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Abstract 

In past studies, finite element analysis (FEA) methods have been used to simulate the thermal and moisture cou-
pling of wood. However, challenges remain in achieving high-quality three-dimensional (3D) simulations, mainly 
because of the heterogeneous and complex structure of wood and its difficult-to-detect internal structure, which 
makes modeling challenging, in addition to the lack of robust experimental techniques to validate simulation results. 
In this study, the FEA simulation model was refined by combining X-ray computed tomography (CT) and near-
infrared hyperspectral imaging (NIR-HSI). CT was used to probe the 3D density of wood, and a novel FEA tetrahedral 
mesh was constructed based on the results. The NIR-HSI method visualizes the moisture distribution during adsorp-
tion and desorption inside the wood. This result is then used to adjust the parameters of the FEA simulation 
model and as a reference value to evaluate the simulation results. The visualization and simulation results fit well 
with the theoretical properties. The simulation results can more accurately reflect the spatial distribution and transfer 
trend of wood moisture at different points in time. Therefore, the CT and NIR-HSI-based 3D heat and moisture-cou-
pled FEA model of wood proposed in this study can be used as a basis for optimizing drying parameters to provide 
high-quality wood.
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Introduction
Wood is classified as a type of naturally occurring mac-
romolecular biomass material. Because of its environ-
mental friendliness and high specific strength, it is widely 

used in building materials. However, wood still has some 
limitations in practical use. The hygroscopic phenom-
enon always occurs during the use of wood owing to its 
porous anisotropic structure. This phenomenon pri-
marily depends on the ambient relative humidity (RH), 
temperature, wood density, and current wood moisture 
content (MC). Moisture movement affects the physical 
properties of materials, including their strength, stiff-
ness, and corrosion resistance [1]. Thus, it is crucial to 
study and simulate the moisture transport characteris-
tics in wood, which can predict the water distribution in 
the wood over time and provide appropriate protection 
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and repair based on this information to produce durable 
wooden structures.

Finite Element Analysis (FEA) is a computerized 
numerical technique for simulating complex physical 
phenomena. It involves dividing a physical system into 
finite, interconnected elements to evaluate the behavior 
of the system under various conditions. Numerous wood 
moisture-related studies have been conducted regarding 
this technology. Moisture migration in wood is typically 
regarded as a thermal mass transfer process that can be 
calculated by coupling the heat (i.e., Fourier’s law) and 
moisture (i.e., Fick’s law) fields. Initially, Erikson et  al. 
[2] performed a two-dimensional (2D) simulation of the 
transfer of moisture in panels under kiln-drying condi-
tions, considering only the macroscopic level of wood. 
Gu et  al. [3] optimized the model by considering the 
effect of wood density and MC on thermal conductiv-
ity. Zhu et  al. [4] artificially considered the microscopic 
porous structure of wood and introduced gas pressure 
as a driving force to achieve a 3D-level simulation of 
wood moisture. Varnier et al. [5] focused on parametric 
modeling to integrate temperature into the permeability 
correction. Past studies have demonstrated that as com-
puter technology advances, the FEA of wood moisture is 
becoming increasingly 3D and refined. However, high-
precision 3D simulations of moisture transport in wood 
remain difficult to achieve. This is mainly because of the 
heterogeneity and anisotropy of the structure of wood, 
making it difficult to accurately model and set property 
parameters. In addition, there is a lack of scientific exper-
imental characterization techniques to support and vali-
date the model. However, this situation can be improved 
through the application of advanced characterization 
techniques.

Near-infrared (NIR) spectroscopy is a technique that 
employs the NIR region of the electromagnetic spectrum, 
typically between 780  nm and 2500  nm. NIR spectros-
copy is distinguished by its reliance on overtones and 
combination bands of molecular vibrations to determine 
the chemical composition of a sample. Because the NIR 
region is not as strongly absorbed as the mid-infrared 
region, this technique is ideal for probing bulk samples 
without necessitating extensive sample preparation. At 
present, NIR has numerous applications. This method 
is notably applicable to organic compounds such as food 
[6], pharmaceuticals [7], and agricultural products [8]. At 
the same time, it has a long-term outlook within the wood 
industry. NIR permits non-destructive testing (NDT) 
of the physical and chemical properties of wood in real 
time. For instance, NIR can be used to estimate the lignin 
and cellulose content of wood, which is critical for assess-
ing its suitability for specific applications [9]. Similarly, 
MC—a crucial factor in determining the performance of 

wood—can be rapidly and accurately gauged with NIR 
[10], reducing reliance on time-consuming traditional 
methods. Therefore, NIR spectroscopy is increasingly 
becoming an indispensable instrument for the modern 
wood industry.

Near-infrared hyperspectral imaging (NIR-HSI) is an 
advanced technology that integrates spatial imaging with 
traditional NIR spectroscopy. It captures both spatial 
(x, y coordinates) and spectral (wavelength-dependent) 
information from a sample, thereby providing a detailed 
"hyperspectral cube" where each pixel contains a full NIR 
spectrum. This provides valuable insights into the intra-
sample heterogeneity and distribution of wood proper-
ties such as density, MC, and microfibril angle [11].

X-ray computed tomography (CT) is an NDT tech-
nique that provides a comprehensive analysis of an 
object’s internal and external structures. Using X-rays, 
the method generates a series of 2D cross-sectional 
images by scanning the object from different angles. 
These 2D images are then reconstructed into a 3D model, 
providing a comprehensive view of the internal features 
of the object without requiring any physical disassem-
bly or destruction. This technology is extensively used in 
various industries for quality control, failure analysis, and 
product development. For instance, it enables the detec-
tion of internal defects in manufactured components, 
such as inclusions, porosity, and cracks, that traditional 
surface inspection techniques may overlook [12]. In 
past research, CT has been used for the non-destructive 
internal examination of logs and timber. It aids in detect-
ing defects such as knots, cracks, and decay, as well as 
assessing the internal structure and growth rings [13]. In 
addition, researchers attempt to use this technology to 
predict wood density distributions [14].

In our previous research, we validated the feasibility of 
using NIR-HSI for visualizing the moisture distribution 
in wood during adsorption and desorption processes. 
In addition, the heat and mass transfer processes were 
simulated numerically, and the simulation results 
showed good agreement with the visualization findings 
[15]. However, the accuracy of density measurements 
obtained through NIR-HSI was not high. Moreover, the 
finite difference method based on a three-dimensional 
matrix has limitations, including neglecting the com-
plex structure of wood and having lower resolution. We 
aim to optimize the existing FEA model using NIR-HSI 
and CT techniques to achieve a more accurate 3D sim-
ulation of wood moisture migration during absorption 
and desorption processes. To achieve this goal, CT was 
used to obtain the 3D density information of the wood, 
which was subsequently used as the basis for creating the 
FEA mesh. Then, the NIR-HSI technique was utilized in 
conjunction with partial least squares (PLS) regression 
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analysis to construct MC prediction models and visual-
ize the water motion characteristics of wood of varying 
lengths during adsorption and desorption. Finally, these 
data and meshes were incorporated into the FEA model 
to simulate the internal moisture migration of the wood.

Materials and methods
Sample preparation
The wood sample, a Japanese cypress (Chamaecyparis 
obtusa) sawn timber, was purchased commercially from a 
local processing company. Its dimensions were 1000 mm 
in the longitudinal direction (L), 30 mm in the tangential 
direction (T), and 30 mm in the radial direction (R). The 
wood timber had been stored indoors for an extended 
period post-purchase and reached an equilibrium mois-
ture content. All parts of timber were taken from sap-
wood to minimize the variability of wood properties and 
appropriately reduce the complexity and computational 
effort of the model. For density model calibration and 
MC modeling, 24 cubic samples, a side length of 30 mm, 
were continuously cut longitudinally from the sawn 
timber using a bandsaw, which minimizes the variation 
between samples. Two of the samples were selected as 
the original sources for the simulation.

Computed tomography (CT) data and spectral data 
acquisition
The main experimental steps of this study are depicted 
in Fig. 1. The samples were adjusted in the hygroscopic 
range to obtain different MCs, resulting in absorp-
tion and desorption. This was accomplished using 
desiccators in which the internal RH was controlled 
via a chemical method. All samples were divided into 
two groups: the absorption and desorption groups. 

Desiccator A was adjusted to a high RH of approxi-
mately 95% by adding water, whereas desiccator B was 
adjusted to a low RH of approximately 10% by adding 
P2O5. The desiccators were equipped with thermom-
eters for real-time temperature and humidity monitor-
ing. The samples of the desorption group were placed 
in desiccator A for 10  days and weighed to confirm 
condition until equilibrium moisture content was 
reached. Then, these samples were quickly transferred 
to desiccator B and periodically removed for testing. 
The samples were initially scanned using a CT scan-
ner (ScanXmate-L080T/L090T, Comscantecno Co., 
Ltd., Kanagawa, Japan) at 80  kV voltage and 60  mA 
intensity. CT scans have 400 projections and an accu-
mulation rate of 2 fps. During this process, the sample 
was mounted on a carrier stage and rotated while the 
X-ray planar sensor captured 2D X-ray images. Scan-
ning time for each sample is approximately 3 min. Fol-
lowing this, the samples were rapidly cut with a knife 
in a direction parallel to the fibers into small wooden 
pieces with a thickness of approximately 3.75 mm, and 
their cross-sections were recorded using an NIR–HSI 
system (Compovision, Sumitomo Electric Industries, 
Ltd., Osaka, Japan). The system consisted of a hyper-
spectral camera, halogen lamp light source, and mobile 
carrier table, with the camera capable of receiving NIR 
light from 1002 to 2350 nm. The horizontal field of view 
was manually adjusted to 40 mm. The sample was posi-
tioned on a moving slider, and the spectral data were 
scanned line by line with an exposure time of 4.5  ms 
(200 fps). In addition, samples were weighed before 
and after image capturing. Then, all samples were fully 
dried (103 ℃, 48 h), and the total dry weight was deter-
mined for MC calculation. For the absorption group, 
the same experiment was conducted, except that desic-
cators A and B were replaced in reverse order.

RH 95%

Water

One week

Reach equilibrium MC

RH 10%

P2O5

Occur desorption

Scan X-ray CT

Scan NIR-HSI

48H 103℃

Calculate MC

Modeling and Mapping
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Build 3D mesh 

model

A B

Visualize moisture 

distribution

Fig. 1  Experimental flowchart for the desorption process
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Computed tomography (CT)‑based density prediction 
model building
During a CT scan, X-rays pass through wood and 
experience varying degrees of attenuation [16]. This 
process conforms to Beer’s law and can be expressed 
by Eq. (1).

where I0 is the intensity of the ray after attenuation by the 
object, I the sum of counts detected after attenuation by 
the object; µi the attenuation of the ray through different 
substances; and l the length of rays passing through each 
volume element of the object.

To better quantify this attenuation, the CT values 
(HU) of various regions can be obtained by Eq. (2) and 
the X-ray attenuation coefficient of water. This is also 
the most fundamental element of CT images.

µwater is the linear attenuation coefficient of water and 
µ the linear absorption coefficient of the detected mate-
rial. The scale linearly correlates with the actual density: 
higher CT values represent denser materials. The CT val-
ues of dry wood are generally between −800 and −200 
HU [17].

Past studies have shown a strong linear relationship 
between CT values and wood density [18]. Using the 
measured weight and volume, the average density of 
the sample was calculated. The acquired CT file was 
processed by MATLAB (The Mathworks Inc., Natick, 
MA USA) to eliminate edge noise, reconstruct the 3D 
representation, and calculate the average CT value for 
each sample. Linear regression was used to model the 
relationship between average density and CT value. 
The established model was applied to each voxel in the 
3D representation to accurately map the spatial distri-
bution of wood density.

(1)I = I0exp[−l(µ1 + µ2 + · · · + µi)]

(2)CTvalue =
µ− µwater

µwater
× 1000

CT‑based 3D FEA mesh creation
CT can accurately measure the size of samples, detect 
their internal structure, and distinguish between areas of 
varying densities. The CT model used in this study had 
a spatial resolution of up to 61.528 µm. This information 
is required to create precise FEA mesh information. Fig-
ure 2 illustrates the mesh generation process.

First, a threshold segmentation of the original CT 3D 
representation was performed to distinguish between the 
earlywood and latewood regions, and then dilation was 
used to remove noise. This step can reduce the complex-
ity and computational time of the FEA by eliminating 
unnecessary details. In contrast, segmentation assists in 
assigning these different properties to the correspond-
ing regions of the FEA model, leading to more accurate 
simulations.

Based on the Computational Geometry Algorithms 
Library (CGAL) [19], which helps us create polygons 
and convex packets and provides Delaunay triangula-
tion mesh generation algorithms, the junction plane 
between earlywood and latewood was extracted. Then, 
these planes were automatically subdivided into triangu-
lar meshes based on the voxel resolution, and the mesh 
was further refined at the density set. Using the iso2mesh 
[20] toolkit, topological defects and isolated points that 
appeared during the automatic mesh generation process 
were removed.

Based on an open triangular planar mesh, a square 
matching the sample dimensions was added to the vol-
ume bounding box to obtain multiple closed regions. 
Invoking the Tetgen 3D mesh generator [21] resulted in 
the generation of tetrahedral meshes with different den-
sities in various regions, with the density ratio of the 
earlywood and latewood meshes set to 2:3, which is the 
same as their average density ratio. The generated meshes 
were imported into COMSOL (COMSOL Multiphysics® 
v. 6.1. www.​comsol.​com. COMSOL AB, Stockholm, Swe-
den.), statistics of relevant parameters were calculated, 
and the meshes were used for subsequent finite element 
calculations.

Fig. 2  Flowchart of the mesh generation process

http://www.comsol.com
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Moisture content calibration model construction using 
partial least squares (PLS) regression analysis
Under the same conditions as the NIR-HSI scan, a white 
reference image was generated by scanning a white 
BaSO4 plate, and a black reference image was generated 
by turning off the light source and covering the lens with 
a lens cap. The original data were corrected by Eq. (3).

where S is the sample data, B is the white plate, D is the 
black plate, λ represents the different wavelengths, and n 
represents the position of the pixel.

The five points in the center and on the edges of the 
corrected hyperspectral image were averaged to repre-
sent the spectral information of each slice. The sample 
MC reference values derived from the weighing method 
were used to calibrate the NIR mean spectra acquired 
from each sample using PLS regression analysis. PLS is 
a regression technique for modeling the relationships 
between input and output variables using latent vari-
ables. PLS reduces dimensionality, mitigates multicollin-
earity, and maximizes covariance. In NIR spectroscopy, 
PLS facilitates the management of large, highly collinear 
datasets, enabling the accurate prediction of concentra-
tions or physical properties. It enables optimal utilization 
of spectral information, which improves the interpreta-
tion of complex, multivariate data. During the develop-
ment of the model, a random selection of 70% of the total 
collected data served as the calibration set, while the 
remaining 30% was set aside as the testing set. The spec-
tral baseline shifts, primarily caused by light scattering, 
were rectified using standard normal variate (SNV) spec-
tral pre-processing methods. To determine the optimal 
number of latent variables (LVs), the leave-one-out cross-
validation technique was employed. The effectiveness of 
the established calibration model was assessed through 
the determination coefficients (R2) and the root mean 
square error (RMSE).

In the obtained NIR–HSI data, the spectrum of each 
pixel was subjected to identical pre-treatments and sub-
sequently to the PLS predictive model to produce MC 
mapping outcomes.

Wood moisture transport finite element analysis (FEA) 
simulation
Mathematical formulation and physical field setting
Fourier’s law and Fick’s law are used to explain the 
heat–moisture coupling phenomenon in the wood 
below fiber saturation point (FSP), which mainly 
includes the flow of heat and the variation of the 
humidity field. [5] In this section, the mathematical 
equations of the model are briefly described once more, 

(3)R�,n =
S�,n − D�,n

B�,n − D�,n
,

and the physical fields and parameters are explained in 
detail to illustrate how they are set.

Constitutive law of heat transfer  The transfer of ther-
mal field in the wood below the FSP can be attributed 
to the interplay between temperature gradients and 
vapor pressure differences. In particular, the vapor pres-
sure difference causes fluctuations in the latent heat of 
adsorption.

Mathematically, the heat transfer mechanism is cap-
tured as follows:

where ρh is the wet density of the wood and computed as 
follows:

where ρanh represents the absolute dry wood density.
Ch is the wet wood heat capacity, and is provided by 

the following formula:

where Canh is the absolute dry wood heat capacity and Cw 
the universally accepted heat capacity of water.

Considering the heat caused by the temperature gra-
dient, λ(w) serves as the thermal conductivity of the wet 
material. The final part of the equation encapsulates the 
heat introduced by the latent heat of adsorption during 
vapor movement. Here, Hs denotes the heat sorption 
and pvs represents the saturated vapor pressure. The 
internal vapor pressure of wood is determined by mul-
tiplying the saturation vapor pressure by RH. The heat 
flow is directly proportional to vapor permeability δ.

The heat sorption Hs is an optimized representation 
of the latent heat L, factoring in the heat ΔHs released 
by the water bound to the cellulose. This heat, termed 
the enthalpy of adsorption, is computed as follows:

where ws denotes the MC of wood at the saturation point 
of the fibers, and A is a water capacity parameter.

Constitutive law of mass transfer  For the mass transfer 
process, the movement of water, driven by gradients in 
both RH and saturation water vapor pressure, is key. The 
following equation captures this mechanism:

(4)

(
ρh · Ch

)
·
∂T
∂t

=
−→
∇

(
�(w) ·

−→
∇ T

)
+Hs ·

−→
∇

(
δ ·

−→
∇ (RH · pvs)

)

(5)ρh = ρanh · (1+ w)

(6)

Ch =
Canh + w · Cw

1+ w
with Cw = 4.18kJ · kg−1

· K−1

(7)Hs = L−�Hs

(8)�Hs = A · ln(
w

ws
)
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where δ∗ is the apparent permeability, an important fac-
tor in water movement that focuses on liquid water 
movement as opposed to δ:

The activation energy Ea is vital in this setup. It is deter-
mined as follows:

Incorporating the latent heat energy of adsorption into 
the overall energy.

Mesh and boundary condition setting
The mesh and boundary conditions are shown in Fig. 3. 
The mesh was derived from the FEA mesh constructed 
based on CT. The five upper surfaces of the model were 
convected with air for heat and moisture exchange, 
whereas the bottom surface perpendicular to the L direc-
tion was configured as an insulated surface without heat 
and water vapor exchange because it is in direct contact 
with the platform.

The heat and moisture transfer on the convective 
exchange surface is given by Eqs. (12–13):

where Tamb and RHamb denote the ambient temperature 
and RH, both of which are obtained from temperature 

(9)
(ρanh ·

∂w
∂RH

) ·
∂RH
∂t

=
−→
∇ (δ∗ · pvs ·

−→
∇ RH)+

−→
∇

(
δ · RH ·

−→
∇ pvs

)

(10)δ∗ = δ0 · exp

(
−

Ea

R · T

)
.

(11)Ea = Hs −
(
Cpv · T

)
.

(12)� ·
∂T

∂x
= hT · (Tamb − Tsurf )

(13)δ ·
∂RH

∂x
= hw ·

(
RHamb − RHsurf

)

and humidity meter measurements in the desiccators, 
which are considered homogeneous sources. Tsurf  and 
RHsurf  represent the temperature and humidity of the 
sample surface, which are derived from the initial setting 
and subsequent derived values. hT and hw indicate the 
temperature and humidity convective exchange coeffi-
cients, respectively.

Finite element analysis (FEA) simulation model construction 
and parameter setting
The entirety of the model was constructed using the 
COMSOL 6.1 software environment. The coefficient-
type partial differential equation module was utilized, 
and the solver was configured as a transient solver with 
a 1-min time step. The initial density and MC in the 
model were derived from the CT and NIR-HSI esti-
mates, respectively. Other parameters were set based 
on a previous study by Ma et  al. [15]. In addition, the 
anisotropy of the wood structure must be considered, 
and correction factors must be applied to the diffusion 
coefficients and surface radiation coefficient in the geo-
metric direction. The simulation results were compared 
with the MC mapping results obtained by the NIR-HSI 
method, and the correction coefficients were manu-
ally adjusted. Through multiple simulations, the best-
fit result was obtained with the following parameter 
settings:

where the three rows of the matrix represent the T, R, 
and L directions of the sample respectively. hw is humid-
ity convective exchange coefficient. δd and δa denote the 
vapor permeability during the absorption and desorption 
processes, respectively.δdL is vapour permeability in the 
L direction during desorption, which set based on a pre-
vious study in Mouchot et  al. [22]. According to it, the 
parameters of the anisotropy in the other directions were 
set by coefficients. This coefficient is also consistent with 
the common perception of wood structure.

(14)hw =




0.5 ∗ hwL 0 0
0 0.7 ∗ hwL 0
0 0 hwL




(15)δd =




0.4 ∗ δdL 0 0
0 0.6 ∗ δdL 0
0 0 δdL




(16)δa =




0.08 ∗ δdL 0 0
0 0.1 ∗ δdL 0
0 0 0.3 ∗ δdL




Fig. 3  Geometry, FEA mesh, and boundary conditions settings
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Result and discussion
The measured wood densities ranged from 380 to 
470 kg/m3. CT values fluctuated between −725 HU and 

−630 HU. Figure  4 depicts the linear equation model 
and the relationship diagram that can be derived by 
linear regression of the average density and the aver-
age CT value. There was a significant linear relationship 
between density and CT values for the 24 wood sam-
ples, with the coefficient of determination  R2 exceeding 
0.979, which verified the reliability of the model. The 
range of CT values and modeling accuracy were similar 
to those of previous studies on softwoods [18].

The model was substituted into each voxel of the 3D 
CT expression to obtain the sample density distribu-
tion. Figure 5 depicts the number of voxels with differ-
ent densities. The densities were mainly concentrated 
between 200 and 700  kg/m3. There were two peaks at 
352 and 525  kg/m3, which indicated the density con-
centration of earlywood and latewood, respectively, and 
the peak height of earlywood was significantly higher 
than that of latewood, which was consistent with the 
reality that the proportion of earlywood in the samples 
was greater than that of latewood.

Figure  6 illustrates the CT-based FEA mesh model 
of one of the samples, which comprises 774361 nodes, 
1861044 triangle meshes, and 4569112 free tetrahe-
dral meshes. The average mesh quality can reach 0.7. 
It is generally believed that a mesh quality greater than 
0.5 does not affect the convergence of FEA calcula-
tion results [23]. The mesh density in the earlywood 
region was significantly lower than that in the latewood 
region, which better reflected the differences in struc-
ture and properties between earlywood and latewood. 
Because the principle of generating volume meshes by 
Tetgen is based on the fractal theorem, denser meshes 
are generated at the earlywood and latewood junctions, 
which facilitates the description of the strong tem-
perature–moisture gradient changes that occur in this 
region. In the new mesh, the alterations between early-
wood and latewood were visualized, and the mesh den-
sity was linked to the actual wood density, which better 
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reflected the geometrical and physical properties of the 
samples compared to the previous mesh [24, 25].

A thermohydrometer was used to measure tempera-
ture and RH in the desiccators in real-time. The tempera-
ture fluctuated with day and night, whereas the RH was 
maintained in a relatively stable state, except for small 
fluctuations when samples were introduced. This indi-
cates that water and P2O5 can effectively control the RH 
to provide a stable environment for the experiment. The 
average RH of the high-humidity desiccator reached 94%, 
whereas the average RH of the low-humidity desiccator 
reached an average RH of 29%. These data were also used 
to construct the simulation models.

Figure 7 shows the average spectra of the samples with 
different MCs; two prominent water-related absorption 
peaks were observed at 1450  nm and 1930  nm, which 
originated from the molecular vibrations of O–H [26]. 
Light absorption at 1930  nm was stronger than that at 
1450 nm, which indicated that the long-wave NIR spec-
trum contained more moisture information. In addition, 
it could be observed that wood with a higher MC tends 
to have lower light reflectance in this location.

In the modeling process, the spectra of wavelengths 
below 1350  nm and above 2050  nm were excluded 
because of noise. Figure  8 depicts the PLS process out-
come, which includes the influence rate of principal com-
ponents, the RMSE of predictors and reactions, and the 
PLS regression coefficients. These results indicate that 
the percentage variance of the average reflectance spec-
tra increased in correlation with the number of latent 

variables (LVs). When two LVs were employed, approxi-
mately 95% of the variance in the spectral data was jus-
tified, indicating that the fluctuations in the NIR spectra 
were likely because of changes in MC. Furthermore, as 
the number of LVs increased, the predictor and its asso-
ciated RMSE showed a decreasing trend. However, an 
overly reduced RMSE may result in model overfitting. 
Therefore, two LVs were chosen to enhance the robust-
ness of the PLS model. The regression coefficient dia-
gram exhibits greater absolute values in the vicinity of 
water-related wavelengths (i.e., 1450  nm and 1930  nm). 
This signals that the strength of the O–H absorption 
peak plays a significant role in the model.

Figure 9 shows the accuracy of the predicted model, for 
which the R2 and RMSE were 0.89 and 1.69% for the test 
set, respectively. It is evident that the long-wave NIR–
HSI method is robust to quantify MC in the wood below 
the FSP.

Figure  10 displays the HSI mapping results for the a 
desorption and b adsorption processes on wood MC 
distributions. By rearranging the planar results in the 
R-direction, the MC distributions at the 3D level were 
obtained. During the desorption process, the moisture 
distribution was relatively uniform in the initial stage, 
with the MC on the outside being slightly lower than that 
on the inside. As desorption proceeded, a large moisture 
gradient was formed between the surface layer and the 
interior. Then, when the surface layer attained equilib-
rium MC, the difference in MC between the interior and 
exterior decreased over time. This process was consistent 
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Fig. 7  Averaged NIR spectra of different MCs

Fig. 8  PLS results. a Contribution rate of the LVs; b RMSE of predictors 
and response in different LVs; c PLS regression coefficients
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with the hypothesis that water molecules in the air seek 
equilibrium with those in wood cell walls [27]. The 
absorption process was similar to the desorption process; 
however, the MC changed more gradually. This effect was 
due to changes in the wood’s microstructure and chemi-
cal composition during the initial moisture adjustment, 
which results in a reduction in the moisture adsorp-
tion point of the wood and a lower equilibrium MC [1]; 
smaller differences between equilibrium and real-time 
MC ultimately lead to slower reabsorption. In addition, 
during desorption, rapid surface moisture evaporation 
coupled with slow internal moisture movement created a 

significant moisture gradient between the heart and sur-
face layers [28]. Conversely, during moisture absorption, 
the process was slower and resulted in a more uniform 
MC distribution across both surface and interior. Fur-
thermore, the initial MC in the latewood is higher than 
that in the earlywood (Fig. 11). This could be due to that 
the latewood cellulose content is slightly higher while the 
lignin content is slightly lower than in earlywood which 
facilitates more hydrogen bonding with water molecules 
[29].

Figure  12 shows the reference and predicted average 
MC values over time. During desorption and absorp-
tion, the simulated and reference values were in good 
agreement, indicating that the simulation model had 
good performance in the overall MC simulation. Initially, 
the rate of change of MC was greater, but as the differ-
ence in relative humidity between the interior and exte-
rior decreased, the rate of change slowed and eventually 
assumed a parabolic form.

To evaluate the spatial accuracy of the model simula-
tions, reference obtained using the weighing method for 
each slice of wood and FEA predicted values of the aver-
age MC along the R direction of the sample slices were 
compared (Fig.  13). Reference obtained by Oven-dry 
method of sample slices. In the initial state, the distribu-
tion of moisture was not as uniform as expected owing 
to the complex structure of the wood. During desorption, 
the MC of the right side was slightly higher than that of 
the left side because of the denser distribution of late-
wood on the right side, which had a greater water storage 
capacity. In the absorption group, the knots in the wood 
caused a low MC zone on the left side. As desorption and 
adsorption proceeded, this inhomogeneous moisture 
distribution was displaced by ordered internal and exter-
nal moisture gradients, a phenomenon exhibited in both 

Fig. 9  Scatter plot illustrating the differences between the MC 
reference values and their predicted values by the NIR–HIS

Fig. 10  MC mapping results with samples during the a water desorption and b adsorption processes under the FSP
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reference and predicted values and consistent with the 
theory of moisture absorption in porous materials [30]. 
Although the trend of the simulated results was similar 
to that of the reference results, the simulated results were 
more difficult to fit numerically. On the one hand, this 
bias originated from the variability of the samples. The 
samples used to test the reference MC at each stage were 
similar but distinct (the sample was cut during the hyper-
spectral scan and was unavailable for subsequent experi-
ments). On the other hand, in this model, the difference 
in vapor permeability between morning and evening tim-
ber was not considered in a significant manner, and this 
simplification resulted in simulated moisture distribu-
tions that always converged to equilibrium more quickly.

To further evaluate the performance of the model in 
simulating the 3D moisture distribution species, the visu-
alization results obtained from NIR-HSI of the T-L sec-
tion located in the center of the sample were compared 
with the predicted results. Figure  14 demonstrates that, 
in comparison to the previous model, the simulation 
results better reflect the spatial trend of moisture migra-
tion. Because of the introduction of the initial spatial 
distribution of MC and density, it can be observed in the 
simulation results that at the beginning of the desorp-
tion and absorption of the wood, the moisture distribu-
tion was not as homogeneous as expected, but with time, 

the moisture distribution gradually exhibited the gra-
dient distribution from the outside to the inside, which 
was more in line with the previously obtained results. In 
addition, as a result of the setting of the correlation fac-
tors, the moisture moved more rapidly in the L direction 
than in other directions, and the moisture distribution 
was relatively uniform during the absorption process. 
Under the current correlation factor settings, the best fit 
between the simulated values and the reference values 
could be achieved. Although experimental verification of 
the physical significance of the parameter settings is nec-
essary, these values are associated with the effect of the 
anisotropy of wood microstructure on the hygroscopic 
properties of wood [31].

It is important to note that the model had some limi-
tations. First, in the simulation results, the bottom had a 
low MC because of the setting of the insulation bound-
ary. However, in the reference results, moisture exchange 
with air at the bottom was still observed, which was 
owing to the porous wood structure [32]. In addition, 
the model did not perform well in terms of details, and 
the difference in MC between earlywood and latewood 
disappeared with increasing simulation time. This was 
likely because considering only the spatial distribution 
of densities did not adequately characterize the migra-
tion of moisture between earlywood and latewood, and 
there was room for the mesh density to increase. Taking 
parameters such as porosity or pore size distribution into 
account in the model should result in a more reasonable 
response to the hygroscopic properties of different wood 
regions [33, 34].

Conclusions
In this study, the 3D properties of the wood (density, MC, 
and mesh model) were probed using NDT tools such as 
CT and NIR-HSI. Then, for the first time, these com-
plex non-homogeneous properties were incorporated 
into the modeling and calculation of wood FEA simula-
tions. The new model had high accuracy in the overall 

Fig. 11  Middle layer MC mapping result in initial state 
during desorption process

Fig. 12  Reference and simulated values of the average MC of samples at various time periods. a Desorption; b absorption
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MC simulation and responded to the trend of moisture 
migration at the 3D level.

There is still substantial room for improvement in the 
model, including optimizing the boundary conditions, 
analyzing the influence of wood structure on parameters 

such as vapor permeability in greater depth, and achiev-
ing a balance between calculation time and calculation 
accuracy. Overall, despite the limitations, this study illus-
trates the potential of FEA as a valuable tool for simulat-
ing moisture transport in wood. This can greatly improve 

Fig. 13  Reference and simulation average moisture content of the sliced samples arranged diagonally along the sample R direction. a Desorption; 
b absorption

Fig. 14  Reference and simulation comparisons of the internal moisture content distribution of wood
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our understanding and prediction of moisture-related 
processes in wood, which is critical for numerous indus-
tries that utilize wood. The addition of advanced char-
acterization tools will also allow us to refine the FEA 
simulation process to achieve an improved outcome.
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