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Abstract 

Traditional design, manufacturing and maintenance are run and managed independently under their own rules and 
regulations in an increasingly time-and-cost ineffective manner. A unified platform for efficient and intelligent design-
manufacturing-maintenance of mechanical equipment and systems is highly needed in this rapidly digitized world. In 
this work, the definition of digital twin and its research progress and associated challenges in the design, manufactur-
ing and maintenance of engineering components and equipment were thoroughly reviewed. It is indicated that digi-
tal twin concept and associated technology provide a feasible solution for the integration of design-manufacturing-
maintenance as it has behaved in the entire lifecycle of products. For this aim, a framework for information-physical 
combination, in which a more accurate design, a defect-free manufacturing, a more intelligent maintenance, and a 
more advanced sensing technology, is prospected.
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1  Introduction
Traditionally, the design and manufacturing of equip-
ment are run and managed independently, and relatively 
disconnected with each other, resulting in low reusabil-
ity of design information, and manufacturing and main-
tenance data cannot effectively support the optimized 
design of equipment. This disconnection results in virtual 
mapping, cyclic iteration and integrated development 
of equipment design, manufacturing and maintenance 
not being achieved, and consequently, companies will 
have the problems with long development cycles and 
high maintenance costs. On the other hand, traditional 
maintenance scenarios include safety assessment [1], life 
prediction [2–4], structural integrity monitoring [5, 6], 
and online monitoring [7, 8]. These traditional measures 

are mainly based on physical mechanisms and laws, and 
is highly relied on simplified models. The integration 
of design-manufacturing-maintenance of engineering 
equipment is a huge challenge due to the difficulty of cre-
ating accurate physical models for the design of complex 
equipment.

In engineering practice, the intelligent operation and 
maintenance needs to consider the monitoring of opera-
tion [9], warning of sudden failure [10], timely start and 
pause of control systems [11], feedback of maintenance 
status [12] and the visualization of maintenance [13]. 
With the development of virtual technologies such as the 
Internet, VR and AR, the design-manufacturing-mainte-
nance of mechanical equipment has gradually diversified 
[14–16]. It is urgent to explore and improve sustainable 
and intelligent design-manufacturing-maintenance inte-
gration technology for mechanical equipment and sys-
tems, and create a fast, efficient and visualized industrial 
equipment intelligent design-manufacturing-mainte-
nance platform [17–20].
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The emerging digital twin concept may offer a possible 
solution [21–25]. The digital twin can provide real-time 
feedback from the virtual world to engineers [26–29], 
who can combine information from the virtual world 
with information from expert databases to make main-
tenance decisions, which will significantly reduce time 
and costs. The combination of the digital twin with the 
design-manufacture-maintenance of equipment can help 
to make more efficient, cost-effective and convenient 
steps in new product development and in-service equip-
ment management.

There are three cores of digital twin in intelligent 
design-manufacturing-maintenance, as shown in Fig-
ure  1, mainly including the design of digital models, 
the construction of physical models and the techniques 
for fusing digital and physical models, which should be 
compatible with each other. The construction of a physi-
cal model includes program design, program execution 
and data feedback. Design-manufacturing-maintenance 

involves cross-industry, cross-platform, human-machine 
interaction and collaboration, and machine-machine 
interaction and collaboration throughout the product 
lifecycle. As such, digital twin technology plays a key role 
in driving the development of industrial clustering.

On the other hand, the convergence of human-cyber-
physical systems is the core factor of digital twin technol-
ogy applied to the intelligent operation and maintenance 
of industrial equipment [30, 31]. Currently, there are few 
studies on the application of cyber-physical systems to 
the intelligent design-manufacturing-maintenance of 
industrial equipment. To address the fundamental issue 
of sensor-model-diagnostic high-fidelity system fusion, a 
scientific basis for edge intelligence-based lifecycle man-
agement is required.

This paper is an overview of the integration of digital 
twin with equipment design-manufacturing-mainte-
nance, by highlighting the challenges including design 
solution determination, digital scene construction and 
the fusion of the physical world with the virtual model, 
and by paying attention to the progress and prospects for 
digital twin application into the real world.

2 � Digital Twin: Definition
Though the digital twin is attracting more and more 
attention, its definition has evolved for a long time. The 
concept of digital twin is retroactive to 2003, when Pro-
fessor Grieves of the University of Michigan introduced 
the concept in a course on total product lifecycle man-
agement. The four stages of digital twin development 
are shown in Figure  2. The digital twin was defined as 
physical products, virtual products and the convergence 
between the two [32, 33]. Glaessgen et  al. [34] raised 
digital twin as an integrated multi-physical, multi-scale, 

Figure 1  The three cores of digital twin-driven intelligent operation 
and maintenance

Figure 2  Four stages of development for digital twin technology
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high-fidelity twin system through physical models, sen-
sor upgrades, and historical data, as shown in Figure  3. 
Abdulmotaleb et  al. [35] proposed digital twin as a vir-
tual copy of an organism or non-organism physical entity, 
while allowing information interoperability between the 
physical and virtual entities. Söderberg et al. [36] consid-
ered digital twin as an optimization of digital copies of 
physical entities. Bolton et al. [37] thought of digital twins 
as virtual representations of physical objects across life 
cycle that can be understood, learned and reasoned with 
real-time data. Negri et  al. [38, 39] proposed the con-
cept of model engineering and related techniques, and 
a set of measurement criteria for a correct digital twin, 
i.e., a digital twin is defined as a simulation model that 
acquires data from the field and triggers the operation of 
physical devices. The digital twin is a virtual simulation 
that integrates multiple data, dimensions, attributes and 
application possibilities in the context of new-generation 
information technology, industrial Internet technology 
and smart manufacturing concepts [40–42]. It is believed 
that, digital twin is a virtual entity that creates physical 
entities digitally, making full use of data such as physi-
cal models, sensor updates and operational histories to 

integrate multi-disciplinary, multi-physical quantity, 
multi-scale and multi-probability simulation processes 
and complete mapping in virtual space, thus reflecting 
the full life-cycle processes of the corresponding physical 
equipment for simulation, monitoring, evaluation, pre-
diction, optimization, control and other fields.

One of the features of digital twin is to create vir-
tual models of physical objects digitally to simulate the 
behavior of physical objects [32]. Virtual models can 
understand the state of physical entities by sensing data 
to predict, evaluate and analyze the dynamic changes 
of simulated objects. In turn, the physical object will 
respond according to the optimized solution in the simu-
lation. By closing the cyber-physical loop [43], the digital 
twin can achieve optimization of the entire production 
process. This interactivity between the real and digi-
tal worlds of a product or process provides a rich set of 
models and data for manufacturing process analysis and 
optimization, enabling more realistic and comprehensive 
measurements of system unpredictability [44].

The big data technology is often involved in digital 
twin for accurate calculation, as it can effectively mine 
the hidden and effective data, which greatly improves the 

Figure 3  Representative examples of digital twin-driven technologies in industry [34]
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intelligence of digital twin [45] and the applicability. Digi-
tal twin as a new technology has been applied in various 
fields, such as aerospace [46–50], industry manufacturing 
[51–53], 3D printing [54, 55], medical services [56–59], 
bio-manufacturing [60], agricultural machine [61], robots 
[62–64], power industry [65, 66], smart city [67], pressure 
vessel [68], machining [69–72], automatic transportation 
[73], roads infrastructure [74], construction system [75], 
as listed in Table 1.

3 � Digital Twin for Design
Digital twin has gained widespread attention in the aero-
space field [76, 77, 120]. For example, the U.S. Air Force 
Laboratory proposed a study to predict structural life and 
ensure structural integrity of aircraft using digital twin 
technology in 2011. It seems the digital twin is a new par-
adigm in the age of information and data revolution. The 
digital twin can combine physical equipment data, virtual 
equipment data, and connecting data of physical and vir-
tual equipment to support the design, manufacturing and 
maintenance of equipment.

Digital twin is a multidisciplinary crossover technol-
ogy that allows designers in plant for quick evaluation 
and identification of design flaws [106]. A hybrid design 
approach of data science and physical mechanisms is 
the main avenue for future research on large high-end 
devices. Zhuang et al. [108] proposed an implementation 
framework for designing and applying shop-floor digital 
twin. The digital twin design adopts advanced sensing 
equipment, industrial internet, big data, cloud comput-
ing and other science and technology. It has the charac-
teristics of high fidelity, cross-dimensional integration, 
and high reliability. It can realize functions such as status 
detection, life prediction, and data tracking [34, 121]. It 
follows that the digital twin is a holistic system model of 
objects and environments with multiple software, rely-
ing on data transmission from sensors to address the 
operational conditions of physical entities in the virtual 
world, and the feedback from the virtual world to design 
and improve the operational quality and efficiency of the 
physical world and enhance economic efficiency.

In 2016, the U.S. Air Force developed and applied a 
digital twin analysis framework to provide engineering 
analysis capabilities and decision support for the entire 
lifecycle of aeronautical system. The digital twin merg-
ers physics-based modeling and experimental data to 
generate an authoritative digital representation of the 
system at each stage of the weapon system acquisition 
and sustainment process. As a result, the digital twin 
can save the development time and cost of the aeronau-
tical system design [82], as shown in Figure  4. In 2017, 
Tao et al. [104] proposed the concept of the digital twin 
workshop, explaining in detail the main components 

and operational mechanism of digital twin workshop. 
In 2018, Bohlin et al. [95] presented a digital twin-based 
active part matching and self-adjustment device to 
improve geometric quality without tightening incoming 
part tolerances, which provided the framework for imple-
menting digital twin-driven Smart Assembly 4.0. Xu et al. 
[122] designed a digital cam servo motion system based 
on digital twin. Utilizing multi-dimensional simulation 
software, the trajectory planning, state monitoring and 
precise control of the electronic cam motion were real-
ized by employing the virtual-real interaction capability 
of the digital twin technology. Guo et al. [106] proposed a 
modular approach to help build flexible digital twins and 
make changes accordingly. With this flexible digital twin, 
designers can quickly evaluate different designs and eas-
ily identify design defects, thus time-saving, as shown in 
Figure 5.

For intelligent design, digital twin needs to be com-
bined with next generation of information technology, 
such as machine learning, deep learning, cloud comput-
ing and big data [123]. Machine learning can be the result 
of a digital twin simulation with simple learning capa-
bilities. Cloud computing can provide digital twin with 
multi-dimensional data computing technology and cloud 
data storage technology. Integrating cloud technology in 
digital twin can effectively reduce the computation time 
of complex systems and overcome the difficulties of stor-
ing large amounts of data [124], as shown in Figure 6. In 
this regard, manufacturing companies such as General 
Electric, Siemens and Tesla have already started to create 
application scenarios that enrich the digital twin through 
next-generation information technology [102].

In addition to the application of digital twin technology 
in industry, digital twin technology is also being explored 
in agriculture and animal husbandry to promote smart 
agriculture [116] and smart animal husbandry [125, 126]. 
Therefore, a real-time, bi-directional, transparent and 
systematic consideration of design-manufacture-perfor-
mance is only possible by using full digital twin technol-
ogy to build a large number of surreal models and data, 
including digital product models, digital design models, 
digital manufacturing models, and digital performance 
models [127].

4 � Digital Twin for Manufacturing
4.1 � Evolution of Manufacturing Mode
Since 1970s, the manufacturing industry has been chang-
ing from product manufacturing to service-oriented 
manufacturing. Traditional manufacturing industry 
includes three stages for development, i.e., labor-inten-
sive mainly in light textile industry, technology and 
capital-intensive mainly in electromechanical and high-
tech industries, and knowledge, technology, capital 
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Table 1  List of current major digital twin technologies in the past decade

Year Author/affiliation Field Overview Refs.

2011 Eric J. Tuegel
U.S. Air Force Research Laboratory

Aviation A conceptual model for predicting the 
lifetime and ensuring the structural 
integrity of aircraft structures using 
digital twin technology is proposed

[48], [49], [76]–[78]

2012 E. H. Glaessgen
Durability and Damage Tolerance 
Branch
NASA Langley Research Center

Aviation and aerospace Combining digital twin technology 
with ultra-high fidelity simulation, an 
integrated vehicle on-board health 
management system, maintenance 
history and all available historical and 
fleet data to reflect the lifespan of its 
on-the-fly digital twin

[34], [46], [47]

2014 Albert Cerrone
Cornell University

Structural fracture damage By applying the concept of digital 
twins, the diagnosis of ambiguity in 
crack paths indicated the need to 
consider fabricated specimens

[79]–[81]

2016 Dr. Edward M. Kraft
United States Air Force

Aviation The USAF is developing and applying 
a Digital Thread/Digital Twin analysis 
framework to provide engineering 
analysis capabilities and support for 
decision making throughout the lifecy-
cle of a vehicle

[82]

2016 Schroeder, Greyce N
Federal University of Rio Grande do Sul

Future manufacturing and product 
services

In the context of cyber-physical 
systems for implementing digital twins 
for future manufacturing and product 
service systems, a method is proposed 
for modelling the attributes associated 
with digital twins using AutomationML

[83]–[88]

2017 Alam, Kazi Masudul
University of Ottawa

Cyber-physical system A reference model for a cloud-based 
CPS, the digital twin architecture 
of C2PS, is proposed, in which the 
key attributes of C2PS are described 
analytically

[30], [35], [63], 
[89]–[92]

2017 Banerjee, Agniva
University Of Maryland

Industrial production lines A simple method for formulating 
knowledge from industrial production 
line sensors into digital twin models 
is presented. A method for extracting 
and inferring knowledge from large-
scale production line data is presented

[93], [94]

2017 Robert Bohlin
Fraunhofer-Chalmers Centre Chalmers 
Science Park

Smart assembly The infrastructure, components and 
data flows required for the digital twin 
to enable Smart Assembly 4.0 are 
detailed and highlighted

[95], [96]

2017 Yuan-Shin Lee
North Carolina State University

Machine tools Techniques for deploying sensors to 
capture specific features of machines 
are discussed, and data and informa-
tion fusion analysis techniques for 
modelling and developing digital twin 
virtual machine tools are presented

[97]–[101]

2017 T. DebRoy
The Pennsylvania State University

Additively manufactured The perspectives of researchers from 
several organisations provide the cur-
rent status and research needs of the 
main building blocks of first generation 
digital twin additive manufacturing

[51], [54], [55]

2017 Benjamin Schleich
Friedrich-Alexander-Universitaät 
Erlangen-Nürnberg

Design and production engineering A comprehensive reference model 
based on the skin model shape con-
cept is proposed which acts as a digital 
twin of the physical product in design 
and manufacturing

[36], [102]
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Table 1  (continued)

Year Author/affiliation Field Overview Refs.

2017 Fei Tao
Beihang University

Smart shop-floor The concept of the digital twin-based 
Digital Twin Shop is explored and the 
four key components of digital twins 
are discussed, namely the physical 
shop, the virtual shop, the shop service 
system and the shop digital twin data

[23], [43], [70], 
[103]–[108]

2018 Lohtander, Mika
Lappeenranta University of Technology

Micro manufacturing unit The Micro Manufacturing Unit 
(MMU) used is a digital twin research 
environment that investigates how 
digital twins are constructed and what 
information is needed to describe the 
real behaviour of the digital model of 
the MMU

[109], [110]

2018 Macchi, Marco
Department of Management

Asset lifecycle management Examines the role of Digital Twin in 
supporting decision making in asset 
lifecycle management

[111]–[113]

2018 Moussa, Cynthia
Electrical Engineering Department 
École de Technologie Supérieure 
Montreal

Hydro generator A digital twin concept based on a 
finite element simulator for large hydro 
generators is proposed

[114]

2019 Qingfei Min
Dalian University of Technology

Petrochemical Industry A framework and method for building 
a digital twin model based on the pet-
rochemical industry IoT, machine learn-
ing and a practical cycle of information 
exchange between the physical plant 
and the virtual digital twin model is 
proposed to enable production control 
optimisation

[115]

2020 Roman Bambura
Technical University in Zvolen

Engine block manufacturing The framework for the implementation 
of the digital twin of the engine body 
manufacturing process consists of a 
physical layer, a virtual layer and an 
information processing layer

[71]

2020 Yu N Bulatov
Bratsk State University

Generation Plant The concept of a digital twin of a 
distributed generation unit with 
automatic voltage regulation and 
automatic speed regulation of a fuzzy 
self-tuning unit on the basis of a syn-
chronous generator is presented

[65], [66]

2020 A E Burov
Institute of Computational Technolo-
gies SB RAS

Composite pressure vessel Development of a composite over-
wrapped pressure vessel digital twin 
device for spacecraft electric propul-
sion engines

[68]

2020 Kirill Nemtinov
Tambov State Technical University

Agricultural machine A method for building a digital 
twin model or e-model of complex 
agricultural machinery is presented 
and its structure is proposed as a set of 
frameworks

[61], [116]

2020 Sungshin Kim
Pusan National University

Microgrid An operational scheduling model for 
energy storage systems applied to 
virtual space is proposed for building 
microgrids using digital twin technol-
ogy

[117]

2020 Yang Peng
Shanghai Construction No. 4 (Group) 
Limited Company

Smart buildings and smart city A successful project case of a large 
hospital in China is reported by pre-
senting both technical and managerial 
innovations—a “continuous lifecycle 
integration” approach based on the 
digital twin concept and “early move-
ment” of the general contractor

[57], [67], [74], [75]
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Table 1  (continued)

Year Author/affiliation Field Overview Refs.

2021 Carina L. Gargalo
Technical University of Denmark

Bio-manufacturing industry Biomanufacturing and other process 
industries now have the opportunity 
to participate in the latest industrial 
revolution, also known as Industry 4.0. 
In order to achieve this successfully, 
an information loop from physical to 
digital and back again should be care-
fully developed

[60]

2021 Brendan Kochunas
University of Michigan

Nuclear power Some areas of the existing modelling 
and simulation infrastructure around 
nuclear power systems are suitable 
for digital twin development, while 
recent efforts in advanced modelling 
and simulation are less appropriate at 
this time

[118]

2022 Yongli Wei
Shandong University

Manufacturing system An implementation strategy for the 
physical entities of a manufacturing 
system digital twin is investigated. The 
strategy begins with an application-
oriented requirements analysis of the 
physical entities of the manufacturing 
system digital twin, followed by a study 
of the optimal requirements deploy-
ment scheme using axiomatic design 
theory

[119]

Figure 4  Digital twin approach to saving design time and cost [82]
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Figure 5  Framework for digital twin application in plant design [106]

Figure 6  Cloud-integrated cyber physical systems for complex industrial applications [124]
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and service intensive towards equipment manufactur-
ing. Recently, intelligent manufacturing has gradually 
become dominant with the introduction of big data, 
artificial intelligence and digital twin concept [128]. As 
a result, intelligent manufacturing systems such as elec-
tronic manufacturing, digital manufacturing and vir-
tual manufacturing, have become the new paradigm for 
improving manufacturing operations in manufacturing 
environments [129]. Traditional manufacturing is an 
online process where product designs and drawings are 
forwarded to the shop floor for manufacturing proto-
types. Digital technology, on the other hand, is a cyclical 
process of conceptual design and innovation of products 
in computer-aided design software. These designs and 
processes are simulated to verify the feasibility of product 
production. Products are inspected at each stage of the 
manufacturing process using inspection techniques and 
computer-aided quality control methods.

The rising of cyber-physical system and digital twin 
simulation is also updating the manufacturing indus-
tries. For example, Negri et  al. [92] proposed a pro-
duction system separated from the core simulation to 
allow flexibility in deciding whether to activate copies 
of specific behaviors only when needed. Similarly, the 
petrochemical industry will also undergo intelligent 
transformation and upgrading. Min et  al. [115] pro-
posed a framework and method for building a digital 
twin model based on the petrochemical industry IoT, 
machine learning, and a practice cycle of information 

exchange between physical plant and virtual digi-
tal twin model for control optimization, as shown in 
Figure 7.

Nowadays, more and more countries are investing in 
manufacturing capacity to increase productivity to off-
set costs, and manufacturers are being forced to develop 
advanced manufacturing technologies to achieve greater 
capacity with faster and more complex mechanical sys-
tems [130]. Hu et al. [131] proposed a scheme including 
automatic creation of mechanical, electrical, and plumb-
ing systems that included modules for logic chains, 
equipment grouping, labeling schemes, and conversion 
of building information model information into geo-
graphic information system maps, as shown in Figure 8.

In addition, artificial intelligence technology has 
impact on enterprises, and enterprise IT operation and 
maintenance management is also moving towards intel-
ligent and advanced pace [132]. Liu et al. [46] proposed 
a technical framework for intelligent solution design, 
simulation verification and in-orbit analysis using digital 
twin and digital ties. Wang et al. [133] proposed a digital 
twin-based aero-engine low-pressure turbine unit body 
docking technology by modeling the physical objects in 
the environment and process, and using multiple sensors 
to achieve physical fusion, model fusion, and data fusion 
based on a 3D virtual docking simulation process. Zhang 
et al. [134] constructed of a spacecraft digital twin model 
to represent the process, state, and behavior of the space-
craft as it completed its in-orbit assembly. The emerging 

Figure 7  Digital twin-based petrochemical production control architecture [115]
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technologies such as cloud computing, IoT, are expected 
to combine information technology with manufacturing.

4.2 � Digital Manufacturing Based on Digital Twin
The aim of data-driven manufacturing is to transform 
data acquired throughout the product lifecycle into man-
ufacturing intelligence in order to provide data solutions 
for the development of manufacturing [135]. In data-
driven manufacturing, the data generated by manufac-
turing systems is experiencing explosive growth and has 
reached over 1000 EB per year [136]. Systematic compu-
tational analysis of manufacturing data will lead to more 
informed design solutions, which in turn will increase 
the effectiveness of data-driven manufacturing [137]. In 
other words, data-driven manufacturing can be seen as a 
necessary condition for smart manufacturing. As a result, 
data is becoming a key enabler of manufacturing compet-
itiveness [138] and manufacturers are beginning to rec-
ognize the strategic importance of data.

Data-driven value does not depend only on the amount 
of data under consideration, but on the information and 
knowledge hidden within. New information technologies 
such as IoT, cloud computing, mobile internet and AI can 

be strategically leveraged and effectively integrated to 
support data-driven manufacturing [139]. A large body 
of research has emerged in recent years examining data-
driven manufacturing, including industrial automation 
[140]. Galletti et al. [141] studied big data as a driver of 
industrial competitiveness. Dubey et al. [142] illustrated 
the unique role of big data analytics in sustainable manu-
facturing. Zhang et al. [143] proposed big data analytics 
architecture for clean manufacturing and maintenance 
processes. Lohtander et  al. [110] constructed digital 
twins of micro-manufacturing cells by using production 
components and simulation software, which allowed the 
immediate integration of the machine into the industrial 
environment and allowed the subsequent control of all 
parameters of the production system.

The digital twin provides a state-of-the-art technical 
framework for smart manufacturing in the manufactur-
ing industry [144], and has a supporting role in securing 
the industrial internet and the smart manufacturing 2025 
strategy with cyber physical systems at its core as well as 
innovative value [91, 130, 145, 146]. Zhuang et al. [147] 
raised that digital twin helped to solve the problem of 
effective convergence and management of heterogeneous 

Figure 8  Schematic diagram of integrated delivery of BIM-based mechatronics design, operation and maintenance [131]
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dynamic data from multiple sources in the whole prod-
uct lifecycle, and proposed a digital twin implementation 
framework for product manufacturing.

In summary, digitally driven manufacturing tech-
nologies enable manufacturers to manage real-time, bi-
directional and co-evolving mappings between physical 
objects and their digital representations, which paves the 
way for deep cyber-physical integration. Combined with 
the digital twin, data-driven smart manufacturing will 
become more responsive, adaptive and predictive.

5 � Digital Twin for Maintenance
5.1 � The Significance
Maintenance has evolved from “maintenance after the 
fact” and “preventive maintenance” to “predictive main-
tenance”. Precision maintenance is the way of the future, 
with the aim of ensuring operational safety and reducing 
synergistic optimization targets and operational costs 
[127]. The digital-twin-based maintenance include five 
key technologies: data collection technology, data mod-
elling technology, twin data application, artificial intel-
ligence technology and human-machine interaction 
technology. The scientific principles of intelligent opera-
tion and maintenance of industrial equipment include 
sensing and damage perception, damage evolution and 
prediction models, and diagnosis and decision intel-
ligence, as shown in Figure 9. The prediction of damage 
mainly involves the description of evolutionary laws and 
the development of predictive models, the coupling of 
multiparameter quantities and mechanisms, multi-scale 

and multi-level simulations and experimental repro-
duction. Lifetime intelligent maintenance includes the 
fusion of multi-physics big data, artificial intelligence and 
internet diagnostics, system diagnostics based on com-
ponent-level data, intelligent diagnostics and diagnostic 
intelligence issues.

The use of intelligent operation and maintenance tech-
nology in the automatic verification system of energy 
meters can improve efficiency and produce better eco-
nomic and social benefits [20]. The application of intel-
ligent technologies such as artificial intelligence, robotics, 
augmented reality, and online monitoring to traditional 
substations to achieve visibility of the station situation, 
risk penetration, power consumption, one-touch opera-
tion, and integrated command can significantly improve 
the operation and maintenance costs of traditional power 
stations [148–150]. Through high-capacity mobile com-
munication network, high-speed wireless network and 
various mobile terminals, the operation and maintenance 
mode of relay protection and circuit breakers equipment 
are changing towards portability, efficiency and intelli-
gence [151–156]. Therefore, digital twin is an important 
way to achieve equipment health status monitoring and 
provides a new paradigm for equipment fault diagnosis. 
For example, Gregor et  al. [157] described the design 
ideas for an integrated reconfigurable maintenance sys-
tem. Xu et  al. [113] proposed a two-stage digital twin-
assisted fault diagnosis method based on deep migration 
learning to achieve fault diagnosis in the operation phase 
and maintenance phase, as shown in Figure 10.

Figure 9  New framework of digital twin for intelligent operation and maintenance of large machinery equipment
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5.2 � The Applications
Intelligent operation and maintenance of industrial 
equipment is an important part of Industry 4.0 [158]. 
Intelligent operation and maintenance has been pene-
trated into various fields with the development of infor-
mation technology, such as intelligent power station 
[159], intelligent network [160], engineering vehicles 
[161], green buildings group [162], micro-grid technol-
ogy [163], communication network [164], nuclear power 
[118, 165–168], alleviation photovoltaic [169], bridge 
maintenance [170].

In machinery industry, the operation and maintenance 
of machine tools require regular inspection and adjust-
ment by human beings. The diversification and com-
plexity of industrial requirements make CNC machine 
tools more and more automated and networked. And 
remote monitoring and intelligent fault diagnosis system 
is the foundation and indispensable unit of machine tool 
automation and networking [99, 171]. Luo et  al. [100, 
172, 173] established a multi-domain unified modeling 
approach for digital twins, explored the mapping strat-
egy between physical and digital spaces, and proposed a 
self-prediction and self-maintenance method for digital 
twins. If machine tools can be built with a digital twin 
in virtual space that can monitor the health status and 
operating history of machine tools at any time, unneces-
sary losses caused by unexpected events can be greatly 
avoided [101, 174–177]. Scaglioni et  al. [98] developed 
a dynamic model of the Mandelli M5 machine tool. The 
dynamic behavior of the digital twin was verified by 
installing the required sensors on the machine.

In other industries, Martínez et  al. [105] proposed a 
method for generating a simulation-based digital twin 
from an automatically generated first-principles model 
that can be used for operation and maintenance of the 
equipment life cycle, as shown in Figure  11. Liu et  al. 
[178, 179] proposed an intelligent management platform 
for coal mine electromechanical equipment based on the 
IoT, effectively reduces the probability of equipment fail-
ure, improves the level of equipment refinement manage-
ment, and realizes the whole life cycle management of 
equipment. Moussa et  al. [114] proposed a digital twin 
model for large hydroelectric generators. To improve the 
accuracy and efficiency of prediction and health manage-
ment of wind power, Tao et al. [112, 180–183] proposed 
a digital twin failure prediction model for complex equip-
ment, which effectively utilized the interaction mecha-
nism of digital twin and data fusion techniques. Chen 
et al. [184] proposed a future-oriented intelligent, semi-
autonomous human-cyber-physical system fusion wind 
turbine under this new concept, as shown in Figure  12. 
Xiao et  al. [185] developed an intelligent ultrasonic 
inspection system with defect tracking and defect simu-
lation analysis for the characteristics of defects in the 
welded joints of hydraulic turbine runners. By embedding 
virtual 3D models, the use of AI technology can precisely 
combine virtual and reality. In addition, there is a need to 
develop predictive maintenance solutions for industrial 
equipment that combine digital twins with augmented 
reality [84], as shown in Figure 13.

To realize the intelligent operation and management 
of microgrid and intelligent micro network group [186], 

Figure 10  Schematic of digital twin-assisted fault diagnosis method based on deep migration learning [113]
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Fu et  al. [163] established a microgrid fault diagnosis 
model based on advanced Petri net theory by studying 
the microgrid operation and maintenance knowledge 
base, and proposed an intelligent diagnosis and analysis 
method of microgrid faults. Park et  al. [117] proposed 
an operational scheduling model of energy storage sys-
tem applied to virtual space for building microgrids using 
digital twin technology. Mu et al. [165] leveraged virtual 
reality technology to establish a virtual environment for 
existing nuclear power plants, and an intelligent nuclear 

power immersion system was developed by integrat-
ing data monitoring and fault analysis, and providing 
operation and maintenance assurance, equipment man-
agement, fault analysis, operation and maintenance dem-
onstration, and intelligent simulation training. Liu et  al. 
[187] proposed a new concept of combining digital twin 
model with steel structure operation and maintenance 
safety by taking spoke type cable truss as an example. 
Liao et al. [188] developed a new data-driven approach to 
machine performance evaluation and prediction in order 

Figure 11  Simulation-based digital twin and its application in the operation and maintenance of equipment life cycle [105]

Figure 12  A conceptual framework diagram of a human-machine information-physical system for wind turbines in the future Industry 5.0 era [184]
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to reduce the problem of reaching the shortest possible 
downtime during machine maintenance.

In overview, in the area of digital twin-based mainte-
nance, transforming maintenance decisions from reliance 
on downtime inspection to a combination of online test-
ing and simulation. In particular, it is important to note 
that digital twin technology is not simply a simulation, 
but requires a focus on underlying technological inno-
vation, including sensing technology, sensing networks, 
digital model building and so on.

6 � The Challenges and Solutions
6.1 � The Challenges
A large amount of data information will appear in the 
design process of mechanical equipment, but there are 
currently barriers to share this data information between 
peers, with inadequate use of data and inconsistent data 
standards. The needs of users are developing in the 
direction of diversification and personalization, which 
presents a huge challenge to the design of mechanical 
equipment.

To achieve high fidelity, high precision and visualiza-
tion in the manufacture of mechanical equipment, the 
support of digital twin technology is urgently needed. 
The current use of digital twin technology for manufac-
turing is still mainly based on finite element simulation 

[189], thus requiring improvements in digital twin man-
ufacturing technology to achieve high fidelity and high 
precision manufacturing of mechanical equipment.

The whole life cycle management of the product based 
on virtual model is often carried out to achieve real-time 
and intelligent operation and maintenance of equipment. 
As for complex structures of large equipment, real-time 
data from internal components that are closely related 
with each other are limited. In this case, the concept of 
digital twin can capture, locate and clarify faults, and 
assess the state of equipment for predictive maintenance. 
Digital twin-based maintenance requires comprehensive 
view of multi-physics structures and establishment of 
system-level modeling under multi-physics field. Never-
theless, the challenge is, to correct the key characteristic 
parameters, to develop accurate mechanistic and lifetime 
models of the equipment based on various verification 
tests.

6.2 � Design‑Manufacturing‑Maintenance Integration
Although traditional design can be closed-loop, i.e., a 
top-down decomposition process aiming for a bottom-
up structure, it is relatively static, does not indicate 
processing, manufacturing, testing, repairing and predic-
tion of the physical product, and thus cannot reflect the 
dynamic state in different stages, and is unable to guide 

Figure 13  Digital twin-based electrical monitoring and information interaction [84]
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the full lifecycle management. Currently there exists the 
inability of feedback of real-time manufacturing testing 
and assembly, and end-user’s data to the product design 
process. In addition, the conventional design, manu-
facturing and maintenance are independently run and 
managed with various rules. Such kind of disconnection 
results in low availability of design information for reuse, 
ineffectiveness of manufacturing data to support optimal 
design, and poor guidance of maintenance data for design 
and manufacturing, and thus hinder optimization and 
integration of design, manufacturing and maintenance, 
and increase the time and cost for product development.

Digital twin technology provides a feasible solution for 
this integration as it spans the full lifecycle of product 
design-manufacturing-maintenance. The utilizing of digi-
tal twin helps unification of modeling standards and rules 
as geometric parameters, manufacturing and mainte-
nance data are well represented. Only in a complete digi-
tal twin can a large number of surreal models and data be 
built, including digital product models, digital manufac-
turing models, and digital maintenance models. Design, 
manufacturing and maintenance are real-time, bi-direc-
tional, transparent, and need systematic considerations. 
Therefore, the application of digital twin technology to 
the integration of optimal design, intelligent manufactur-
ing and efficient operation and maintenance is promising. 
For example, a digital bus based on the product model 
data interaction specification was exploited by Boeing. By 
improving existing virtual prototypes, a manufacturing-
oriented digital twin design model was created, which 
initially enabled design and manufacturing collaboration 
[190].

The digital-twin-based integration of design-manufac-
turing-maintenance needs a framework for information-
physical combination, which can describe and manage 
the heterogeneous, polymorphic, and massive data gen-
erated at different stages of product development and 
application. This has sound physical basis as it is a cross-
discipline, personalized, and data-focused process [191, 
192]. In terms of design, scientific modeling is required 
to maximize uncertainty control and thus determine rea-
sonable safety intervals, which requires consideration of 
interaction of different failure mechanisms and develop-
ment of physics-based accurate lifetime prediction meth-
ods. On the manufacturing side, achieving defect-free 
and residual stress-free manufacturing is being a long-
time pursuit. The emerging technology of additive man-
ufacturing is being improved to control internal defects 
and quantify its impact on mechanical performance. 
The life enhancement from surface strengthening is sig-
nificant, while needs to be further quantified in extreme 
conditions. For maintenance, the focus is on digital twin 
technology to shift maintenance decisions from reliance 

on downtime inspection to a combination of online test-
ing and simulation. Nevertheless, note that the digital 
twin technology is highly relied on sensing technology 
and its network. As the application of digital twin tech-
nology for industrial equipment requires the extraction 
of relevant operational data from physical entities, this 
requires high-fidelity, high-precision data sensors to 
achieve this. In addition, it is a challenge to transfer these 
massive amounts of data to the digital twin of the equip-
ment in real time, which requires a latency-free, high-
speed wireless network.

7 � Summary and Outlook
In this overview, the definition of digital twin, and its 
development in design, manufacturing and maintenance 
of engineering components and equipment were summa-
rized. Key challenges including convergence, standardi-
zation, long life, and high fidelity need to be addressed 
accordingly for a better digital twin technology. The 
development of feedback between design and manufac-
turing, and better standardization of repair data through 
physical inspection of mechanical equipment, and use 
of artificial intelligence-enabled repair data analysis, will 
greatly aid in the integration of design-manufacturing-
maintenance based on digital twin concept. For this aim, 
there needs a framework for information-physical com-
bination, in which a more accurate design, a defect-free 
manufacturing, a more intelligent maintenance, and a 
more advanced sensing technology, are prospected.
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