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Multi‑objective optimization of particle 
gluing operating parameters in particleboard 
production based on improved machine 
learning algorithms
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Abstract 

Particle gluing operating parameters in particleboard (PB) production have an important influence on the mechani-
cal properties of PBs. This study developed a multi-objective optimization model based on support vector regression 
(SVR) optimized by the non-dominated sorted genetic algorithm-II (NSGA2) to realize the multi-objective accurate 
prediction of PB mechanical properties (modulus of elasticity (MOE), modulus of rupture (MOR), and internal bonding 
(IB) strength) by adjusting particle gluing operating parameters. The NSGA2-SVR multi-objective prediction model 
was trained by 496 groups of experimental data of particle gluing operating parameters and PB mechanical proper-
ties. The prediction results of the NSGA2-SVR multi-objective prediction model were evaluated by 124 groups of 
experimental data and compared with the prediction results of the back propagation neural network (BPNN) model, 
general regression neural network (GRNN) model, and SVR model. The mean absolute percentage errors (MAPEs) 
of the NSGA2-SVR model were 49.11%, 33.64%, and 24.20% lower than that of the BPNN model, GRNN model, and 
SVR model, respectively. The Theil’s inequality coefficients (TICs) of the NSGA2-SVR model were 40.93%, 27.39%, and 
18.58% lower than that of the BPNN model, GRNN model, and SVR model, respectively. The results showed that the 
multi-objective prediction model based on NSGA2-SVR has a superior fitting and higher prediction accuracy for the 
prediction performance of particle gluing operating parameters, and the NSGA2-SVR model can be applied to the 
multi-objective synchronous prediction of particle gluing operating parameters in the PB production line.
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Introduction
Particleboards (PB) have advantages of low cost, good 
processing performance, renewable raw materials, and 
reasonable mechanical properties, which have become 
one of the commonly used panels for furniture and 
indoor decoration [1]. In the PB production process, 
the particle gluing process operation has a great influ-
ence on the mechanical properties of PB [2], so operators 
often adjust the operating parameters of particle gluing 

according to the mechanical properties test results of PB 
[3]. However, depending only on the actual production 
experience of operators, it is difficult to accurately con-
trol the particle gluing operating parameters.

The operating parameters of particle gluing can be 
accurately predicted and adjusted according to the devel-
oped mathematical model. Haftkhani et  al. [4] used the 
pi-theorem theory to develop a linear regression predic-
tion model between the parameters such as gluing ratio 
and the mechanical properties of PB. But, the predic-
tion accuracy of particle gluing operating parameters 
with nonlinear data characteristics in the linear predic-
tion model was poor [5]. de Melo et  al. [6] constructed 
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an artificial neural network model to predict the modulus 
of elasticity (MOE) and modulus of rupture (MOR) of PB 
through parameters such as adhesive types. Nevertheless, 
the ANN model may lead to the prediction results fall-
ing into locally optimal solutions [7]. Yang et al. [8] used 
Random Forest algorithm to develop a prediction model 
for 23 operating parameters such as particle gluing to 
predict the mechanical properties of PB. Yet too many 
dimensions would reduce the prediction accuracy of the 
Random Forest model [9].

Support Vector Regression (SVR) is a nonlinear regres-
sion prediction method derived from Support Vector 
Machine [10]. SVR has the advantages of high robustness 
and strong generalization ability and has a good predic-
tion effect for small nonlinear samples [11]. In our pre-
vious studies [12], the SVR model was used to predict 
the operating parameters of particle gluing. The results 
show that the SVR nonlinear regression prediction model 
has good prediction performance for the internal bond-
ing (IB) strength of PB. But the disadvantage of the SVR 
model is that it cannot predict multiple targets synchro-
nously [13].

Non-dominated sorting genetic algorithm-II (NSGA2) 
is a multi-objective optimization algorithm with low 
computational complexity and good convergence 
[14]. The multi-objective optimization of SVR model 
parameters by NSGA2 can transform the model solv-
ing process from single-objective multiple predictions 
to multi-objective synchronous predictions. The multi-
objective prediction model of particle gluing operating 
parameters was developed based on NSGA2-SVR, which 
can realize the simultaneous predictions of multiple 
mechanical properties of PB by coupling and nonlinear 
particle gluing operating parameters.

This study developed a multi-objective prediction 
model of particle gluing operating parameters and PB 
mechanical properties (including MOE, MOR, and IB) 
based on NSGA2-SVR. Firstly, the fitting and prediction 
accuracy of the NSGA2-SVR model were analyzed by 
comparing the predicted and experimental values. Sec-
ondly, the prediction performance of the NSGA2-SVR 
multi-objective prediction model was evaluated and 
compared with that of the SVR single-objective multiple 
prediction models. Finally, according to the actual pro-
duction situation of the factory, the adjustment of particle 
gluing operating parameters based on the NSGA2-SVR 
multi-objective prediction model was applied. Particle 
gluing operating parameters and PB mechanical proper-
ties are coupled and inseparable. Multiple single-objec-
tive predictions cannot synchronize the mechanical 
properties to the expected value. Therefore, according 
to the literature review, the multi-objective synchroniza-
tion and accurate prediction of particle gluing operating 

parameters and mechanical properties of PB based on 
NSGA2-SVR are unique, meaningful, and valuable.

Experimental
Materials
In this experiment, the data acquisition site was a real PB 
production line with an annual output of 250,000 m3 in 
Tangshan, China. The core particles, surface particles, 
and adhesive used as raw materials were experimented 
with in the particle gluing equipment. Among them, 
the blender of IPLCTS/ASS produced by IMAL-PAL 
(Italy) was the key equipment in particle gluing experi-
ment. The core particles and surface particles used in 
the experiment were made from mixed wood species 
(a ratio of pine:fruit wood:other wood species = 2:2:1). 
Surface particle sizes (length × width × thickness) were 
from 3 × 0.5 × 0.3  mm to 15 × 1.5 × 0.4  mm. The core 
particle sizes (length × width × thickness) were from 
15 × 3 × 0.4 mm to 45 × 10 × 0.6 mm. The main compo-
nent of the adhesive used in the experiment was urea–
formaldehyde resin, and the resin content was 64.5%. 
Before gluing, the adhesive temperature was maintained 
at 25  °C, and the potential of hydrogen (PH) value was 
maintained between 8.5 and 9.

In the process of particle gluing, firstly, the particles 
were transported to the blender by the built-in conveyor 
belt of the metering bins. At the same time, the discharge 
speed of particles was weighed by the belt scale in the 
metering bins during the transportation. Among them, 
the core particle discharge speed was recorded as fcore, 
and the surface particle discharge speed was recorded as 
fsurface. Secondly, the adhesive was sprayed onto the parti-
cle surface at a certain pressure and flow rate by control-
ling the atomization spray head in the blender. Among 
them, the pressure and flow rate of the adhesive were 
controlled by multi-pump dosing system and air pressure 
pump connected with the atomization spray head. The 
flow rate of core particle glue from the multi-pump dos-
ing system was recorded as vcore, the flow rate of surface 
particle glue from the multi-pump dosing system was 
recorded as vsurface, the pressure on surface particle gluing 
from the air pressure pump was recorded as pcore, and the 
pressure on surface particle gluing from the air pressure 
pump is recorded as psurface. Finally, the glued particles 
were stirred evenly in the blender and discharged. The 
discharged particles were used to make PBs with a den-
sity of 650–700 kg/m3 and a thickness of 18 mm through 
mat-forming and hot-pressing processes, and then the 
mechanical properties of PBs were examined. During the 
hot-pressing process, the temperature ranges of the four 
zones are 224–230 °C, 224–230 °C, 220–226 °C, and 194–
196 °C, respectively. The particle gluing process is shown 
in Fig. 1.
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In this experiment, the mechanical properties (MOE, 
MOR, and IB) of PB without sanding treatment were 
tested by the Mod. IB700 testing machine, produced by 
IMAL–PAL in Italy. The test process followed the stand-
ard “GB/T 17657-2013 Test methods of evaluating the 
properties of wood-based panels and surface decorated 
wood-based panels” [15]. The test results of MOE, MOR, 
and IB were reported by averaging six PB specimens.

To eliminate the influence of other factors on the mod-
eling, the key operating parameters of the process after 
particle gluing should be constant or stable within a cer-
tain range. On the above premise, the 620 groups sam-
ple data of operating parameters (fcore, fsurface, vcore, vsurface, 
pcore, and psurface) of particle gluing and mechanical prop-
erties (MOE, MOR, and IB) of PB were collected for 
modeling.

Methods
The multi-objective prediction model of particle glu-
ing operating parameters was developed based on the 
NSGA2-SVR. SVR nonlinear regression prediction 
model that was used to train the sample data of particle 
gluing operating parameters and PB mechanical proper-
ties. Taking the minimization of the prediction gener-
alization errors of MOE, MOR, and IB as the objective 
function, the NSGA2 algorithm was used to conduct the 
multi-objective optimization of the parameters of the 
SVR model. The multi-objective prediction model of par-
ticle gluing operating parameters based on NSGA2-SVR 
was developed with the optimal model parameters.

Support vector regression
SVR regression prediction model is suitable for training 
nonlinear, small sample, and high-dimensional data sets 
[16]. It has the characteristics of small structural risk and 
strong generalization ability and can avoid dimension 
disaster and over-fitting problems caused by prediction 
results [17]. Therefore, the particle gluing parameters 
with limited samples and nonlinear characteristics can be 
modeled and predicted by SVR.

Given the sample data set D = {xi , yi
}n
i=1

 , where n is 
the number of training set data sets, xi ∈ R and yi ∈ R are 
input samples and output samples, respectively. The 
regression function can be expressed as:

where ω ∈ R is the weight vector, and b is the threshold. 
To include more model samples within the boundary 
conditions, the tolerance deviation ε and slack variables 
ξi ≥ 0, ξ∗i ≥ 0 are introduced [18]:

Based on this structural risk minimization principle, 
the optimal solution of the regression function can be 
obtained:

(1)f (x) = ω
Tϕ(x)+ b,

(2)
{

yi − ω
Tϕ(xi)− b ≤ ε + ξi

ω
Tϕ(xi)+ b− yi ≤ ε + ξ∗i

.

(3)min
ω,b,ξ ,ξ∗

1

2
�ω�2 + C

n∑

i=1

(ξ + ξ∗),

Fig. 1  Flowchart of particle gluing
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where C is the penalty factor. The regression function can 
be obtained using Lagrange multiplier [19]:

where ai and a∗i  are the Lagrange multipliers. The regres-
sion function of SVR can be obtained by replacing 
ϕ(xi)

Tϕ(xj) with Radial basis function (RBF) [20]:

where σ is the width of RBF. C and σ plays a decisive role 
in the prediction effect of the SVR model, and they are 
often optimized by grid search [21]. Prediction of multi-
ple targets by the SVR model needs to be modeled sepa-
rately for each target. However, the relationship between 
particle gluing operating parameters and the mechani-
cal properties of each PB was mutually coupled. Multi-
ple single-objective modeling would make the model 
lose the feedback prediction mechanism. In this study, 
the multi-objective algorithm was used to optimize the 
model parameters C and σ of SVR, which can realize the 
multi-objective synchronous prediction of PB mechani-
cal properties based on the SVR model.

Non‑dominated sorting genetic algorithm‑II
NSGA2 is a multi-objective optimization algorithm, 
which can solve the Pareto optimal solution set of sev-
eral highly nonlinear objective functions under different 
constraints [22]. Given that there are any two different 
and random individuals a and b in the population P with 
initialized size N when a dominates b, the following rela-
tionship is satisfied:

where gi(x) is the objective function, and s is the number 
of objective functions. Any individual i in the population 
P is subjected to fast non-dominated sorting according 
to Formula (7) to obtain its non-dominated rank number 
irank. The aggregation density Di of any individual i is cal-
culated by crowding degree [23]:

After non-dominated sorting and crowding calculation, 
any individual i in population P is given irank and Di. For 
any two different and random individuals a and b, the 

(4)f (x) =

n∑

i=1

(ai − a∗i ) [ϕ(xi)
Tϕ(xj)] + b,

(5)

f (x) =

n∑

i=1

(ai − a∗i )

[
exp

(
−
∥∥xi − xj

∥∥2

2σ 2

)]
+ b,

(6)
{
∀k ∈ {1, 2, · · · , s}, gk(a) ≤ gk(b)
∃l ∈ {1, 2, · · · , s}, gl(a) < gl(b)

,

(7)Di =

s∑

k=1

(∣∣∣gi+1
k (x)− gi−1

k (x)
∣∣∣
)
.

better individual a is selected for crossover and mutation 
if and only if satisfied:

NSGA2 algorithm increases the probability of retain-
ing excellent individuals through the elitism strategy [24]. 
In the elitism strategy, the parent population P produces 
the offspring population Q after selection, crossover, 
and mutation. Then the population P is merged with the 
population Q to form a new population R with a popula-
tion size of 2 N. After a new round of iterative selection, 
population R generates a new population P2 with a popu-
lation size of N. Finally, the population Pt was obtained 
after t iterations of population P. The dominant individ-
ual set Sdom in population Pt is the Pareto optimal solu-
tion set obtained by the NSGA2 algorithm. The flowchart 
of NSGA2 algorithm is shown in Fig. 2.

NSGA2‑SVR multi‑objective prediction model
Normalization of  sample data  Different operat-
ing parameters of particle gluing and dimension of PB 
mechanical properties would affect the training results of 
the NSGA2-SVR model. Normalization is to reduce the 
data sample to the range of [0, 1] in proportion. Then the 
samples with dimension are transformed into dimension-
less values to eliminate the influence of model training:

where x is the sample data, XN is the normalized data.

Sample data splitting  The sample data set is split into 
training set and test set after normalization. The training 

(8)arank ≤ brank ∩ Da > Db.

(9)XN =
x −MIN(x)

MAX(x)−MIN(x)
,

Fig. 2  Flowchart of NSGA2 algorithm
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set is split into K parts in K-fold cross-validation (K-CV). 
Each cross-validation takes (K-1) parts of data to train the 
model and takes a part of the remaining data as the valida-
tion set to calculate the mean square error (MSE) between 
the predicted value and the actual value of the model in 
this round of training, as shown in Formula [10]. Test set 
is mainly used for model prediction performance evalua-
tion after the model establishment:

where r is the number of the validation set samples, yi 
is the actual value of the validation set output samples, 
and ŷi is the predictive value of the validation set input 
samples.

Constructing the  objective function of  NSGA2 algo‑
rithm  The training set data is repeatedly trained K times 
by the K-CV method. The K-CV generalization error 
CV(K) of the model can be obtained when the penalty fac-
tor is C and the width of RBF is σ by calculating the mean 
of MSE of K training:

When the CV(K) of the SVR model is lower, the fitting 
effect of the model is better. The objective function of the 
NGSA-II algorithm is established with C and σ as deci-
sion variables and CV(K) minimization of MOE, MOR 
and IB as optimization:

Initializing parameters of NSGA2 algorithm  Before the 
multi-objective optimization of SVR model parameters 
by the NSGA2 algorithm, the relevant parameters need 
to be initialized. The NSGA2-SVM parameters include 
the range of decision variable C: (Cmin, Cmax), the range 
of decision variable σ: (σmin, σmax), the K-CV coefficient 
K, population number N, maximum iteration number k, 
crossover operator CO and mutation operator MO, and 
the parameters are set as shown in Table 1.

Multi‑objective optimization of  SVR model parameters 
by NSGA2 algorithm  The NSGA2 algorithm takes f(C, σ) 

(10)MSE =
1

r

r∑

i=1

[yi − ŷi]
2,

(11)CV (K )(C , σ) =
1

K

K∑

j=1

MSEC ,σj .

(12)f (C , σ) = MIN






CV
(K )
MOE (C , δ)

CV
(K )
MOR (C , δ)

CV
(K )
IB (C , δ)





,

(13)S. t. {Cmin ≤ C ≤ Cmax, δmin ≤ δ ≤ δmax}.

as the objective function to conduct multi-objective opti-
mization for variables C and σ, and finally obtains their 
Pareto solution. Then the maximum generalization errors 
in the Pareto solution were minimized, so that the model 
parameters C and σ satisfy:

Finally, NSGA2-SVR multi-objective prediction model 
is constructed with the optimal solution of C and σ. The 
flowchart of the model is shown in Fig. 3.

Evaluation of the NSGA2‑SVR model  The test set sam-
ples are brought into the NSGA2-SVR multi-objective 
prediction model. The evaluation indexes of mean abso-
lute percentage error (MAPE) and Theil’s inequality coef-
ficient (TIC) without dimensional constraints are used 
to analyze the convergence of the predicted values of the 
model relative to the experimental values. In this way, 
the prediction performance of the NSGA2-SVR model is 
evaluated:

where y∗i  is the actual value of the output parameters 
of the test set, and yi is the predicted value of the input 
parameters of the test set.

Results and discussion
Optimization results of NSGA2‑SVR model parameters
The 620 groups of experimental data collected on the PB 
production line were used as samples, four-fifths of the 
data (496 groups) were randomly selected as the training 

(14)
MIN {MAX [CV 5

MOE (δ, g), CV
5
MOE (δ, g), CV

5
IB(δ, g) ] }.

(15)MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − y∗i

yi

∣∣∣∣× 100%,

(16)TIC =

√
n∑

i−1

(yi − y∗i )
2

√
n∑

i−1

(yi)2 +

√
n∑

i−1

(y∗i )
2

,

Table 1  The initialization setting of NSGA2-SVM parameters

Parameters Values

(Cmin, Cmax) (− 20, 20)

(σmin, σmax) (− 20, 20)

K 5

N 200

k 120

CO 0.8

MO 0.05
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set to construct the model, and the remaining one-fifth 
of the data (124 groups) was used as the test set to ver-
ify the model. The statistical results (Mean, Max, Min, 
Standard deviation (SD)) for the operating parameters 
and mechanical properties of the train set and test set are 
shown in Table 2.

The NSGA2-SVR multi-objective prediction model 
took the operating parameters (fcore, fsurface, vcore, vsurface, 
pcore, and psurface) of particle gluing as the input vari-
ables and the mechanical properties (MOE, MOR, and 
IB) of PB as the output variables. The 5-CV method was 
used to train 496 groups of experimental data. After 120 

Fig. 3  Modeling flowchart of NSGA2-SVR multi-objective prediction model

Table 2  The statistical results of mean, Max, Min, and SD of the training set and test set

Parameters Operating parameters of particle gluing Mechanical properties of PB

fcore
(kg/min)

fsurface
(kg/min)

vcore
(L/min)

vsurface
(L/min)

pcore
(bar)

psurface
(bar)

MOE
(MPa)

MOR
(MPa)

IB
(MPa)

Min Train 174 98 24.9 15.8 1.20 1.30 1895 11.37 0.33

Test 172 106 25.8 18.6 1.40 1.40 1963 12.04 0.41

Total 172 98 24.9 15.8 1.20 1.30 1895 11.37 0.33

Max Train 357 215 42.2 37.6 2.31 3.10 2603 15.95 0.59

Test 354 211 43.5 35.7 2.31 2.52 2467 16.18 0.56

Total 357 215 43.5 37.6 2.31 3.10 2603 15.95 0.59

Mean Train 294 146 34.6 26 1.78 1.77 2188 13.34 0.47

Test 296 148 35.2 26.3 1.80 1.79 2211 13.42 0.48

Total 294 147 34.8 26.1 1.79 1.78 2192 13.35 0.47

SD Train 30 19 3.4 3.4 0.21 0.21 110 0.72 0.03

Test 35 22 3.2 3.7 0.21 0.23 98 0.78 0.03

Total 31 20 3.4 3.5 0.21 0.21 108 0.73 0.03
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iterations of the NSGA2 algorithm, population P finally 
converges to the Pareto front as shown in Fig.  4. It can 
be seen from the figure that the target spatial distribu-
tion is continuous and uniform, belonging to the regular 
Pareto front. Therefore, the solutions in the Pareto front 
are non-inferior solutions.

In order to balance the prediction effect of the NSGA2-
SVR model on MOE, MOR, and IB, the Pareto solutions 
were screened according to Formula (14). Finally, the 
optimal parameters of the SVR model were C = − 0.5 and 
σ = 2.5, and the NSGA2-SVR multi-objective prediction 
model was established using these model parameters.

Prediction performance evaluation of the NSGA2‑SVR 
model
The relative deviation of the test set prediction value can 
reflect the prediction accuracy of the NSGA2-SVR multi-
objective prediction model. The 124 groups of test sets 
were brought into the NSGA2-SVR multi-objective pre-
diction model to predict the target values. By calculating 
the relative deviation between the predicted values and 
the experimental values, the average relative deviations 
of 124 groups of predicted values of MOE, MOR, and IB 
were 1.08%, 1.40%, and 1.85%. It was indicated that the 
prediction accuracies of the NSGA2-SVR multi-objective 
prediction model for MOE, MOR, and IB were relatively 
balanced.

In addition, the proportions of the test set samples with 
relative deviations of the predicted value and the experi-
mental value in the range of 0–5% were counted. Among 
them, the proportions of samples with relative deviations 
of MOE, MOR, and IB in the range of 0–5% were 95.16%, 
92.74%, and 95.16%, respectively. It was shown that the 
prediction accuracy of the NSGA2-SVR multi-objective 
prediction model for particle gluing operating param-
eters and PB mechanical properties was high.

The dimensionless evaluation indexes MAPE and TIC 
can better evaluate the multi-objective prediction per-
formance of particle gluing operating parameters in the 
NSGA2-SVR model. The prediction results of the test set 
of the NSGA2-SVR model are brought into Formula [15] 
and Formula [16]. It can be concluded that the MAPE of 
MOE, MOR, and IB of PB mechanical properties were 
0.0107, 0.0143, and 0.0183, respectively. And the MAPE 
of MOE, MOR, and IB were 0.0089, 0.0133, and 0.0121, 
respectively. It can be seen that the evaluation indexes 
MAPE and TIC of the NSGA2-SVR model were low. 
The results showed that the multi-objective prediction 
model of particle gluing operating parameters based on 
NSGA2-SVR had better prediction performance.

The particle gluing operating parameters were estab-
lished and predicted by the back propagation neural 
network (BPNN) model, general regression neural net-
work (GRNN) model, and SVR model, respectively, and 
then the prediction results were evaluated by MAPE 
and TIC. The results are shown in Table 3. The average 
MAPEs of the NSGA2-SVR model were 49.11%, 33.64%, 
and 24.20% lower than that of the BPNN model, GRNN 
model, and SVR model, respectively. The average TICs of 
the NSGA2-SVR model were 40.93%, 27.39%, and 18.58% 
lower than that of the BPNN model, GRNN model, and 
SVR model, respectively. Compared with the BP model, 
GRNN model, and SVR model, the NSGA2-SVR model 
had a better prediction accuracy on the prediction of par-
ticle gluing operating parameters.

The significance tests were carried out to verify the 
reduction of prediction deviations of the NSGA2-SVR 
model compared with the BPNN model, GRNN model, 
and SVR model using the analysis of variance (ANOVA) 
test. The test results showed that, excepted for the IB of 
SVR, the predictive accuracies of all mechanical prop-
erties of the NSGA2-SVR model were significantly 
improved compared to the BPNN, GRNN, and SVR 
models as presented in Table  4 (smaller than α = 0.05). 

Fig. 4  Pareto fronts of CV5

MOE
 , CV5

MOR
 , and CV5

IB

Table 3  Evaluation results of the BP model, GRNN model, SVR 
model, and NSGA2-SVR model

Model types Evaluation index MOE MOR IB Mean

BPNN MAPE 0.0196 0.0278 0.0376 0.0283

TIC 0.0129 0.0197 0.0254 0.0193

GRNN MAPE 0.0189 0.0209 0.0254 0.0217

TIC 0.0146 0.0163 0.0163 0.0157

SVR MAPE 0.0170 0.0210 0.0189 0.0190

TIC 0.0123 0.0163 0.0133 0.0140

NSGA2-SVR MAPE 0.0107 0.0143 0.0183 0.0144

TIC 0.0089 0.0133 0.0121 0.0114
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According to ANOVA test results, compared to that of 
SVR, the IB of the deviation reduction of NSGA2-SVR 
model was slightly reduced from 0.0091 to 0.0087, but 
the ANOVA test indicated that the reduction was not 
significantly because the P-value was larger than α = 0.05 
(Table 4).

Application of NSGA2‑SVR multi‑objective prediction 
model for particle gluing
In the production process of PB, manufacturers would 
change the gluing amount for particles according to the 
production demand and cost consideration of actual 
orders [25]. The operating parameters of particle glu-
ing can be adjusted based on the NSGA2-SVR multi-
objective prediction model according to the actual gluing 
requirements, to improve the MOE, MOR, and IB of the 
produced PB.

It was assumed that fcore ran at 300  kg/min in a cer-
tain period. In order to maximize the PB mechanical 
properties with less particle gluing cost, the arithme-
tic progression of 100 particle gluing operating param-
eters within the parameter range were input into the 
NSGA2-SVR multi-objective prediction model for pre-
diction. Then NSGA2 was used to find non-inferior solu-
tions for MOE, MOR and IB predicted by the model, 
and the results are shown in Table 5. It can be seen that 
Result3 had the smallest sum of vcore and vsurface among 
the five non-inferior solutions. At this time particle glu-
ing operating parameters were: fsurface = 113.80  kg/min, 

vcore = 31.30 L/min, vsurface = 21.04 L/min, pcore = 1.50 bar, 
psurface = 1.62  bar. The optimal values of MOE, MOR, 
and IB of PB properties were 2341 MPa, 14.60 MPa, and 
0.53 MPa, respectively.

On the other hand, manufacturers can adjust the supply 
of raw materials according to the demand for PB produc-
tion in actual orders [26]. The raw material adjustment 
would change the particle gluing operating parameters 
fcore and fsurface. The multi-objective model of NSGA2-
SVR particle gluing operating parameters can make the 
mechanical properties of PB to reach the optimal values 
or meet the minimum requirements of enterprise stand-
ards under these parameters. Therefore, the utilization of 
NSGA2-SVR to model the operating parameters of parti-
cle gluing is conducive to reducing the cost of gluing and 
improving the production quality of PBs.

Conclusions

(1)	 In this study, a multi-objective optimization model 
was developed based on NSGA2-SVR, and the 
mechanical properties (MOE, MOR, and IB) of 
PBs were predicted and optimized by adjusting the 
operating parameters (fcore, fsurface, vcore, vsurface, pcore, 
and psurface) of particle gluing. This model can quan-
titatively evaluate the influence of particle gluing 
operating parameters on the mechanical proper-
ties of PBs. On the one hand, through the combina-
tion of the NSGA2 algorithm and SVR model, the 
randomness and experience of the SVR model in 
parameter selection were overcome. On the other 
hand, through the multi-objective optimization 
of SVR model parameters by NSGA2, the multi-
objective simultaneous prediction of particle gluing 
operating parameters by the NSGA2-SVR model 
was realized, which provides a new theoretical 
method for the particle gluing process.

Table 4  Significances (P-values) of ANOVA test results for 
prediction bias

MOE MOR IB

BPNN 2.22 × 10–7 5.13 × 10–6 2.33 × 10–11

GRNN 5.97 × 10–4 2.81 × 10–2 3.52 × 10–3

SVR 1.85 × 10–3 3.25 × 10–2 7.66 × 10–1

Table 5  Multi-objective optimization sets of MOE, MOR and IB

Parameters Operating parameters of particle gluing Mechanical properties of PB

fcore
(kg/min)

fsurface
(kg/min)

vcore
(L/min)

vsurface
(L/min)

pcore
(bar)

psurface
(bar)

MOE
(MPa)

MOR
(MPa)

IB
(MPa)

Upper limit 175 100 25 16 1.2 1.3 – – –

Lower limit 385 215 43 37 2.3 3.1 – – –

Results1 300 148.30 37.60 24.19 1.70 1.64 2181 13.28 0.54

Results2 300 112.65 31.66 22.09 1.55 1.61 2467 14.39 0.51

Results3 300 113.80 31.30 21.04 1.50 1.62 2341 14.60 0.53

Results4 300 135.65 35.80 25.66 1.81 1.64 2328 15.11 0.50

Results5 300 118.40 31.84 22.30 1.60 1.73 2431 14.40 0.46
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(2)	 The predicted values of the NSGA2-SVR multi-
objective prediction model were compared with the 
actual experimental values. The results were that 
the predicted values of the model were highly con-
sistent with the actual values. The results showed 
that the multi-objective prediction model of parti-
cle gluing operating parameters and PB mechanical 
properties based on the NSGA2-SVR had a good 
fitting. By calculating the predicted relative devia-
tions of PB mechanical properties in the NSGA2-
SVR model, it was concluded that the predicted 
relative deviations of MOE, MOR, and IB were 
95.16%, 92.74%, and 95.16%, respectively, in the 
range of 0–5%. The results showed that the particle 
gluing model based on NSGA2-SVR has good pre-
diction accuracy.

(3)	 The multi-objective prediction model of NSGA2-
SVR was evaluated by MAPE and TIC indicators. 
The results showed that, for MOE: MAPE = 0.0107, 
TIC = 0.0089; for MOR: MAPE = 0.0143, 
TIC = 0.0133; for IB: MAPE = 0.0183, TIC = 0.0121. 
The MAPE and TIC of the NSGA2-SVR model, 
SVR model, BPNN model, and GRNN model were 
compared. The average MAPE of the NSGA2-
SVR model was 49.11%, 33.64%, or 24.20% lower 
than that of the BPNN model, GRNN model, and 
SVR model, respectively. The average TIC of the 
NSGA2-SVR model was 40.93%, 27.39%, or 18.58% 
lower than that of the BPNN model, GRNN model, 
and SVR model, respectively. The evaluation results 
showed that the NSGA2-SVR multi-objective pre-
diction model had better prediction performance.

(4)	 The NSGA2-SVR multi-objective prediction model 
can predict the mechanical properties of PBs in 
real-time according to the operating parameters of 
particle gluing. In the actual production process, by 
adjusting the operating parameters of particle glu-
ing, the mechanical properties of PBs can reach the 
optimal or meet the minimum standard require-
ments of enterprises under the desires of improv-
ing production capacity and/or reducing resin con-
sumption. The development of the NSGA2-SVR 
multi-objective prediction model for particle gluing 
operating parameters helps to produce PB with low 
cost or high efficiency, which has guiding signifi-
cance and application value for the actual produc-
tion of PBs.
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