urinary excretion of 5-HIAA and one study reported no
difference [192]. Bousser et al., [191] provided evidence
of a 31% lowered urinary 5-HIAA excretion in 44 young
adult female migraine patients between attacks and in
33 healthy age- and sex-matched control subjects [191].
Milovanovic et al., [173] reported a similar trend of low-
ered urinary 5-HIAA excretion although the sample size
in this study was smaller consisting of a total of 18 mi-
graine patients [186]. Despite urine’s ease of access, only
a small number of studies have thus far investigated the
biochemistry of urine in migraineurs.

Biochemical model of serotonin
The existing data support the premise that serotonin is
low interictally but increased ictally (during attacks
themselves) in the migraine brain [143, 196]. According
to this model, during an attack serotonin is released
from platelets into blood plasma causing a short-lived
increase in free plasma serotonin that raises serotonin
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Table 5 Biochemical studies of 5-hydroxyindoleacetic acid (5-HIAA) in the urine of migraine patients and controls

Reference Migraine classification Controls/cases Sample tested Levels Controls/cases Sample tested Levels

(Sicuteri et al., 1961) [17] Not reported Controls: 15 Urine

M: 15 ↑

(Curran et al., 1965) [187] Not reported Controls: 10 Urine Controls: 21 Plasma

M: 18 ↑ M: 11 ↓

(Curzon et al., 1966) [149] Not reported Controls: 4 Urine

M: 9 =

(Kangasni et al., 1972) [149] Not reported Controls: 6 Urine Controls: 6 CSF

M: 9 ↑ M: 14 ↑

(Deanovic et al., 1975) [190] (Headache, 1962) [193] Controls: 4 Urine

M: 14 ↑

(Bousser et al., 1986) [191] (Headache, 1970) [194] Controls: 33 Urine

M: 44 ↓

(Milovanovic et al., 1999) [186] (ICHD-I, 1988) [195] Controls: 11 Urine Controls: 5 Plasma

M: 8 ↓ M: 5 ↑

TTH: 10 ↓ TTH: 7

M migraine, CSF cerebrospinal fluid, TTH Tension-Type Headache; ↑ Increase; ↓ Decrease; = Unchanged
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levels in the brain [197]. The second arm of the model
posits that raised levels of serotonin in the brain, during
a migraine attack, exerts a vasoconstrictor effect on in-
tracerebral arteries initiating the aura phase and cerebral
ischemia with resulting visual disturbances. The concen-
tration of serotonin eventually lowers because serotonin
is broken down and excreted and this lowering post-
attack is thought to produce vasodilation of extracereb-
ral arteries causing headache and pain [197]. Migraine is
generally regarded as a low serotonin syndrome. Dimin-
ished levels of serotonin in the brain lower the threshold
for pain and are evident in some disorders co-morbid
with migraine including chronic tension headache [198]
and depression [199] as well as other chronic diseases
such as fibromyalgia, irritable bowel syndrome [200],
premenstrual dysphoric disorder and depression. In
addition, tricyclic antidepressants can also reduce the
frequency of migraine attacks by increasing serotonin
signalling further supporting a role for serotonin in the
pathobiology of migraine [201]. Serotonin has also been
implicated in CSD and the trigeminovascular pathway.
Experimental depletion of serotonin in rats, enhances
the development of CSD with accompanying cerebrovas-
cular changes and increases responsiveness and sensitiv-
ity of the trigeminal system [202–204].
Metabolomics is an emerging field that has recently

shown that variations in brain metabolic homeostasis are
associated with neurological disorders [205, 206]. In par-
ticular a recent study by Shyti et al., [191] identified meta-
bolic changes by mass spectrometry in a transgenic mouse
model of hemiplegic migraine after experimentally induced
CSD [207]. This is the first study demonstrating CSD-
induced metabolite differences in Familial Hemiplegic Mi-
graine type 1 R192Q mice relative to WT mice and that
these events can be captured beyond the CNS in plasma
samples. Although we still do not know what the connec-
tion of central and peripheral serotonergic changes in mi-
graine may be, further study based on metabolic profiling
of biological fluids which contain the “products of numer-
ous genome-wide and proteome-wide interactions” [208],
the ‘metabolome’ [209] will continue to shed light on the
inner workings of the migraine brain. To study serotonin
deficiency-associated mechanisms a study by Weng et al.,
used a metabolomics approach to identify biomarkers
from serotonin deficient mice [47]. The mice were
depleted of serotonin via two approaches (1) use of p-
chlorophenylalanine (pCPA) to pharmacologically inhibit
tryptophan hydroxylase (Tph), a rate-limiting enzyme in
serotonin biosynthesis and (2) genetic knockout of the
Tph2 isoform. In this study serotonin deficiency was asso-
ciated with altered energy metabolism and several bio-
markers were identified in the serotonin deficient mice to
be significantly altered compared with the control mice
[47]. Moreover, the combination of sensitive brain imaging
techniques and metabolomics platforms hold optimism
to identify novel metabolite-gene relationships and new
insight into small molecular changes in neuronal metabol-
ism to enhance our understanding of biochemical
pathways “functional readout”. Pharmacometabolomics-
informed pharmacogenomics studies will therefore occupy
an important position in the coming tide of molecular and
“omics” research.
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Conclusion
The evidence so far points to migraine as a biochem-
ically complex disorder involving several neurotransmit-
ter systems which converge in their synaptic pathways.
The general trend observed is that migraine patients
have alterations of neurotransmitters in biological fluids
with different biochemistry from controls, however the
interpretation of the biological significance of these per-
ipheral changes is unresolved. At present, despite the
observation of biochemical alterations, specific diagnos-
tic markers are lacking for this disorder. In addition MA
and MO sufferers may exhibit varying degrees and types
of neurotransmitter dysfunction due to differing neuro-
logical features of both migraine types which may be re-
lated to the aetiology and underlying genetic component
of each migraine subtype. Insufficient serotonergic input
due to changes in synthesis, release, receptor function/
expression, reuptake and transport in the brain and
throughout the body may contribute to vulnerability to
migraine. Genetic studies have highlighted involvement
of the serotonin transporter gene SERT in migraine
susceptibility. However, serotonergic biochemistry is
complex and evidently a multiplicity of factors, rather
than any single one, combine to result in migraine
phenotypes. More research is required to shed light
on the course of these various biochemical phenom-
ena and enable more robust conclusions on causal
relationships. The absence of modern biochemical
studies underscores the need for more rigorously con-
ducted research utilizing larger sample sizes, updated
IHS classification criteria and more sensitive bioassays
and instruments and standardized methods for sample
collection, preparation/analysis. Novel approaches for
investigating the serotonergic system using PET im-
aging technology integrated with a metabolomics and
systems biology platform may help to better under-
stand the biochemical milieu and metabolome of
migraineurs and establish if the biochemical changes
are linked to the clinical presentation of the disease
process. In conclusion, given the therapeutic efficacy
of triptans, investigating the functionality of the sero-
tonergic system in the migraine brain remains on the
agenda to illuminate disease pathomechanisms and
new lines of treatment to enable a superior under-
standing of the disease process that will further aid in
the diagnosis, treatment and management of migraine
and headache related disorders.
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