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Principle and Control of Active Engine 
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Abstract 

Engine mount system affects the automobile NVH performance. Active mounts would achieve excellent vibration iso-
lation and relative displacement control performance in a broad frequency bandwidth by outputting controlled force 
to the mounting system. The actuator and control method of the active mounts determine the system performance. 
In this paper, an active mount based on the smart material, i.e., Terfenol-D rod, is proposed, which mainly includes 
three parts: rubber spring, magnetostrictive actuator (MA), and hydraulic amplification mechanism (HAM). Dynamic 
model of the active mount is correspondingly established. A state feedback control method based on x-LMS (Least-
Mean-Square) algorithm is proposed as well. Specifically, with the consideration of the unmeasurable state param-
eters in the active mounting system, an x-LMS state feedback controller with the system state as the reference signal 
is constructed by employing Sage-Husa Kalman filter to realize the state estimation of the active mounting system. 
Then a detailed analysis of the proposed control method is conducted, with deriving iterative formula of tap-weight 
vector. Sequentially, the problem of the dependence on the excitation signal in the x-LMS algorithm is addressed. The 
feasibility and capability of the proposed control method are verified and evaluated by simulation of a two-degree-of-
freedom active mounting system.
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1  Introduction
Engine mount system plays an important role in reduc-
ing the transmission of engine vibration to the body and 
improving the NVH characteristics of the vehicle [1]. 
However, the trend of increased engine power combined 
with lighter vehicle frames poses vibration isolation 
problems which passive mounts alone cannot adequately 
address. Moreover, it is difficult for passive mounts to 
meet the requirements of vibration isolation and rela-
tive position control performance in the wide frequency 
band simultaneously [2]. Active mounts can achieve bet-
ter vibration isolation and relative displacement control 
performance in a broader frequency bandwidth via active 

force [3–5]. In the research of active mounting systems, 
the actuators and control methods that directly affect 
system performance have received extensive attention 
[6–17].

Active mount actuators are mainly divided into two cat-
egories: One is the electromagnetic actuator [9, 11, 16]. 
The characteristics of the electromagnetic actuator itself 
limit the bandwidth of the active mount (<80 Hz) [7]. The 
other is the smart material-based actuators. Thanks to 
the broadband response characteristics of smart materi-
als, such active mounts with broad frequency bandwidth 
attract much attention [7, 8, 10, 18, 19]. Since smart 
materials produce a stroke below mount requirements, 
the implementation of these materials in active mounts 
requires stroke amplification [20]. Mechanical amplifica-
tion based on stacking or levers typically is too bulky to 
be used in engine mount. Hydraulic amplification would 
be more suitable for engine mount design, which use pis-
tons of different areas with the smart material driving 
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the large piston and the power output delivered by the 
smaller driven piston. In Refs. [18, 21], the combination 
of piezoelectric actuator and hydraulic amplification 
mechanism is used in the design of engine mount. An 
actuator with magnetostrictive material - Terfenol-D rod 
and hydraulic amplification mechanism combined with 
hydraulic passive engine mount form a composite active 
engine mount in Ref. [7].

Hillis [9] explored x-LMS algorithm with real-time 
estimation of excitation signal by engine speed to reduce 
the transmission rate of the electromagnetic-hydraulic 
active mount. The simulation and experimental results 
show that the active mounting system based on x-LMS 
algorithm can effectively reduce its transmission rate. Li 
et  al. [12] designed a hierarchical fuzzy controller for a 

semi-active mounting system using magnetorheological 
fluid suspension. Simulation and experimental results 
verify the feasibility of the hierarchical fuzzy control 
algorithm in the application of suspension control. Phu 
et al. [13] explored an adaptive Fuzzy-Sliding Mode con-
trol algorithm to control the relative displacement of 
engine vibration and simulated the vibration isolation 
performance of ship engine mount system. In addition, 
the frequency domain control algorithm [22], Skyhook 
control [23], LQG (Linear Quadratic Gaussian) [24] and 
H∞ [25, 26] control algorithms, etc. were used in mount 
control. It should be pointed out that the optimal control 
based on random disturbance hypothesis [12, 25] take 
compromise treatment between low-frequency relative 
displacement control and high-frequency vibration iso-
lation performance in principle. The feedforward x-LMS 
algorithm can achieve optimal control within the whole 
frequency range theoretically. However, it is limited by 
the fact that the engine excitation signal cannot be meas-
ured in practical applications.

In this paper, an active mount, with a smart material—
Terfenol-D rod-based MA as driving element, is pro-
posed, and its dynamic model is also established. Then, 
aiming at the problem of the dependence on the excita-
tion signal in the x-LMS algorithm, an x-LMS algorithm 
with state feedback control method of the active mount-
ing system is proposed by employing Sage-Husa Kalman 
filter to realize the state estimation. Then a detailed 

analysis of the proposed control method is conducted. 
With the output force of a MA as input, the simulation 
of the transmitted force and relative displacement of the 
two-degree-of-freedom active mounting system is car-
ried out to verify the proposed control method under dif-
ferent engine conditions (steady and dynamic state).

2 � Two‑Degree‑of‑Freedom Mounting System 
Model

The model of the two-degree-of-freedom active mount-
ing system is shown in Figure  1, the corresponding 
dynamic state equation can be expressed as

where the state variables X = [x1 ẋ1 x2 ẋ2]
T ; me and mb 

represent a quarter of the engine mass and sprung mass, 
respectively; ks and bs are the suspension stiffness and 
damping, respectively; km and bm are the stiffness and 
damping of the engine mount, respectively; Fin is vertical 
excitation force caused by the engine, which is the excita-
tion source of the system; η is n× 1 order measurement 
noise; x1 , x2 , ẋ1 and ẋ2 are the displacements of the engine 
and the sprung mass, and their derivatives with respect 
to time, respectively; Fc represents the active control 
force of the mount; residual vibration is represented by 
the relative displacement and transmitted force between 
the engine and sprung mass.
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Figure 1  Two-degree-of-freedom active mounting system model
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3 � Structure of Active Mount Based on MA
The proposed active mount based on MA is shown in 
Figure  2, which mainly includes three parts: rubber 
spring, MA and HAM. The rubber spring supports the 
engine weight, playing the role of the passive mount. The 
MA outputs active control force, the structure of which 
includes ⑥ MA cap, ⑦ Terfenol-D rod, ⑧ Preload bolt, 
⑬ Preload spring, ⑭ Output rod, ⑮ Coil winding, ⑯ 
Permanent magnets and ⑰ MA housing. The HAM 
amplifies the output displacement of the MA, transmits 
the output force from the MA to the engine, and allevi-
ates the impact on the MA during the engine vibration, 
which includes ②Output rod-diaphragm assembly, 
③Variable diameter hydraulic cylinder ④ Large piston 
assembly. The output rod-diaphragm assembly of the 
HAM is connected to ⑨ Strut, and its forced state is 
adjusted by the upper and lower ① Positioning nuts, and 
the large piston rod is connected to the output rod of the 
MA through ⑤ Coupling.

3.1 � Model of the Hydraulic Amplification Mechanism
Assuming no compliance of the fluid, then the gain of the 
hydraulic amplification mechanism can be expressed as 
[27]

where Ap and Ae represents effective cross-sectional 
areas of large and small ends of hydraulic cylinder 
respectively.

3.2 � Model of the MA
The linear constitutive magnetomechanical relations for 
the Terfenol-D rod along the axial direction is written as 
[28]

where ε and σ represent Terfenol-D rod axial strain and 
stress respectively; EH is the mechanical compliance 
at constant applied magnetic-field strength H ; B is the 
magnetic-flux within the material.  µσ is the magnetic 
permeability at a constant stress; d and d∗ are the linear 
piezomagnetic cross-coupling coefficients. If the mag-
netostrictive process is assumed to be reversible, then 
d∗ = d . This would be normally true for low-level driving 
forces or fields.

Based on Eq. (3a), with the consideration of the qual-
ity and damping effect of the Terfenol-D rod [29–31], we 
can get

where ρ , lT and cD are the density, length, and internal 
damping coefficient of the Terfenol-D rod, respectively.

Then, the output force of the Terfenol-D rod is 
expressed as

where AT represents the cross-sectional area of the Ter-
fenol-D rod.

The current flowing in the coil winding and generating 
the magnetic field H can be calculated through the cir-
cuitation of the magnetic field itself
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Figure 2  The proposed active mount: a configuration and b 
principle
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where n is the number of turns of the coil winding; I is 
current flowing in the coil winding.

Substituting ε =
x3
lT

 into Eq. (5), we get

where kT = EHAT
lT

 , bT =
cDAT

EH lT
 , mT =

ρl2TAT

3EH lT
.

According to Newton’s second law, a dynamic equation 
is established for the output rod of the MA and the large 
piston of the HAM

where m = mr +mp , mr and mp are the masses of the 
output rod of the MA and the large piston of the HAM, 
respectively; kpre is the stiffness of the preloaded spring; 
σp and Fc are prestress and control force (output force of 
the MA) respectively; Fr is the friction force at the large 
piston of the HAM, Fr can be quantified using the LuGre 
model [32], which describes the frictional force based on 
the bristle interpretation of friction. The LuGre model 
equations are given by

where z is the average bristle deflection; Fs and Fk are 
the static and coulomb frictional forces; σ0 , σ1 and σ2 are 
the bristle stiffness, bristle damping and viscous damp-
ing coefficient respectively. Parameter vs is the Stribeck 
velocity and vd is an additional parameter which controls 
the velocity dependence of σ1(v).

Combining Eqs. (6), (7) and (8), the control force can 
be given by

where ka = kT + kpre , ma = mT +mr +mp.
During the motion of the system, the output displace-

ments of the MA, the engine and the sprung mass meet 
the following relationship

Substituting Eq. (11) into Eq. (10), Eq. (10) can be 
rewritten as

(7)
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.

4 � Controller Design
4.1 � x‑LMS Algorithm with State Feedback
X-LMS algorithm as a kind of feedforward control 
method is widely used in active structural vibration con-
trol due to its small calculation amount, easy implemen-
tation and strong adaptive ability. The control diagram 
of x-LMS algorithm is shown in Figure 3a, the excitation 
signal is selected as the filter reference signal u(k) , which 
limits the application of x-LMS algorithm when the exci-
tation signal is unmeasurable. Therefore, a solution is 
proposed to use the system state as the reference signal, 
the control diagram of the corresponding x-LMS algo-
rithm with state feedback is shown in Figure 3b.
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Figure 3  The control diagram: a x-LMS algorithm [9] and b x-LMS 
algorithm with state feedback
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In a discrete system, the system state equation can be 
expressed as

where Xk represents system status, Fc.k is control sig-
nal, uk is excitation signal, ek is residual vibration sig-
nal. Therefore, the x-LMS algorithm with state feedback 
shown in Figure 3b can be expressed as

where

where Xj.k is the N × 1 dimensional vector corresponding 
to the jth state variable of the reference signal, and wj.k is 
the N × 1 dimensional tap-weight vector at time k; XXj.k

T 
is the m× N  matrix of the reference signal correspond-
ing to the current and past jth state variable at time k; c 
is the n×m finite pulse filter corresponding to the trans-
fer function of control channel; µ is the step factor; fj.k is 
the signal filtered by the finite pulse filter c for the ref-
erence signal corresponding to the jth state variable; L is 
target-weight matrix; N, M, m and n indicate the order of 
the x-LMS filter, the number of state parameters and the 
order of the finite pulse filter corresponding to the con-
trol channel respectively.

For the iterative Eqs. (14b) and (14c) of the tap-weight 
vector in the x-LMS algorithm with state feedback, tak-
ing system state parameter Xj.k as reference signal, the 
control signal Fc.k can be expressed as

(13a)Xk = GXk−1 +H1Fc.k−1 +H2uk−1,

(13b)ek = CXk + DFc.k ,

(14a)
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,

(14b)wj.k+1 = wj.k − 2µek
T · L · fj.k ,
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T,

(15a)Xj.k =
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,
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,

(15c)XXj.k
T =

[
Xj.k

T;Xj.k−1
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]
,
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T,

(17)Fc.k =

M∑
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XXj.k
T · w
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.

The residual vibration signal ek is the sum of the effect 
of excitation source pk and the effect of active control sk

The control criterion of x-LMS algorithm with state 
feedback is the minimum mean square error ξk of the 
residual vibration signal, ξk = E

{
ek

2
}
 . It is treated by 

transient approximation in actual application, ξk ≈ ek
2 , 

then

Taking the partial derivative of Eq. (19), the tap-weight 
vector can be obtained

Based on Eq. (19), it can be seen that ek is an n× 1 
dimensional vector, so x-LMS algorithm with state feed-
back is a multi-objective control algorithm, which real-
izes the coordination and synthesis of different control 
objectives through the selection of the weight matrix L . 
Based on Eqs. (20) and (21), it can be found that the filter-
ing process of each state variable and the iteration of the 
corresponding tap-weight vector run independently in x-
LMS algorithm with state feedback. When the number of 
system state variables is large and the filter order is high, 
the calculation amount and data storage of the system 
will increase, thereby reducing the calculation efficiency. 
For this reason, the state vector can be preprocessed by 
using the 1×M dimensional weight vector S to simplify 
the calculation. This simplified processing will be applied 
to the control of the active mounting system in the sec-
tion 5. In order to achieve a faster convergence rate, the 
normalization method is applied [33]

where � is a fixed convergence factor; γ is a control factor 
to prevent fj.k

T·fj.k from being too small.

4.2 � System Controller Based on x‑LMS Algorithm 
with State Feedback

In the application of x-LMS algorithm with state feed-
back, detecting the state variables of the system is the 
first step. However in the actual mounting system, the 
state variables of the system are not all measurable, so a 
state observer or filter is needed to estimate the system 

(18)ek = pk + sk .
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T · L · (pk + sk).
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∂ek

2

∂wj
= 2ek
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T · L · fj.k .

(22)wj.k+1 = wj.k −
�ek

T · L · fj.k

γ + fj.k
T · fj.k

,
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state, the corresponding control principle of the active 
mounting system is shown in Figure 4.

Because the engine excitation force in the active 
mounting system is related to the engine speed, that is, 
the variance matrix Q of the excitation signal is time-var-
ying. Therefore, the Sage-Husa Kalman filter is explored 
to realize the state estimation of the system when the 
statistical characteristics of the excitation signal are 
time-varying.

First, the state Eq. (1) of the active mounting system is 
discretized:

where expm(·) is the matrix index; IM is the identity 
matrix. Based on the measured relative displacement and 
transmitted force of the active mount as input, the Sage-
Husa Kalman filter [34] can be expressed as

(23a)Xk = GXk−1 +H1Fc.k−1 +H2Fin.k−1,

(23b)ek = CXk + DFc.k + ηk

(23c)

G = expm(AT ),

H1 = A
−1 · (G − IM) · B1,

H2 = A
−1 · (G − IM) · B2,

(24a)Pk/k−1 = GPk−1G
T +H2Q̂k−1H

T
2 ,

where E[Fin.k−1] = qk−1 ; E[ηk ] = rk ; 
cov

[
Fin.k , Fin.j

]
= Qk ; cov

[
ηk , ηj

]
= Rk ; forgetting factor 

b ∈ (0, 1) ; X̂k is the estimate of system state Xk ; based on 
X̂k , Fc.k can be obtained by discretizing Eq. (12)

Combining Eqs. (14) and (25), the control current Ik of 
the MA can be given by

5 � Validation
In order to verify the effectiveness of the designed con-
troller, simulation based on a MA is designed, which is 
divided into two parts: (i) Dynamic force test of the MA 
in blocked state; (ii) A simulation model of a two-degree-
of-freedom active mounting system is established, and 
the simulation is carried out with the output force of the 
MA as input.

(24b)X̂k ,k−1 = GX̂k−1 +H1Fc.k−1 +H2q̂k−1,

(24c)vk = e(k)− CX̂k ,k−1 − DFc.k − rk ,

(24d)Kk = Pk/k−1C
T
[
CPk/k−1C

T + Rk

]−1
,

(24e)
Pk = (IM − KkC)Pk/k−1(IM − KkC)

T + KkRkKk
T,

(24f )X̂k = X̂k−1 + Kk · vk ,

(24g)
q̂k = (1− dk)q̂k−1 + dk

[
HT
2 H2

]−1
HT
2

(
X̂k − GX̂k−1 −H1Fc.k−1

)
,

(24h)

Q̂k =(1− dk)Q̂k−1 + dk

[
H

T
2 H2

]−1

H
T
2

(
Kkvkvk

T
Kk

T + Pk − GPk−1G
T
)

H2

[
H

T
2 H2

]−1

,

(24i)dk = (1− b)/
(
1− bk+1

)
,

(25)

Fc.k =(EH
ATd

nIk

lT
− ka

X̂1.k − X̂3.k

Kamp
− bT

X̂2.k − X̂4.k

Kamp

−ma
(X̂2.k − X̂2.k−1)− (X̂4.k − X̂4.k−1)

�tKamp
− σpAT − Fr)/Kamp.

(26)
Ik =

(
Kamp

∑M
j X̂T

j.kwj.k
+ ka

X̂1.k−X̂3.k
Kamp

+ bT
X̂2.k−X̂4.k

Kamp
+ma

(X̂2.k−X̂2.k−1)−(X̂4.k−X̂4.k−1)

�tKamp
+ σpAT + Fr

)
lT

nEHATd
.

Active mount

Excitation force

Sage-Husa

Kalman filter

c(z)LMS

w(z)
Drel

Ftra

Sensor

X

Fc

Weight 

vector

S

Measurement 

error

Figure 4  Control principle of the active mounting system
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5.1 � Dynamic Force Test of the MA
Figure  5 shows the established experimental platform 
for dynamic force test of the MA. The core component 
of the MA is a Terfenol-D rod with a length of 79.6 mm 
and a diameter of 20 mm. The signal generator generates 
the control signal, which is amplified by the controllable 
current driver to generate the excitation current to the 

MA. The output force of the MA is measured by a piezo-
electric force sensor (model: BZ1201). The signal of the 
piezoelectric sensor is conditioned by the charge ampli-
fier, and then is collected by the data acquisition system 
(Type: DEWE-501).

Figure  6 presents the experimental tests in profile of 
the amplitudes of output force versus frequency, when 
the MA is under harmonic input with different ampli-
tudes (1–5 A with interval of 1 A) and 8 kinds of differ-
ent frequencies (1, 10, 30, 50, 70, 100, 120, 150 Hz) under 
the blocked condition. It can be seen from Figure 6 that 
the output force amplitude of the MA varies little under 
a certain amplitude of the excitation current. In order 
to show its variation more clearly, the maximal varia-
tion Emax and relative variation Erelative of the output force 

Control signal Excitation signal Force 

Controllable 
current driver MA

Force signal

Charge amplifier

Signal 

generator

Computer
(DEWEsoft)

Force sensor

DEWE-501

Figure 5  Dynamic force experiment platform of the MA

Figure 6  Dynamic force test results of the MA

Table 1  The maximal variation Emax and relative variation Erelative 
of the output force amplitude under different frequencies

1 A 2 A 3A 4 A 5A

Emax (N) 3.91 7.43 9.44 15.91 13.23

Erelative (%) 3.81 3.17 2.48 2.84 1.79

Figure 7  Output force-current relationship of the MA
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amplitude under different frequencies are calculated 
respectively. The results are shown in Table 1.

where FT,i represents the output force amplitude of the 
MA excitation current at a certain amplitude (1–5 A, 
with an interval of 1 A) of the excitation current at the ith 
frequency.

It can be seen from Table 1, compared to other ampli-
tudes of the excitation currents, Emax is the largest when 
the excitation current is 4 A, and Erelative is the largest 
when the excitation current is 1 A.

Figure  7 shows the relationship between the output 
force of the MA (average value at 8 frequencies) and the 
excitation current, which has been linearly fitted. And 
the relationship between the fitted output force and the 
excitation current is expressed as Eq. (29). It can be seen 
from Figure 7 that the experimental results and the fitting 
results are agreed well.

where Iamp indicates the amplitude of the excitation 
current.

(27)Emax = max
(
FT,i

)
−min

(
FT,i

)
, i = 1, 2, · · · , 8,

(28)Erelative =
Emax

1
n

∑n
i=1FT,i

, n = 8.

(29)FT = 159.7312Iamp − 73.5026,

5.2 � Simulation of Two‑Degree‑of‑Freedom Active 
Mounting System

The establishment of a simulation model in MATLAB/
Simulink mainly includes two parts: One part is the 
model of the HAM. Its gain Kamp depends on the stroke 
of the MA and the relative displacement between the 
engine and the sprung mass. According to Refs. [35–37], 
it is assumed that the maximum value of the relative dis-
placement between the engine and the sprung mass is 0.4 
mm, and the free stroke of the MA in Section 5.1 is ±50 
μm, so take Kamp = 8 . The other part is the model of the 
two-degree-of-freedom active mounting system, which is 
established using Eqs. (14), (22), (23) and (24) based on 
the derived x-LMS algorithm with state feedback and 
Sage-Husa Kalman filter. The parameters of the model of 
the two-degree-of-freedom active mounting system are 
shown in Table  2. Basic working principle of the simu-
lation is as follows: the MATLAB/Simulink simulation 
model runs on the PC-based platform, which outputs a 
control signal to a controllable current driver to apply 
the excitation current to the MA, and receives the out-
put force of the MA as the input of the simulation model 
through a force sensor and a charge amplifier.

In the simulation platform, a four-cylinder four-stroke 
engine is taken as excitation source. The vertical excita-
tion force of 1/4 engine is expressed as second-order 
inertial force, which can be expressed as [37]

Table 2  Parameters of two-degree-of-freedom active mounting 
system

Parameter Value

1/4 engine mass me (kg) 50

1/4 sprung mass mb (kg) 300

Rubber spring stiffness km (kN/m) 180

Rubber spring damping bm (N·s/m) 50

Suspension stiffness ks (kN/m) 16

Suspension damping bs (N·s/m) 1000

Sampling interval T (s) 1×10−3

Target weight matrix L [10000 0; 0 1]

Preprocessing weight matrix S [1 1 −1 −1]

Mean of measurement noise rk [0; 0]

Variance matrix of measure noise Rk [2×10−15 0; 0 
5×10−6]

Fixed convergence factor � 7×10−4

Control factor γ 1×10−4

Forgetting factor b 0.99

LMS filter order N 32

(a)

(b)

Figure 8  Comparison results of active mount and passive mount at 
the engine speed of 750 r/min: a the relative displacement and b the 
transmitted force
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where mc is the mass of the reciprocating part of the cyl-
inder piston; τ is the crank radius; σ is the ratio of crank 
radius to connecting rod length; ω is the rotational angu-
lar frequency corresponding to different engine speeds.

5.2.1 � Simulation Results at Steady State (Constant Engine 
Speed)

In order to verify the effectiveness of the proposed con-
trol method under constant engine speed (steady state) 
conditions, two engine speeds of 750 r/min (idling speed) 
and 3000 r/min are selected for steady-state simulation. 
Figure  8 shows the comparison between the results of 
the vibration isolation effect (transmitted force) and rela-
tive displacement response of the active mount and those 
of the passive mount at the engine speed of 750 r/min. 
Figure  8a shows the comparison between the results of 
active mount and those of the passive mount in profiles 
of the relative displacement versus time. It can be seen 
from Figure 8a that since the relative displacement of the 
passive mount has reached a small value, the improve-
ment of the relative displacement of the active mount is 
not obvious, which is by 11.37%, compared with the pas-
sive mount. Figure 8b shows the comparison between the 
results of active mount and those of the passive mount 
in profiles of the transmitted force versus time. It can 
be seen from Figure  8b that compared with the pas-
sive mount, the transmitted force of the active mount is 
reduced significantly, which is by 86.17%. At the begin-
ning of the simulation, due to the unstable state of the 
system and a certain number of iterations for the tap-
weight vector w.k, the results of the active mount are 
not ideal. However, as the simulation time increases, 
the transmitted force of the active mount gradually 
decreases.

Figure 9 shows the comparison between the estimated 
system state and the real system state at the engine speed 
of 750 r/min. Figure  9a is the comparison between the 
estimated result and the actual result of engine displace-
ment. It can be seen from the Figure  9a that the Sage-
Husa Kalman filter can realize the estimation of the 
engine displacement at the engine speed of 750 r/min. 
Figure  9b (engine velocity), Figure  9c (sprung mass dis-
placement), Figure  9d (sprung mass velocity) show the 
similar results.

Figure  10 shows the comparison between the results 
of the vibration isolation effect (transmitted force) and 
relative displacement response of the active mount and 
those of the passive mount at the engine speed of 3000 r/
min, which is similar to the results at the engine speed of 
750 r/min. It can be seen from Figure 10 that compared 
with the passive mount, the relative displacement and the 

(30)Fin = mcτσω
2cos2ωt,

(a)

(b)

(c)

(d)

Figure 9  Comparison between estimated system state and 
real system state at the engine speed of 750 r/min: a X1 : engine 
displacement, b X2 : engine velocity, c X3 : sprung mass displacement, 
and d X4 : sprung mass velocity
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transmitted force of the active mount is reduced by 1.06% 
and 98.24% respectively. But compared with the results at 
the engine speed of 750 r/min, the relative displacement 
and transmitted force of the active mount can stabilize 
faster at the engine speed of 3000 r/min.

Figure 11 shows the comparison between the estimated 
system state and the actual system state at the engine 
speed of 3000 r/min. It can be seen from the Figure 11a 
and b that the Sage-Husa Kalman filter can realize the 
estimation of the engine displacement and engine veloc-
ity at the engine speed of 3000 r/min. It can be seen from 
the Figure 11c and d that it is impossible to estimate the 
sprung mass displacement and sprung mass velocity, the 
values of which are in the same order of magnitude as 
the measurement error. But due to their extremely small 
values, their contribution to the control effect of x-LMS 
algorithm with state feedback can be ignored. In sum-
mary, the proposed control method of the active mount 
can effectively improve the transmitted force, while 
ensuring the relative displacement of the active mount 
under constant engine speed (steady state) conditions.

5.2.2 � Simulation Results at Dynamic State (Variable Engine 
Speed)

In order to verify the effectiveness of the proposed con-
trol method under variable engine speed (dynamic state) 
condition, the dynamic simulation is conducted when 
the engine speed increase from 750 r/min to 2100 r/min. 
Specifically the engine speed increases from 750 r/min 
to 2100 r/min at a constant rate and then remains stable 
as shown in Figure 12. Figure 13 shows the comparison 

(a)

(b)

Figure 10  Comparison results of active mount and passive mount 
at the engine speed of 3000 r/min: a the relative displacement and b 
the transmitted force

(a)

(b)

(c)

(d)

Figure 11  Comparison between estimated system state and 
real system state at the engine speed of 3000 r/min: a X1 : engine 
displacement, b X2 : engine velocity, c X3 : sprung mass displacement, 
and d X4 : sprung mass velocity
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between the results of the vibration isolation effect 
(transmitted force) and relative displacement response of 
the active mount and those of the passive mount under 
variable engine speed condition. Figure  13a shows the 
comparison between the results of the active mount and 
those of the passive mount in profiles of the relative dis-
placement versus time. It can be seen from Figure  13a 
that the relative displacement of the active mount is 
reduced by 2.00% compared with the passive mount, but 
the relative displacement of the active mount increases 
at some moments compared to steady state due to the 
unstable state of the system and computation of the tap-
weight vector w.k at variable engine speed. Figure  13b 

shows the comparison between the results of the active 
mount and those of the passive mount in profiles of the 
transmitted force versus time. It can be seen from Fig-
ure 13b that compared with the passive mount, the trans-
mitted force of the active mount is reduced significantly, 
which is by 96.96%. At the beginning of the simulation, 
due to the unstable state of the system and a certain num-
ber of iterations for the tap-weight vector w.k, the results 
of the active mount are not ideal. However, as the simu-
lation time increases, the transmitted force of the active 
mount gradually decreases.

Figure 14 shows the comparison between the estimated 
system state and the real system state under variable 
engine speed condition. Figure  14a is the comparison 
between the estimated result and the actual result of 
engine displacement. It can be seen from the Figure 14a 
that the Sage-Husa Kalman filter can realize the estima-
tion of the engine displacement under variable engine 
speed condition. Figure 14b (engine velocity), Figure 14c 
(sprung mass displacement), Figure  14d (sprung mass 
velocity) show the similar results.

6 � Conclusions
In this paper, an active mount based on MA was pro-
posed, which mainly includes three parts: rubber spring, 
MA, and HAM. The rubber spring supports the engine 
weight, playing the role of the passive mount. The MA 
outputs controlled force. The HAM amplifies the out-
put displacement of the MA, transmits the output force 
from the MA to the engine, and alleviates the impact on 
the MA during the engine vibration. Then the dynamic 
model of the proposed active mount was established.

Based on the principle of x-LMS algorithm, a control 
method of x-LMS algorithm with the system state as the 
reference signal was proposed to address the problem of 
the dependent on the excitation signal in the x-LMS algo-
rithm. In application of the proposed control method, to 
address the problem of unmeasurable state of the active 
mounting system, the Sage-Husa Kalman filter was 
explored to realize the state estimation of the active sys-
tem since the statistical characteristics of the excitation 
signal are time-varying.

In order to verify the feasibility and capability of the 
proposed control method, the simulation of a two-
degree-of-freedom active mounting system model was 
carried out. Firstly, the dynamic force test of the MA 
was conducted. The experimental results shows that 
the output force amplitude of the MA varies little with 
a certain amplitude of the excitation current at differ-
ent frequencies, and the output force amplitude has 
a linear relationship with the excitation current. Sec-
ondly, a simulation based on the established model of a 

Figure 12  The process of variable engine speed

(a)

(b)

Figure 13  Comparison results of active mount and passive mount 
under variable engine speed conditions (engine speed increased 
from 750 r/min to 2100 r/min): a the relative displacement and b the 
transmitted force
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two-degree-of-freedom active mounting system was car-
ried out with the output force of the MA as the input.

The working conditions of the simulation includes 
steady state (constant engine speed: 750 r/min and 3000 
r/min) and dynamic state (variable engine speed: 750 r/
min increased to 2100 r/min). Under constant engine 
speed (steady state) conditions, the relative displacement 
and transmitted force of the active mount are reduced 
by 11.37% and 86.17% (750 r/min), 1.06% and 98.24% 
(3000 r/min) compared with the passive mount. Under 
variable engine speed (dynamic state) condition, the 
relative displacement and transmitted force of the active 
mount are reduced by 2.00% and 96.96% compared with 
the passive mount. The simulation results show that the 
Sage-Husa Kalman filter can realize the estimation of the 
system state under different conditions, and the x-LMS 
algorithm with state feedback can effectively reduce the 
transmitted force of the active mount while ensuring the 
relative displacement of the active mount.
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