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Abstract 

Distributed drive electric vehicles (DDEVs) possess great advantages in the viewpoint of fuel consumption, environ-
ment protection and traffic mobility. Whereas the effects of inertial parameter variation in DDEV control system 
become much more pronounced due to the drastic reduction of vehicle weights and body size, and inertial param-
eter has seldom been tackled and systematically estimated. This paper presents a dual central difference Kalman 
filter (DCDKF) where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states 
and inertial parameters, such as vehicle sideslip angle, vehicle mass, vehicle yaw moment of inertia, the distance 
from the front axle to centre of gravity. The proposed estimation method only integrates and utilizes real-time meas-
urements of hub torque information and other in-vehicle sensors from standard DDEVs. The four-wheel nonlinear 
vehicle dynamics estimation model considering payload variations, Pacejka tire model, wheel and motor dynamics 
model is developed, the observability of the DCDKF observer is analysed and derived via Lie derivative and differential 
geometry theory. To address system nonlinearities in vehicle dynamics estimation, the DCDKF and dual extended 
Kalman filter (DEKF) are also investigated and compared. Simulation with various maneuvers are carried out to verify 
the effectiveness of the proposed method using Matlab/Simulink-Carsim®. The results show that the proposed 
DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of pay-
load variations and variable driving conditions. This research provides a boot-strapping procedure which can per-
forms optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy 
and real-time ability.

Keywords  Distributed drive, Electric vehicle, State observation, Inertial parameter, Dual central difference Kalman 
filter

1  Introduction
Due to the advantages of good controllability, short drive 
chain, compact structure, high transmission efficiency 
and interior space utilization, distributed drive electric 
vehicles (DDEVs) represent the development direction of 

new energy vehicles in the future [1–3]. With the rapid 
development of electronic and information technology, 
there are more and more effective vehicle active safety 
systems, such as direct yaw control system (DYC) [4–6], 
active front steering system (AFS) [3, 7–9], anti-lock 
braking systems (ABS) [10, 11], active suspension system 
(ASS) [7, 12], electric power steering system (EPS) [13]. 
The accurate and real-time knowledge of vehicle dynamic 
state and parameters are keys and necessary conditions 
to realize the active safety control for DDEVs. However, 
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these fundamental vehicle dynamic state and parameters 
such as vehicle sideslip angle, vehicle mass, yaw moment 
of inertia are difficult to measure directly from standard 
vehicles owing to both economic and technical reasons, 
so these states and parameters need to be estimated or 
observed [14–16].

Vehicle state estimation based on vehicle dynamics 
model has long been an active research topic [17–20]. 
Typical types of observation techniques include Kalman 
filter (KF) [17, 18], extended Kalman filter (EKF) [19, 20], 
Luenberger observer [21], sliding mode observer (SMO) 
[22], and other non-linear observers [23, 24]. Although a 
lot of research achievements have been made in vehicle 
state observation, the research on vehicle inertial param-
eters observation is relatively less. In practice, the control 
performance of vehicle dynamics active safety system is 
sensitive for vehicle inertial parameters variations such 
as the number of passengers and the freight loading 
weights, the variations of vehicle inertial parameter will 
also affect the accuracy of state observation, so it is nec-
essary to simultaneously estimate vehicle dynamic states 
combined with inertial parameters [25–27]. For instance, 
in Refs. [26, 27], real-time centre of gravity (CG) position 
estimators based on a combined adaptive Kalman filter-
extended Kalman filter (AKF-EKF) approach and a novel 
H∞-extended Kalman filter (H∞-EKF) joint estimation 
method are designed respectively. In Ref. [28], the param-
eters of articulated heavy vehicle including the height of 
sprung mass CG and roll moment of inertia were esti-
mated based on dual extended Kalman filter (DEKF). In 
Refs. [29, 30], an unscented Kalman filter (UKF) algo-
rithm was introduced for state parameter estimation by 
extending the vehicle mass, the height of CG, and yaw 
moment of inertia into the vehicle state vector, which are 
significantly influenced by the driving state. The work 
[31] investigated the estimation of yaw rate, roll velocity, 
yaw moment and the distance from the mass center to 
the second axle for 8×8 distributed electric vehicles.

Compared with observers-based vehicle estimation, 
Kalman filters have the advantages of simple operation, 
good stability, real-time fast update and process for the 
collected data and information when dealing with the 
vehicle state and parameters estimation [25–27]. More 
recently, central difference Kalman filter (CDKF), which 
is based on weighted statistical linear regression and ster-
ling interpolation formula, can adapt strongly nonlinear 
vehicle dynamics estimation systems [24, 32]. Thereby, 
the main work of this paper is to propose a dual central 
difference Kalman filter (DCDKF) that to simultaneously 
estimate vehicle state and inertial parameters of DDEVs. 
A nonlinear vehicle dynamics model with the payload 

variations is established. Utilizing multi-sensor data 
fusion from the hub torque and other measurements of 
a standard vehicle, a parallel CDKF observation system 
is designed, where the first CDKF estimates the sideslip 
angle, yaw rate, and longitudinal velocity, and the second 
CDKF estimates the vehicle mass, the distance from the 
front axle to CG and yaw moment of inertia.

The rest content of this article is organized as follows. 
In Section  2, vehicle dynamics including non-linear 
vehicle dynamics model, tire model, wheel and motor 
dynamics model, is presented. Section 3 gives the design 
of DCDKF for vehicle states and parameters estimation. 
In Section 4, simulation results are given. Finally, conclu-
sions are summarized in Section 5.

2 � Vehicle System Dynamics Model
2.1 � Nonlinear Vehicle Dynamics Model
The establishment of multi-degree-of-freedom nonlinear 
vehicle dynamics model is the basis of solving the vehi-
cle motion state. Meanwhile, the vehicle model is a very 
complex system, but in order to improve the real-time 
performance of the vehicle state and parameters esti-
mation, it is necessary to simplify the complex vehicle 
dynamic model and make some assumptions. To reflect 
the fundamental dynamic characteristics of the study, 
the 3-DOF dynamics model including longitudinal, lat-
eral, and yaw motions of DDEVs considering uncertain 
load parameters shown in Figure  1 is established. Some 
assumptions for the non-linear vehicle model are as fol-
lows. The influence of steering transmission mechanism 
on the angle of two front wheels is neglected. Assum-
ing that the vehicle moves in plane, the roll and pitch 
motions and their coupling, the jump between the chassis 
and body are ignored. The sprung mass and the unsprung 
mass are unified as the vehicle mass in the vehicle iner-
tia parameters. The influence of wheel camber angle and 
aligning torque on vehicle dynamic performance is also 
ignored. In what follows, the dynamics equations by 
applying D’Alembert’s principle [2, 4] can be expressed 
as:

Longitudinal motion

(1)Mt(v̇x − vyrz) =
∑

F
ij
tx − F f − Fa,

(2)ax =
1

Mt

(

∑

F
ij
tx − F f − Fa

)

,

(3)Fa = ρaCaSv
2
x

2
,F f = µMtg ,
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Lateral motion

Yaw motion

Besides,

(4)

∑

F
ij
tx = F

fl
tx cos τfl + F

fr
tx cos τfr − F

fl
ty sin τfl

− F
fr
ty sin τfr + F rr

tx + F rl
tx.

(5)Mt(v̇y + vxrz) =
∑

F
ij
ty,

(6)ay =
1

Mt

∑

F
ij
ty,

(7)

∑

F
ij
ty = F

fl
ty cos τfl + F

fl
tx sin τfl + F

fr
ty cos τfr

+ F
fr
tx sin τfr + F

rl
ty + F

rr
ty .

(8)Iz ṙz = Mz ,

(9)

Mz = (F
fl
ty sin τfl − F

fl
tx cos τfl)Bl

+ (F
fr
tx cos τfr − F

fr
ty sin τfr)Br

− (F rr
ty + F

rl
ty)Lr + (F

fl
tx sin τfl

+ F
fl
ty cos τfl + F

fr
tx sin τfr

+ F
fr
ty cos τfr)Lf + (F rr

txBr − F
rl
txBl).

(10)β = tan−1
(

vy
/

vx
)

,

where Mt is the total mass of the vehicle. rz is the yaw 
rate of the vehicle. vy, vx are the lateral and longitudinal 
velocities of the vehicle. Ff, Fa are the frictional and air 
resistance. ρa, Ca and S are the air density, air resistance 
coefficient, and frontal windward area of the vehicle, 
respectively. μ is the tire-road friction coefficient. F ij

ty, F
ij
tx 

are the tire-road lateral and longitudinal force, and super-
script i means front or rear, superscript j means left or 
right. τfl , τfr are the left and right steering angle about 
front wheels, respectively. ay, ax are the lateral and lon-
gitudinal acceleration. Lf, Lr stand for horizontal distance 
from CG to the front and rear axles of the vehicle, and Bl, 
Br stand for horizontal distance from CG to the left and 
right wheel, respectively. Mz, Iz are the yaw moment and 
yaw moment of inertia, respectively. Meanwhile, β is the 
sideslip angle at CG.

2.2 � Vehicle Payload Parameter Analysis
When an empty vehicle is loaded with passengers or 
cargo, its position of CG and yaw moment of inertia 
will change. Meanwhile, the extra loads are not loaded 
at the CG but at a non-CG of the vehicle according to 
real-world application. In addition, considering that the 
change of CG height under load and unload is very small, 
it is assumed that the CG height of the whole vehicle does 
not change. When Mp at position rp=(Xp, Yp) relative to 
the original coordinate system is loaded, according to the 
lever principle, the coordinate rn=(Xt, Yt) of the new CG 
in the original coordinate system is:

The relevant geometry of the vehicle varies as follows:

Meanwhile, the yaw moment of inertia after loading is 
deduced as follows.

The yaw moment of inertia at the original CG after 
loading is deduced as:

By the theorem of parallel axes [24], we get the follow-
ing results:

(11)











X t = Xp × Mp

Mt
,

Y t = Y p × Mp

Mt
.

(12)











































Lf = L0f − Xt ,

Lr = L0r + Xt ,

L = Lf + Lr ,

Bl = B0
l − Yt ,

Br = B0
r + Yt ,

B = Bl + Br .

(13)Inz = I0z +Mp

∥

∥rp
∥

∥

2

2
.

Figure 1  3-DOF dynamics model considering uncertain load 
parameters
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Then,

Using the theorem of leverage [24], the position coordi-
nates of new CG located in the initial coordinate system 
are calculated:

It can be concluded from Eq. (17):

Then the yaw moment of inertia can be further 
expressed as:

In the above equations, Ms is the total mass of the vehi-
cle when unloaded. Bl

0, Br
0 are the horizontal distance 

between left and right wheels to CG when unloaded. Lf
0, 

Lr
0 are the horizontal distance from the front and rear 

axles of the vehicle to CG when unloaded. Iz
0 is the yaw 

moment of inertia when unloaded.

2.3 � Vehicle Tire Model
Tire, as an important part of the interaction between 
the moving electric vehicle and the ground, not only 
supports the whole vehicle, but also transfers longitudi-
nal and lateral forces to realize the acceleration, driving, 
braking and steering functions of the vehicle. Tire mod-
els can be divided into experiential models and physical 
models. The former gives formula to predict tire char-
acteristics by interpolating and fitting based on tire test 
data. And the latter is established based on the interac-
tion mechanism and mechanical relationship between 
tire and road surface. Here, the semi-empirical Pacejka 
tire model which uses the same set of compound trig-
onometric function formula to express the tire lateral 
force and longitudinal force is selected. The model has 
strong uniformity and can describe all the steady-state 
dynamics characteristics of the tire. It can be expressed 
as follows [24]:

(14)Inz = Iz +Mt�rn�22.

(15)Iz = I0z +Mp

∥

∥rp
∥

∥

2

2
−Mt�rn�22.

(16)Mtrn = Mprp +Ms0.

(17)rn =
(

Mp

/

Mt

)

rp.

(18)
Iz = I0z +Mp

(

1− Mp

Ms +Mp

)

∥

∥rp
∥

∥

2

2

= I0z +Mp

(

1− Mp

Ms +Mp

)

(

X2

p + Y 2

p

)

.

(19)











y = D sin(C tan−1(Bx − EBx + E tan−1(Bx))),

Y (x) = y(x)+ Sc,

x = X + Ss,

where the output variable Y and input variable X repre-
sent the tire force Fty

ij, Ftx
ij and tire slip rate St

ij or slip 
angle αt

ij. D, C, B and E are  the tire model parameters: 
peak factor, stiffness factor, curve shape factor and curve 
curvature factor which are determined by the tire charac-
teristic curve. Ss, Sc refer to the curves of horizontal drift 
and vertical drift.

The lateral and longitudinal forces are calculated as 
follows:

The calculation of parameters D, C, B, E from Ref. 
[24] is shown in Table 1, where at

1, at
2, bt

1, bt
2 are the 

calculation coefficient of crest factor, at
3, at

4, at
5, bt

3, 
bt

4, bt
5 are the calculation coefficient of BCD, and at

6, 
at

7, at
8, bt

6, bt
7, bt

8 are the calculation coefficient of cur-
vature factor. Also, these parameters are related to the 
road adhesion coefficient, it means that the robustness 
of this model for different roads can be guaranteed.

The vertical load of the tire includes static load and 
dynamic load. The static load is obtained by the whole 
vehicle mass, CG position and load mass and the center 
of mass, while the dynamic vertical load is affected by 
the acceleration of the vehicle body. So the vertical load 
can be described as:

(20)

F
ij
ty = Dij sin



Cij tan
−1







BijS
ij
t − EijS

ij
t

+Eij tan
−1

�

Bijα
ij
t

�









,

(21)

F
ij
tx = Dij sin



Cij tan
−1







BijS
ij
t − EijS

ij
t

+Eij tan
−1

�

BijS
ij
t

�









.

(22)

F
fl
zt =

Mt

(Bl + Br)
(

Lf + Lr
)

(

LrgBr −HLray −HBrax
)

,

(23)

F
fr
zy =

Mt

(Bl + Br)
(

Lf + Lr
)

(

LrgBl +HLray −HBlax
)

,

(24)

F rl
tz =

Mt

(Bl + Br)
(

Lf + Lr
)

(

Lf gBr −HLf ay +HBrax
)

,

Table 1  Calculation of related parameters of Pacejka tire model

Variables Lateral force Longitudinal force

x α s

C 1.3 1.65

D b
1
t F

2
tz + b

2
t Ftz a

1
t F

2
tz + a

2
t Ftz

E b
6
t F

2
tz + b

7
t Ftz + b

8
t a

6
t F

2
tz + a

7
t Ftz + a

8
t

BCD b
3
t sin

(

b
4
t tan

−1
(

b
5
t Ftz

))

(

a
3
t F

2
tz + a

4
t Ftz

)

e
−a

5
t Ftz
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where H is the height of CG.
The tire slip angle can be described as:

Similarly, the longitudinal slip rate of the tire on the 
four wheels can be obtained by:

where wt
ij (ij=fl, fr, rl, rr) is the wheel angular velocity. Re 

is the effective radius of vehicle tire.

2.4 � Wheel and Motor Dynamics Model
Hub motor, as the power source and important com-
ponent of DDEVs, is directly installed in the four drive 
wheels. The motor selection should meet the driving 
requirements of maximum speed, acceleration perfor-
mance, climbing ability, etc. Here, permanent magnet 
brushless DC motor is selected [3, 31], the control circuit 
for the motor is simplified into a resistor-inductor (RL) 
circuit, which consists of a resistor and an inductance 
element in series. The mathematical formulation of the 
wheel and motor model in Figure 2 can be given by:

(25)

F rr
tz =

Mt

(Bl + Br)
(

Lf + Lr
)

(

Lf gBl +HLf ay +HBlax
)

,

(26)α
fl
t = τfl − tan−1

(

vy + rzLf

vx − rzBl

)

,

(27)α
fr
t = τfr − tan−1

(

vy + rzLf

vx + rzBl

)

,

(28)αrl
t = − tan−1

(

vy − rzLr

vx − rzBl

)

,

(29)αrr
t = − tan−1

(

vy − rzLr

vx + rzBl

)

.

(30)

S
fl
t = w

fl
t Re

(vx − Brz) cos τfl +
(

vy + Lf rz
)

sin τfl
− 1,

(31)

S
fr
t = w

fr
t Re

(vx + Brz) cos τfr +
(

vy + Lf rz
)

sin τfr
− 1,

(32)Srlt = wrl
t Re

vx − Brz
− 1,

(33)Srrt = wrr
t Re

vx + Brz
− 1,

where Iwt
ij represents the equivalent moment of inertia of 

each wheel. Td
ij represents the motor output torque, Rt

ij 
is the wheel rolling radius.

where Um, Em stand for the motor input voltage and the 
electromotive force of armature induction line, respec-
tively. Te, Tf stand for the motor load torque and the out-
put of electromagnetic torque. Nm is the motor speed. 
Im, Rm, Lm stand for motor armature current, arma-
ture resistance, inductance. Ce, Cm stand for the ratio of 
torque to speed and the ratio of electromotive force to 
speed under rated excitation of motor, respectively. F ij

tp , 
Wt

ij are the wheel resistance and gravity. R is the tire 
radius. The wheel model Eqs. (34), (35) and the motor 

(34)I
ij
wtẇ

ij
t = T

ij
d − R

ij
t F xij ,

(35)R
ij
t = Re,

(36)















Em = NmCe,

Um = Lm
dIm
dt

+ RmIm + Em,
T e = CmIm,

T e − T f = Iwt
dNm
dt

,

Figure 2  Wheel and motor dynamics model: (a) Wheel dynamics 
model, (b) Motor dynamics model
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model Eq. (36) can be combined in this paper because 
there is no need for a transmission device to transfer the 
power between the wheel axle and motor.

It is worth noting that the main purpose of above vehi-
cle system dynamics model is to design the DCDKF esti-
mator, the simulation model built from Carsim® will be 
described later.

3 � DCDKF Estimation Design
Note that CDKF is an KF algorithm which approximates 
the derivatives of nonlinear systems by polynomials with 
Sterling interpolation formula to avoid derivation opera-
tion, so as it can be applied to improve the effect of accu-
rate estimation of vehicle state and inertial parameters. 
The DCDKF design uses two parallel CDKF to esti-
mate vehicle state and inertial parameters of the DDEVs 
respectively. Also, the two observers can exchange the 
estimation information in real time so that the influ-
ence of estimation accuracy caused by inaccurate vehicle 
modeling parameters and un-modeled dynamics can be 
reduced. As shown in Figure 3, the proposed logic block 
diagram of the whole DCDKF consists of state observer 
and parameter observer. Note that the unique character-
istics of DDEVs and the advantages of multi information 
sources from in sensor-wheel motor and X-by-wire sys-
tems can support the design of DCDKF system.

In order to design a combined observation system 
for the state and parameters of DDEVs, the follow-
ing discrete system equations including the state and 
parameters to be estimated of the vehicle system are 
established:

where F(·) and H(·) represent the nonlinear function of 
vehicle system with regard to time. u(t) and x(t) input the 

(37)
{

x(t + 1) = F (x(t),u(t), θ(t),w(t)),
y(t + 1) = H(x(t), v(t), θ(t)),

vector and state vector of the vehicle system. w(t) and v(t) 
represent the independent zero-mean process noise and 
measurement noise. θ(t) is the parameter vector.

Considering that the variation of vehicle parameters is 
slowly relative to states, it can be considered as a small 
disturbance of the system [33]. Then the parameter esti-
mation system can be further constructed as:

According to the system equation, the following vec-
tors are defined.

The vehicle state vector x(t) includes the vehicle side-
slip angle, yaw rate, longitudinal velocity:

The vehicle parameter vector θ(t) includes the vehicle 
mass, distance from the front axle to the CG , and yaw 
moment of inertia:

The vehicle input vector u(t) includes the steering 
wheel angle, angular velocity of four wheels, longitudinal 
acceleration:

The system measurement output vector is

Next, the observability of state and parameters of the 
DCDKF estimation system is discussed. Note that the 
observability here is local. The observability of vehicle 
state variables can be judged based on differential geome-
try theory [33, 34] by using Lie derivative to solve observ-
able matrix. While the observability of vehicle parameter 
vector can be judged by whether the observability co-dis-
tribution matrix is full rank or not [33, 34].

By applying the theory of differential geometry, the 
Lie derivatives of vehicle state system H along F are 
expressed as follows:

Then the observation space of the system A can be 
expressed as:

(38)

{

θ(t + 1) = θ(t)+ r(t),

d(t + 1) = h(f (x(t), θ(t),u(t)),u(t + 1), θ(t))+ e(t + 1).

(39)x(t) = [β , rz , vx,ay]T.

(40)θ(t) = [Mt , Lf , Iz]T.

(41)u(t) = [τf ,w
ij
t ,ax]T.

(42)yx(t) = yθ (t) = [rz ,ay]T.

(43)











L0FH(x) = H(x),

LlFH(x) =
∂

�

Ll−1
F H

�

∂x
F (x), l = 1, 2, 3, · · ·

Figure 3  Logic block diagram of the whole DCDKF



Page 7 of 16Jin et al. Chinese Journal of Mechanical Engineering           (2023) 36:91 	

So the observability distribution of the system A is 
defined as follows:

In the observation space V, Vn = {H, LFH, …, LF
n‒1H} 

is the smallest space including the measurement vector 
and state vector, and it is closed with respect to the Lie 
derivative. For ∀ x∈xn, if dim dV(x) = n, the system is 
satisfied the observability conditions.

The discriminant matrix of the vehicle state observa-
tion can be written as follows:

where

When the vehicle is running, the rank of dV is full. 
The vehicle state is local observability by differential 
geometry theory.

The output vector d and its derivative vector ḋ for 
vehicle parameters are defined as follows:

The observability co-distribution matrix is solved by 
the Jacobian matrix:

Some derivatives can be solved as follows:

(44)V =
{

H ,LFH , · · · ,LlFH , · · ·
}

.

(45)dV (x) = span
{

dV (x)|V ∈ V
}

.
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∂
�

L
0

F
H
�

∂xT
,

∂
�

L
1
F
H
�

∂xT
,

∂
�

L
2
F
H
�

∂xT
,

∂
�

L
3

F
H
�

∂xT

�T
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






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�
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�
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�
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0
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H
�

∂x4
,

∂
�

L
1
F
H
�

∂x1
,

∂
�

L
1
F
H
�

∂x2
,

∂
�

L
1
F
H
�

∂x3
,

∂
�

L
1
F
H
�

∂x4
,

∂
�

L
2
F
H
�

∂x2
,

∂
�

L
2
F
H
�

∂x2
,

∂
�

L
2
F
H
�

∂x3
,

∂
�

L
2
F
H
�

∂x4
,

∂
�

L
3

F
H
�

∂x1
,

∂
�

L
3

F
H
�

∂x2
,

∂
�

L
3

F
H
�

∂x3
,

∂
�

L
3

F
H
�

∂x4















8×4

(47)

∂

�

LlFH
�

∂xT
=

























∂

�

LlFH1

�

∂x1
,
∂

�

LlFH1

�

∂x2
,
∂

�

LlFH1

�

∂x3
,

∂

�

LlFH1

�

∂x4
;
∂

�

LlFH2

�

∂x1
,
∂

�

LlFH2

�

∂x2
,

∂

�

LlFH2

�

∂x3
,
∂

�

LlFH2

�

∂x4

























,

l = 0, 1, 2, 3.

(48)N =
[

d; ḋ
]

=
[

d1, d2; ḋ1, ḋ2
]

.

(49)∇N =
[

∂N
/

∂Mt , ∂N
/

∂Lf , ∂N
/

∂Iz
]

4×3
.

It can be easily obtained from the above partial deriva-
tive equation that ∇N  is full rank when the vehicle is in 
the steering mode. Thus the vehicle parameter vector θ(t) 
has local observability.

The state equation and measurement equation of vehi-
cle system discretized by sampling time are:

(50)



















































































































∂d1
∂Mt

= 0,
∂d2
∂Iz

= 0,

∂d2
∂Mt

= − 1

M2
t





F
fl
ty cos τfl + F

fl
tx sin τfl + F

fr
ty

cos τfr + F
fr
tx sin τfr + F

rl
ty + F

rr
ty



,

∂ḋ1
∂Lf

= 1

Iz





F
fl
tx sin τfl + F

fl
ty cos τfl+

F
fr
tx sin τfr + F

fr
ty cos τfr



,

∂ḋ1
∂Iz

= − 1

I2z























(F
fl
ty sin τfl − F

fl
tx cos τfl)Bl + (F

fr
tx

cos τfr − F
fr
ty sin τfr)Br − (F rr

ty + F
rl
ty)

Lr + (F
fl
tx sin τfl + F

fl
ty cos τfl + F

fr
tx

sin τfr + F
fr
ty cos τfr)Lf + (F rr

txBr

−F
rl
txBl)























.

(51)

x(t) =









β(t)

rz(t)

vx(t)

ay(t)









=









































ay(t − 1)− β(t − 1)ax(t − 1)

−vx(t − 1)rz(t − 1)

−β(t − 1)2vx(t − 1)rz(t − 1)













vx(t−1)

rz(t − 1)+ TsMz(t − 1)/Iz(t − 1)

vx(t − 1)+ Ts

�

ax + vx(t − 1)

β(t − 1)rz(t − 1)

�

�

F
ij
ty(t − 1)/Mt(t − 1)





























,

(52)

∑

F
ij
ty(t − 1) = F

fl
ty(t − 1) cos τfl(t − 1)+ F

rr
ty(t − 1)

+ F
rl
ty(t − 1)+ F

fl
tx(t − 1) sin τfl(t − 1)

+ F
fr
ty(t − 1) cos τfr(t − 1)

+ F
rl
tx(t − 1) sin τfr(t − 1),

(53)

Mz(t − 1) = Bl

(

F
fl
ty(t − 1) sin τfl(t − 1) − F

fl
tx(t − 1)

cos τfl(t − 1)
)

− Lr

(

F
rr
ty(t − 1)+ F

rl
ty(t − 1)

)

+
(

F
rr
tx(t − 1)Br − F

rl
tx(t − 1)Bl

)

+
(

F
fl
ty(t − 1)

cos τfl(t − 1)+ F
fl
tx(t − 1) sin τfl(t − 1)

)

Lf (t − 1)− Lr

(

F
fr
ty(t − 1) sin τfr(t − 1)

−F
fr
tx(t − 1) cos τfr(t − 1)

)

+
(

F
fr
ty(t − 1)

cos τfr(t − 1)+ F
fr
tx(t − 1) sin τfr(t − 1)

)

Lf (t − 1).
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The discrete equation of vehicle parameters to be 
estimated is as follows:

The observation process of state and parameters of 
the DCDKF is divided into four parts: Parameter pre-
diction, state prediction, parameter correction and 
state correction [24, 32]. The specific process is derived 
as follows.

Step 1: Initialize system variables
Here, the values that need initialization include
x̂(0), Px(0), θ̂(0), Pθ (0), Qx, Rx, Qθ , Rθ.
Step 2: Time update of time-varying parameters

Step 3: Time update of vehicle state to be estimated
The sigma point set for vehicle state variables is cre-

ated as:

and the corresponding weight is:

The set of conductive sigma point of state is:

The predictive value of the vehicle state is calculated as:

and its covariance matrix is:

(54)θ(t) =





Mt(t − 1)
Lf (t − 1)
Iz(t − 1)



.

(55)
{

θ̂(t|t − 1) = θ̂(t − 1|t − 1),

P̂θ (t|t − 1) = P̂θ (t − 1|t − 1)+Qθ .

(56)

X i(t − 1|t − 1) =











x̂(t − 1|t − 1)− h

�

P̂x(t − 1|t − 1)

x̂(t − 1|t − 1)

x̂(t − 1|t − 1)+ h

�

P̂x(t − 1|t − 1)











,

(57)







































X i(t − 1|t − 1) = x̂(t − 1|t − 1), i = 0,

X i(t − 1|t − 1) = x̂(t − 1|t − 1)+
�

h

�

P̂x(t − 1|t − 1)

�

i

,

i = 1, 2, · · · , Nx ,

X i(t − 1|t − 1) = x̂(t − 1|t − 1)−
�

h

�

P̂x(t − 1|t − 1)

�

i

,

i = Nx + 1, · · · , 2Nx ,

(58)











τm
x,0

= τ c
x,0

= h
2−Nx

h2
, i = 0,

τm
x,i

= τ c
x,i

= 1

2h2
, i = 1, 2, · · · , 2Nx.

(59)X i(t|t − 1) = f
(

X i(t − 1|t − 1), θ̂(t|t − 1), u(t − 1)

)

.

(60)x̂(t|t − 1) =
2Nx
∑

i=0

τmx,iX i(t|t − 1),

where Nx is the vehicle state dimension to be estimated, 
and Nx=4.

Step 4: Calculate the sigma point set for parameters

where Nθ is the vehicle parameter dimension to be esti-
mated, and Nθ =3. And the corresponding weight is:

h is the half step of central difference, and h=
√
3.

Step 5: Measurement update output for the vehicle 
parameter

Step 6: Measurement output update for the vehicle 
state

Step 7: Update covariance for the vehicle state
The innovation covariance for the vehicle state can be 

given as:

(61)
P̂x(t|t − 1) =

2Nx
∑

i=0

τ cx,i
(

X i(t|t − 1)− x̂(t|t − 1)
)

(

X i(t|t − 1)− x̂(t|t − 1)
)T+Qx,

(62)

ς j(t|t − 1) =







θ̂(t|t − 1)− h

�

P̂θ (t|t − 1) θ̂(t|t − 1)

θ̂(t|t − 1)+ h

�

P̂θ (t|t − 1)






,

(63)







































ς j(t|t − 1) = θ̂(t|t − 1), j = 0,

ς j(t|t − 1) = θ̂(t|t − 1)+
�

h

�

P̂θ (t|t − 1)

�

j

,

j = 1, 2, ..., Nθ ,

ς j(t|t − 1) = θ̂(t|t − 1)−
�

h

�

P̂θ (t|t − 1)

�

j

,

j = Nθ + 1, ..., 2Nθ ,

(64)

{

τmθ ,0 = τ cθ ,0 =
h2−Nθ

h2
, j = 0,

τmθ ,j = τ cθ ,j = 1
2h2

, j = 1, 2, · · · , 2Nθ .

(65)



















yj
θ
(t|t − 1) = h

�

f
�

x̂(t − 1|t − 1) ,u(t − 1),

ς j(t|t − 1)
�

,u(t), ς j(t|t − 1)
�

,

ŷθ (t|t − 1) =
2Nθ
�

i=0

τmθ ,jy
j
θ (t|t − 1).

(66)











yix(t|t − 1) = h
�

X i(t|t − 1),u(k), θ̂(t|t − 1)
�

,

ŷx(t|t − 1) =
2Nx
�

i=0

τmx,iy
i
x(t|t − 1).

(67)

P̂ ŷx ŷx
(t|t − 1) =

2Nx
∑

i=0

τ cx,i

(

yi
x
(t|t − 1)− ŷx(t|t − 1)

)

×
(

yi
x
(t|t − 1)− ŷx(t|t − 1)

)T
+ Rs.
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The cross-covariance matrix for the vehicle state is pre-
sented as:

And the gain of filter of the vehicle for state estimation 
can be presented as:

Step 8: Update covariance for parameter
The innovation covariance for the vehicle parameter 

can be calculated as:

The cross-covariance matrix for the vehicle parameter 
is as follows:

And the gain of filter of the vehicle for parameter esti-
mation can be obtained as:

Step 9: Correct state
The optimal value of current state can be calculated as:

The covariance matrix for state estimation can be 
updated as follows:

Step 10: Correct parameter
The optimal value of current parameter can be calcu-

lated as:

(68)

P̂ x̂ŷx (t|t − 1) =
2Nx
∑

i=0

τ cx,i
(

X i(t|t − 1)− x̂(t|t − 1)
)

(

yix(t|t − 1)− ŷx(t|t − 1)
)T

.

(69)Gx = P̂ x̂ŷx (t|t − 1)P̂
−1

ŷx ŷx
(t|t − 1).

(70)

P̂ ŷθ ŷθ
(t|t − 1) =

2Nθ
∑

j=0

τ cθ ,i

(

yj
θ
(t|t − 1)− ŷθ (t|t − 1)

)

×
(

yj
θ
(t|t − 1)− ŷθ (t|t − 1)

)T
+ Rθ .

(71)

P̂
θ̂ ŷθ

(t|t − 1) =
2Nθ
∑

j=0

τ cθ ,j

(

ς j(t|t − 1)− θ̂(t|t − 1)
)

×
(

y
j
θ (t|t − 1)− ŷθ (t|t − 1)

)T
.

(72)Gθ = P̂
θ̂ ŷθ

(t|t − 1)P̂
−1

ŷθ ŷθ
(t|t − 1).

(73)x̂(t|t) = x̂(t|t − 1)+ Gx

(

yx − ŷx(t|t − 1)
)

.

(74)P̂x(t|t) = P̂x(t|t − 1)− GxP̂ ŷx ŷx
(t|t − 1)G

T

x .

(75)θ̂(t|t) = θ̂(t|t − 1)+Gθ

(

yθ − ŷθ (t|t − 1)
)

.

The covariance matrix for parameter estimation can be 
updated as follows:

Remark 1: Note that the designed DCDKF approach is 
feasible and available in this study, because the DCDKF 
utilizes ‘boot-strapping’ technique to synchronously esti-
mate vehicle inertial parameters and system states, two 
KFs operate in parallel, and the two KFs exchange infor-
mation with each other and use each other’s estimators as 
prior information for the next step, so as to the DCDKF 
can improve the estimation accuracy of vehicle inertial 
parameters and system states. Similar dual Kalman filter 
estimation strategies have been validated for other states 
and parameters [24, 25, 27, 28].

Remark 2: It is fact that the vehicle estimation system 
also exists other challenges such as external interference, 
strong nonlinearity, undesirable signal bias and noise 
oscillation, and other complex conditions, which requires 
to develop and design adaptive estimators or nonlin-
ear observers to improve the estimation accuracy of the 
estimator in the future. Different from the proposed esti-
mation method, the observability proof of the nonlin-
ear observer will use the Lyapunov stability rather than 
observability co-distribution matrix of full rank. Besides, 
since the CDKF is developed from the classical Kalman 
filter that can performs optimal estimation of system 
state in the presence of noise and interference, which has 
been proved to possess ability in dealing with the esti-
mation and observation errors [24, 32], here theoretical 
foundations for estimation errors of such observer are 
omitted, interested readers can refer to other Refs. [16, 
21, 24, 32].

4 � Simulation and Analysis
To verify the estimation performance of the DCDKF on 
vehicle state and parameters, different driving maneu-
vers are implemented in the high-fidelity co-simulation 
platform of MATLAB/Simulink-Carsim® environment, 
which is established based on the principle of joint esti-
mation shown in Figure  4. And the co-simulation com-
munication between CarSim and MATLAB/Simulink is 
realized through the connection interface of Carsim@-S 
function. Note that this model in Carsim® is mainly 
aimed at conventional vehicles rather than electric vehi-
cles, thus the co-simulation platform consists of the vehi-
cle dynamics and tire model in Carsim® and electric drive 
system model in MATLAB/Simulink. In the simulation, 
the main parameters of the whole vehicle are shown in 
Table 2. The driving road condition of the vehicle is set as 
the asphalt pavement with high friction coefficient. The 
simulation time is 20 s and the sampling time is 0.001 s.

(76)P̂θ (t|t) = P̂θ (t|t − 1)− Gθ P̂ ŷθ ŷθ
(t|t − 1)G

T

θ .
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4.1 � Comparison Between DCDKF and DEKF
In order to evaluate the observation effect of DCDKF 
observer on the vehicle state and parameters, the steer-
ing wheel angle for the snake-like steering (SLS) manoeu-
vre as shown in Figure 5 is adopted, and the estimation 
result is compared with that of dual extended Kalman 
filter (DEKF) observer. The results of state and parame-
ters jointly estimated by DEKF and DCDKF are shown in 
Figures 6, 7, 8, 9, 10, 11, respectively. Among the results, 
the estimated vehicle state consisting of the sideslip angle 
at CG, yaw rate and longitudinal velocity are shown in 
Figures 6, 7, 8, whereas the estimated vehicle parameters 
including the mass of the whole vehicle, the horizon-
tal distance from the CG to the front axle and the yaw 
moment of inertia are shown in Figures 9, 10, 11.

From the comparison chart of simulation results, it can 
be concluded that except for the relatively obvious error 
of sideslip angle at CG, the other estimated results con-
verge to the true value with little deviation, and the error 

of sideslip angle at CG may be caused by the unmodeled 
dynamic characteristics of vehicle system, or the influ-
ence of inaccurate modeling parameters on filtering accu-
racy. It can be seen from the local enlarged figure of the 
results that the estimation effect of the DCDKF observer 
is better than that of DEKF observer when estimating the 
sideslip angle at CG, yaw rate, vehicle mass, horizontal 
distance from CG to vehicle front axle and yaw moment 
of inertia. It can be explained as the DCDKF algorithm 
can avoid the high-order truncation error caused by 
using Jacobian matrix linearization to approximate non-
linear estimation system through central difference 

Figure 4  Framework of simulation platform for the joint estimation of state and parameters

Table 2  Main parameters of the whole vehicle

Parameter Value Parameter Value

Mt (kg) 1171 H (m) 0.3

Ca 0.33 Iz (kg·m2) 2031

Ρa (kg/m3) 1.206 Re (m) 0.3

S (m2) 1.6 Iwt (kg·m) 2.1

Lf (m) 1.04 Ce (V/(r/min)) 0.01675

Lr (m) 1.56 Cm (N·m/A) 0.16

Bl (m) 0.7405 Lm (H) 1.5×10−3

Figure 5  Steering wheel angle for SLS
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Figure 6  Vehicle sideslip angle for SLS

Figure 7  Yaw rate for SLS

Figure 8  Longitudinal velocity for SLS

Figure 9  Vehicle mass for SLS

Figure 10  Distance from CG to front axle for SLS

Figure 11  Yaw moment of inertia for SLS
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transformation, and the DCDKF method has better 
adaptability to nonlinear vehicle dynamics estimation 
system.

4.2 � Comparison Between CDKF and DCDKF with Different 
Loads

In order to further analyze the observation effective-
ness of the DCDKF algorithm on vehicle state estima-
tion, the simulation is performed under different loads 
Mp=80 kg and Mp=180 kg by using double lane change 
(DLC) manoeuvre, as shown in Figure  12. Figures  13, 
14, 15, 16, 17, 18 show the comparison diagram of 
vehicle state observation results under different loads, 
respectively. Figures  13, 14, 15 show the results by 
CDKF and DCDKF algorithm when Mp=80 kg, and 
Figures  16, 17, 18 present the results by CDKF and 
DCDKF algorithm when Mp=180 kg.

Figure 12  Steering wheel angle for DLC

Figure 13  Vehicle sideslip angle for DLC under Mp = 80 kg

Figure 14  Yaw rate for DLC under Mp = 80 kg

Figure 15  Longitudinal velocity for DLC under Mp = 80 kg

Figure 16  Vehicle sideslip angle for DLC under Mp = 180 kg
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It can be seen from the results of two sets for the 
vehicle state estimation that the vehicle state obser-
vation effect based on the DCDKF is obviously better 
than that of single CDKF. This is due to the fact that, 
compared with using the CDKF to estimate vehicle 
state alone, the observation system using two paral-
lel CDKF can effectively improve the effect of single 
estimation and observation accuracy. In other words, 
DCDKF can use parameters estimation to improve the 
state observation effect in real time during observation 
process.

4.3 � DCDKF Estimation for Parameters with Different Loads
In order to further verify the effectiveness of the DCDKF 
for vehicle parameters estimation, different loads of Mp= 
80 kg and Mp =180 kg are added respectively on the 
DDEVs. It is worth noting that the load is a point mass, 

its own the moment of inertia at the CG is not taken 
into account. The results of DCDKF observer for vehicle 
parameters are mainly shown in Figures 19, 20, 21, 22, 23, 
24. The observation results of vehicle parameters under 
different loads under SLS are shown in Figures 19, 20, 21, 
and the observation results under single sinusoidal steer-
ing (SSS) manoeuvre are shown in Figures 22, 23, 24.

As can be seen from these observation results, the 
DCDKF observer oscillates relatively little in the observa-
tion transient process under SLS and SSS with two dif-
ferent loads Mp= 80 kg and Mp =180 kg. Meanwhile, in 
the final steady-state observation results, the steady-state 
observation values of the DCDKF are basically consistent 
with the real values. Even when the large load Mp = 180 
kg is loaded, the DUKF observer still has good observa-
tion accuracy.

Figure 17  Yaw rate for DLC under Mp = 180 kg

Figure 18  Longitudinal velocity for DLC under Mp = 180 kg

Figure 19  Vehicle mass for SLS of different loads

Figure 20  Distance from CG to front axle for SLS of different loads
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In summary, the simulation results implemented by 
different manoeuvre indicate that the proposed DCDKF 
observer can estimate the vehicle state and parameters 
with good accuracy under different loads. Furthermore, 
the proposed DCDKF observer is better able to deal 
with the non-linear challenge for parameters estimation 
of strongly nonlinear vehicle system compared with the 
DEKF observer. Besides, since the CDKF is developed 
from Kalman filter that has advantages of good stability, 
real-time fast update and process ability for engineering 
application, perhaps the computational time of CDKF is 
slightly higher than Kalman filter, whereas the computa-
tional load can be tolerated for vehicle engineering appli-
cation with advanced on-board processor.

5 � Conclusions

(1)	 This paper focuses on the estimation of vehicle 
inertia parameters for DDEVs. Vehicle payload 
parameter variations including vehicle mass and 
yaw moment of inertia were analyzed, then the esti-
mation-oriented nonlinear vehicle dynamics model 
of DDEV considering payload variations was devel-
oped.

(2)	 The real-time DCDKF estimation of vehicle inertia 
parameters for DDEVs was proposed and designed 
with in-vehicle sensors, and local observability of 
DCDKF was derived via Lie derivative and differ-
ential geometry theory. To address system nonlin-
earities in vehicle dynamics estimation, the DCDKF 
and DEKF were also investigated and compared. 
The simulation results with different maneuvers 
verified effectiveness of the proposed DCDKF with 
different payloads.

Figure 21  Yaw moment of inertia for SLS of different loads

Figure 22  Vehicle mass for SSS of different loads

Figure 23  Distance from CG to front axle for SSS of different loads

Figure 24  Yaw moment of inertia for SSS of different loads
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(3)	 Furthermore, this paper revealed that potential 
effects of variations of inertial parameters for vehi-
cle dynamics control system should be concerned, 
and advanced estimation techniques such as adap-
tive estimators and nonlinear observers should be 
developed and studied for vehicle dynamic states 
and parameters in future works.
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