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Abstract 

There is an increasing awareness of the need to reduce traffic accidents and fatality due to vehicle collision. Post-
impact hazards can be more serious as the driver may fail to maintain effective control after collisions. To avoid 
subsequent crash events and to stabilize the vehicle, this paper proposes a post-impact motion planning and stability 
control method for autonomous vehicles. An enabling motion planning method is proposed for post-impact situa-
tions by combining the polynomial curve and artificial potential field while considering obstacle avoidance. A hierar-
chical controller that consists of an upper and a lower controller is then developed to track the planned motion. In the 
upper controller, a time-varying linear quadratic regulator is presented to calculate the desired generalized forces. In 
the lower controller, a nonlinear-optimization-based torque allocation algorithm is proposed to optimally coordinate 
the actuators to realize the desired generalized forces. The proposed scheme is verified under comprehensive driving 
scenarios through hardware-in-loop tests.
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1  Introduction
Vehicle collision is a major cause that can lead to more 
severe spinning and drifting and even out of control of 
vehicle [1]. Vehicle dynamics control after a collision is 
of great importance to enhance vehicle dynamics safety 
and reduce casualties [2, 3]. Statistics from the National 
Highway Traffic Safety Administration (NHTSA) showed 
that 6.45 million vehicle crashes were reported in 2017 
in the United States, resulting in 34560 fatalities [4]. 
Similarly, there were 247646 traffic accidents in 2019 in 
China, resulting in 62763 fatalities and 256101 injuries 
[5]. In particular, multi-impact crashes account for more 
than 30% of all the fatal accidents [6]. Due to the panic 
after an initial vehicle impact, the driver may fail to make 
appropriate response within a limited timeline [7]. A sec-
ondary impact may happen and bring about more serious 
consequence to the vehicle and its occupants. Thus, it is 

essential to effectually address vehicle stability control 
after an initial impact.

A vehicle collision model is first needed to analyze the 
impact process and to evaluate the impact impulse. Two 
types of collision modelling methods have been devel-
oped in the literature, including the structural analysis 
and the momentum conservation method. The structural 
analysis method usually constructs a numerical model in 
a finite element analysis software such as LS-DYNA [8] 
and PAM-CRASH [9]. To improve modelling accuracy, 
Calspan Corporation developed a dedicated program for 
NHTSA [10]. The structural analysis method can pro-
vide deeper insights into the collision process; however, 
it relies heavily on large sets of component and materi-
als property configurations. In contrast, the momentum 
conservation method puts more emphasis on vehicle 
kinematic state change due to vehicle collisions, which 
makes it easier to implement. On this regard, Brach et al. 
treated vehicle as a rigid body with three degrees of free-
dom and defined the recovery and the friction coefficient 
[11]. Zhou et al. further took vehicle roll motion and tire 
forces into consideration and verified its superiority [12]. 
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These studies cast new light on impact impulse magni-
tude calculation and motion prediction under different 
driving conditions and lay the foundation for designing 
collision mitigation controllers [13].

Early efforts towards secondary collision damage 
reduction has been directed to improving occupants pro-
tection using passive safety systems such as air bag [14] 
and safety belt [15]. In order to restore vehicle stability 
after an initial impact, researchers also resorted to active 
safety systems, and these can be divided into single actu-
ator control and multiple actuators coordination control.

Single actuator control can further be classified into 
post-impact braking control (PIBC) and post-impact 
steering control (PISC). PIBC can reduce the harm of 
secondary collisions through dissipating vehicle  kinetic 
energy. For instance, a PIBC modified from autonomous 
emergency braking is proved to be effective in 21% of 
post-impact cases [16], while BOSCH Co. Ltd. coordi-
nated the airbag and electronic stability program (ESP) to 
achieve secondary collision mitigation [17]. Furthermore, 
Shotaro et al. [18] established an adaptive braking inten-
sity control strategy for PIBC and improved its adaptive-
ness to different scenarios. Different from PIBC, PISC 
can improve post-impact stability in a more direct man-
ner by adjusting lateral tire forces. Chan et al. developed a 
look-ahead controller for front steering angle adjustment 
to narrow lateral deviation [19]. Similarly, Cao et al. uti-
lized model predictive control (MPC) to construct a PISC 
scheme [20]. Both PIBC and PISC controllers are proved 
to be effective in light collision cases. However, the effi-
cacy may be largely compromised under severe drifting 
and large side slip angle after high-intensity impacts [21].

Multiple actuators coordination control has been 
proposed to better regulate vehicle motion after initial 
collisions. Benefiting from more control freedoms, bet-
ter control performance can be achieved. According 
to different control objectives, the existing coordina-
tion control can be divided into system stability control 
and trajectory optimization. System stability control 
focuses on simultaneously regulating undesired post-
impact motions including drifting, over-spinning and 
rollover. For example, Zhou et  al. presented a sliding 
mode controller and an optimal allocator to coordi-
nate the front steering and the  differential braking to 
regulate sideslip angle and yaw rate [22]. Another MPC 
controller is also developed to mitigate the rollover risk 
[23]. Although the undesired motions were suppressed, 
the trajectory safety during stabilization control is not 
explicitly addressed. Trajectory optimization has also 
been studied to navigate second collision hazards. For 
instance, a trajectory optimization scheme was devel-
oped to minimize the maximum lateral path devia-
tion using differential braking based on a quasi-linear 

optimal controller [24]. Furthermore, Kim et  al. com-
bined the desired final yaw angle with the lateral path 
deviation minimization based on linear time-varying 
MPC to avoid secondary collisions [25]. To avoid com-
plex modeling, Yin et  al. trained a multi-layer per-
ception as a deterministic control policy to achieve 
self-learning drifting motion control for post-impact 
automated vehicles [26].

Previous studies have described various methods for 
post-impact stability control. However, challenges still 
remain in motion planning and stability control while 
achieving obstacle avoidance to prevent secondary col-
lisions. In this study, a post-impact motion planning 
method combining the polynomial curve and artificial 
potential field (APF) is developed to restore vehicle 
stability when the vehicle falls into over-spinning and 
drifting. Different from traditional polynomial curve 
methods, three polynomial curves are respectively 
adopted to represent the longitudinal, lateral and yaw 
movements in the ground coordinate system. As such, 
the vehicle motion can be fully described without non-
holonomic constraints. In addition, a time-varying 
linear quadratic regulator (TVLQR) is proposed to cal-
culate the desired generalized forces based on the error 
dynamics model. By making full use of the  instinct 
multi-objective optimization associated with LQR, the 
planned multi-dimensional motions can be simultane-
ously tracked. Furthermore, a nonlinear-optimization 
allocation (NOA) algorithm is designed to realize the 
desired generalized forces when tire forces are satu-
rated. The schematic of the proposed scheme is illus-
trated as shown in Figure 1.

The remainder of this paper is organized as follows: 
Section  2 introduces the motion planning method by 
combining the polynomial curve and post-impact APF. 
Section 3 elaborates on the TVLQR controller to track 
the planned motion. Section  4 introduces the NOA 
algorithm to realize the desired generalized force/

Figure 1  The schematic of the proposed control scheme
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moment. Section 5 offers verification based on compre-
hensive hardware-in-loop (HIL) tests, followed by the 
key conclusions summarized in Section 6.

2 � Post‑impact Motion Planning By Combining 
the Polynomial Curve and APF

Previous vehicle path and trajectory planning schemes 
focus on the topology and the velocity planning [27]. 
These are achieved by assuming that the vehicle is driv-
ing stably without severe sideslip or over-spinning. Thus, 
the desired vehicle yaw motion can be determined by the 
velocity and the route curvature through nonholonomic 
constraints formulation [28]. However, the vehicle may 
tend to become unstable with significant drifting and 
over-spinning due to large collision impulse, and the sta-
ble driving assumption becomes invalid. This study aims 
to provide a motion planning method to simultaneously 
regulate the vehicle trajectory and yaw motion. Tradi-
tional planning methods mainly include the A* heuristic 
search, visibility graph method, generalized Voronoi dia-
gram and artificial potential field, etc [29, 30]. Consid-
ering the continuity and smoothness of vehicle motion 
under extreme conditions, the combination of the quintic 
polynomial and artificial potential field is utilized to solve 
the motion optimization problem.

In order to fully depict vehicle motions, multiple coor-
dinate systems are established as shown in Figure 2. The 
inertial ground coordinate system X-Y, the chassis coor-
dinate system x-y and the tire coordinate system are 
appropriately defined. The X-axis is parallel to the road 
with the x-axis pointing to the vehicle-forward direc-
tion. Three different coordinate systems are associated 
through the yaw angle ψ and the front steering angle δ. 
It should be noted that the single-track vehicle dynamics 
model is utilized during motion planning, as the desired 
tire lateral forces can be directly deduced from parame-
terized vehicle motion through the single-track model, so 

that the dynamics constraints can be easily imposed on 
the polynomial curve.

The motion to be planned after impacts can be 
described with the coordinate in the inertial ground 
coordinate system (X, Y) and the yaw angle ψ, which are 
represented by a group of polynomial functions of the 
planning time τ as indicated in Eq. (1). It is worth noted 
that both  the cubic and quartic curves can satisfy the 
smoothness requirement, but their corresponding third-
derivative functions are constant and linear, respectively. 
It means that the inherent implicit boundary constrains 
would be applied to the corresponding jerks that are 
equivalent to control output gradients. To balance the 
planning freedom and problem formulation complexity, 
the quintic curve is adopted as a compromise. By taking 
the first and the second derivative of the quintic polyno-
mial curves with respect to τ, the velocity ( Ẋ , Ẏ ,ψ̇ ) and 
the acceleration state ( Ẍ ,Ÿ ,ψ̈ ) can be obtained in the 
planned time interval as

where τ0 is the starting time of motion planning, and 
k is the order of the corresponding items in the quin-
tic curves varying from 0 to 5. Then, the problem can 
be transformed to derive the quintic polynomial curve 
parameters ak, bk and ck. With known vehicle states, the 
parameters a0, b0, c0, a1, b1 and c1 can be directly obtained 
according to initial vehicle states while the motion plan-
ning begins with [31, 32]

There are twelve parameters to be determined, which 
are capsulated in a vector p as

Then the optimal solution is pursued to design the 
motion for obstacle avoidance and stability restoration 
considering vehicle dynamics constraints.

The obstacle locations can be obtained via environ-
mental perception [33, 34]. In order to describe the 
safety of the post-impact obstacle avoidance trajec-
tory, the artificial potential field method is utilized to 
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{

a0 = X(τ0), b0 = Y (τ0), c0 = ψ(τ0),

a1 = Ẋ(τ0), b1 = Ẏ (τ0), c1 = ψ̇(τ0).

(3)
p(1 : 12) = [a2, a3, a4, a5, b2, b3, b4, b5, c2, c3, c4, c5].

Figure 2  The single-track vehicle dynamics model in multiple 
coordinate systems
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construct the objective function. For describing the 
impact of the obstacles ahead with the coordinate (Xb, 
Yb), the exponential potential function is employed 
with a safety radius Dr given as

Based on the exponential function characteristics, it 
can be deduced that the punishment effect would be 
amplified exponentially once the relative distance is 
smaller than Dr so as to force the vehicle away from the 
obstacles. Thus, the determination of Dr should cover 
both the vehicle and obstacle contours and the safety 
margin. The exponential potential function for the road 
boundaries is defined as U2, in which Ds, Ymax and Ymin 
are the safety distance and the upper and lower road 
boundaries, respectively. Similarly, the choice of Ds 
should cover the vehicle contour and the safety margin.

A 3-D map of the potential field that displays the 
threats around the vehicle at a particular instant is illus-
trated in Figure 3. The final field function for a specified 
trajectory U is set to maximize the weighted sum of U1 
and U2 within the planning time interval as shown in 
Eq. (6), where τf and k1 and k2 are the ending time and 
the weighting factors, respectively. Since the collisions 
with obstacles or road boundaries should be treated 
equally, k1 and k2 are set to be the same. It should be 
noted that it is expected to punish the most danger-
ous position of a trajectory. Thus, the maximum of the 
combined function within the planning time interval 
[τ0, τf] is adopted as the final field function given as

(4)U1 = e−(
√

(X(τ )−Xb)
2+(Y (τ )−Yb)

2−Dr ).

(5)U2 = e−(|Y (τ )−Ymax |−Ds)+e−(|Y (τ )−Ymin|−Ds).

Considering that the vehicle may endure over-spinning 
and drifting after light impacts and that one primary goal 
is to restore vehicle stability, another objective function 
V for the approaching stability is designed based on the 
average vehicle sideslip angle. The vehicle sideslip angle 
is calculated as the difference between the heading angle 
and the yaw angle in the ground coordinate system. The 
objective function V can be given by

The final objective function S is composed of the final 
field function U and the stability approaching function V 
through the weighting factors k3 and k4, which is given by

There is no uniform rule for choosing k3 and k4, which 
need to be calibrated through massive tests. Based on our 
calibration experience, it is recommended to keep them 
approximately the same.

Some linear and nonlinear constraints need to be given 
to rationalize the optimization problem. The linear con-
straints are constructed according to the requirements on 
the terminal vehicle states. It would be ideal that the final 
lateral velocity Ẏ (τf ) and yaw rate ψ̇(τf ) can drop to zero. 
Also, the lateral displacement Y (τf ) and yaw angle ψ(τf ) 
of the vehicle should satisfy the road conditions. After 
substituting the parameters in Eq. (2), the known termi-
nal states above and the ending time τf into Eq. (1), Eq. (9) 
can be derived. The polynomial equation of the left side 

(6)U = max
τ∈[τ0,τf ]

(k1U1 + k2U2).

(7)V =
1

τf − τ0

∫
(∣
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∣

∣

arctan(
Ẏ (τ )

Ẋ(τ )
)− ψ(τ)
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∣

∣

∣

)

dτ .

(8)S = k3U + k4V .

Figure 3  The potential field of the surrounding obstacles
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can be seen as a linear combination of the optimization 
variables given in Eq. (3). The items in the right side are 
all known. Thus, Eq. (9) constitutes the linear constraints 
on the motion planning problem, which is given by

The nonlinear constraint is constructed according to 
vehicle dynamics. First, the maximum acceleration is 
confined by road adhesion. The resultant acceleration 
a(τ) at the planning time τ for a specified trajectory can 
be calculated by

where Ẍ(τ ) and Ÿ (τ ) are the longitudinal and lateral 
accelerations in the ground coordinate system deter-
mined by the polynomial curves. Then, the maximum 
acceleration can be given by

where μ and g are the road friction coefficient and the 
gravitational acceleration, respectively.

The vehicle dynamics restrictions on the coordina-
tion of the vehicle lateral force and yaw moment are 
also considered. According to the D’Alembert princi-
ple, every acceleration movement can be equivalent to 
a D’Alembert inertia force or moment. Thus, the vehicle 
dynamics problem can be reformulated into a pseudo-
static one. The D’Alembert lateral force F ′

y(τ ) and yaw 
moment M′

z(τ ) determined by the polynomial at time 
step τ can be given as

where m and Iz are the vehicle mass and yaw moment of 
inertia. The static moment equilibrium about the front 
tire can be calculated as
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(10)a(τ ) =
√

Ẍ(τ )2 + Ÿ (τ )2,

(11)max
τ∈[τ0,τf ]

(a(τ )) ≤ gµ,

(12)
F

′
y(τ ) = m(−Ẍ(τ )× sin(ψ(τ))+ Ÿ (τ )× cos(ψ(τ))),

(13)M
′
z(τ ) = Iz × ψ̈(τ ),

where Lf and Lr are the distances from the center of grav-
ity (CG) to the front and the rear axle, respectively; Fyr(τ) 
is the lateral force at the rear tires required by a specified 
trajectory. It can be regrouped as

The absolute value of Fyr should be well below the rear-
axis adhesion limitation, and then the second nonlinear 
constraint is constructed as

The optimization-based motion planning can be sum-
marized into finding the polynomial parameter p with 
the lowest value of the combined index S, while satisfying 
the linear and the nonlinear constraints, which is given 
by

It should be noted that a numerical solution instead 
of the analytical solution is computed. The optimization 
problem is solved using the fmincon toolbox in MAT-
LAB. Once the parameters p is derived, the motion plan-
ning is completed.

3 � Motion Tracking Control Based on the TVLQR
The reference coordinates (Xd, Yd) and the yaw angle ψd 
at time step t can be obtained by calculating the polyno-
mial values. In order to achieve the desired motions and 
positions derived from Section  2 against unknown dis-
turbances, a motion tracking controller is designed based 
on the TVLQR approach.

High-order continuity and differentiability are achieved 
by using the quintic polynomial curves in motion plan-
ning. Thus, the desired motion ( Ẋd , Ẏd , ψ̇d ) and accel-
eration ( Ẍd , Ÿd , ψ̈d ) in the ground coordinate system at 
time step t can be attained by calculating the first and the 
second derivative, respectively. The desired motion in 
the vehicle coordinate system including the longitudinal 
velocity Uxd , lateral velocity Uyd and yaw rate rd can be 
given by

where Tco is the coordinate transformation matrix from 
the ground to the vehicle coordinate, which is given by

(14)F
′
y(τ )Lf − Fyr(τ )(Lf + Lr)−M

′
z(τ ) = 0,

(15)Fyr(τ ) =
Lf × F

′
y(τ )−M

′
z(τ )

Lf + Lr
.

(16)max
τ∈[τ0,τf ]

(
∣

∣Fyr(τ )
∣

∣) ≤
mgLf

Lf + Lr
× µ.

(17)
p = arg min S,

s.t. Eqs. (9) (11) (16).

(18)(Uxd ,Uyd , rd)
′ = T co(Ẋd , Ẏd , ψ̇d)

′,



Page 6 of 18Wang et al. Chinese Journal of Mechanical Engineering           (2022) 35:54 

Similarly, the open-loop reference control inputs 
including the longitudinal force Fxr , lateral force Fyr and 
yaw moment Mr can be reformulated in the same way, 
which is given by

The open-loop control can be deduced in an ideal case, 
but the actual implementation performance is subject to 
undesired disturbances such as error accumulation and 
parameter uncertainties. Thus, a closed-loop correction 
based on the TVLQR method is introduced.

The vehicle dynamics equations are introduced as

where Ux, Uy and r are the longitudinal velocity, lateral 
velocity and yaw rate; Fxo, Fyo and Mzo are the objective 
longitudinal force, lateral force and yaw moment. And 
the vehicle kinematic equations are given as

Obviously, the dynamics and kinematic equations con-
stitute a nonlinear system, which is modified by local 
linearization. Then, its linear state-space form with the 
system state vector x and the system input vector u can 
be given as

where A is the Jacobian matrix for local linearization and 
B is the input matrix, and they are given as

(19)T co =





cos(ψd) sin(ψd) 0
− sin(ψd) cos(ψd) 0
0 0 1



.
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′.
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,

(25)B =





1
m 0 0 0 0 0

0 1
m 0 0 0 0

0 0 1
Iz

0 0 0





′

.

The continuous system in Eq. (23) is discretized with the 
sampling time of T by

where Adk and Bd are the time-varying state transition 
and input matrices with

The error dynamics of the vehicle is constructed by

where ξk and Δuk are the state error vector and the con-
trol input correction, which are expressed as

where xdk is the desired vehicle motion and position 
deduced from the planned polynomial while urk is the 
reference open-loop control input from Eq. (20) at time 
step k, which are

Linear quadratic regulator (LQR) is a kind of closed-
loop optimal control method for linear systems to 
achieve quadratic minimization of the objective function 
[35]. Considering computational efficiency and multi-
objective optimization, the LQR controller is adopted to 
achieve closed-loop motion tracking. The discrete lin-
ear model for LQR has been established in Eq. (29). The 
assumption of full state accessibility makes the appli-
cation of LQR possible. Time-varying state transition 
matrix Adk would replace the traditional constant state 
transition matrix at each time step, thus forming the 
TVLQR control problem. The quadratic cost function is 
given by

where Q=QT and R=RT are the positive definite weight-
ing coefficient matrices that are used to penalize the 
states error and control input correction, respectively. 

(26)ẋ =
xk+1 − xk

T
,

(27)xk+1 = Adkxk + Bduk ,

(28)

{

Adk = A|x=xdk
× T + I ,

Bd = B × T .

(29)ξ k+1 = Adkξ k + Bd�uk ,

(30)
{

ξ k = xk − xdk ,

∆uk = uk − urk ,

(31)xdk = [Uxd Uyd rd Xd Yd Zd ]′
∣

∣

t=kT
,

(32)urk =
[

Fxr Fyr Mr

]′
∣

∣

∣

t=kT
.

(33)J =
∞
∑

k=0

(

ξTkQξ k +�uT
k R�uk

)

,
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Then, the control correction Δuk to minimize the cost 
function is given by

where Kk is the gain matrix given by

where X is the solution to the Riccati equation, which is 
expressed as

Finally, solving the Riccati equation is accomplished 
with the MATLAB function dare. The solving process is 
executed at each time step to account for the time-vary-
ing system model. After obtaining the control correction, 
the overall control input can be derived as

The derived outcome is used in the allocation algo-
rithm presented in the following section.

4 � Nonlinear‑Optimization‑Based Allocation 
Algorithm under Extreme Conditions

The objective resultant forces (Fxo, Fyo) and yaw moment 
Mzo are derived in the previous section. It is essential to 
coordinate multiple chassis actuators including the pro-
pulsion, braking and steering actuators to achieve the 
desired resultant forces and moment. Active safety con-
trol systems such as ESP and direct yaw-moment control 
(DYC) often adopt direct control allocation [36], quad-
ratic programming allocation [37] and daisy chain alloca-
tion [38] to achieve coordination control. To simplify the 
allocation problem, these traditional allocation methods 
often impose constraints on the longitudinal tire forces 
to keep the tires working in the linear region to neglect 
the coupling relationship between the longitudinal and 
the lateral tire forces [39]. Nevertheless, this limits the 
control performance and may introduce large deviations 
especially in extreme conditions where the vehicle may 

(34)�uk = −K kξ k ,

(35)K k = (BT
dXBd + R)−1BT

dXAdk ,

(36)
AT
dkXAdk − X − AT

dkXBd(B
T
dXBd + R)−1BT

dXAdk +Q = 0.

(37)uk = �uk + urk .

endure severe spinning and/or drifting due to external 
impacts. In this study, a nonlinear-optimization alloca-
tion algorithm that is competent under tire force satura-
tion in extreme conditions is developed.

Different from the single-track dynamics model 
used in motion planning, a four-wheel vehicle dynam-
ics model is developed to determine each actuator’s 
output as shown in Figure  4. To fully verify the effec-
tiveness of the proposed control scheme, a four-wheel-
independent-drive electric vehicle (FWID EV) is used 
as the research object. It should be noted that the pro-
posed scheme is also suitable for conventional vehicles 
equipped with ESP by modifying the constrains. In fact, 
combining 4-wheel-drive (4WD) and ESP can achieve 
similar effects.

The primary goal of the allocation algorithm is to 
obtain proper control commands for the steering, pro-
pulsion and braking chassis subsystems, which is given 
by

where Fxi and Fyi are the longitudinal and lateral forces 
of each tire with the subscript i= (1, 2, 3, 4) representing 
the front-left, front-right, rear-left and rear-right tires, 
respectively. According to the force analysis, the result-
ant forces (Fx, Fy) and yaw moment Mz produced by the 
steering angle and tire forces can be calculated as

(38)xc = [δ Fx1 Fx2 Fx3 Fx4 Fy1 Fy2 Fy3 Fy4],

(39)


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Fx = Fx1 cos(δ)− Fy1 sin(δ)+ Fx2 cos(δ)− Fy2 sin(δ)+ Fx3 + Fx4,

Fy = Fx1 sin(δ)+ Fy1 cos(δ)+ Fx2 sin(δ)+ Fy2 cos(δ)+ Fy3 + Fy4,

Mz = −(Fx1 cos(δ)− Fy1 sin(δ))
Db

2
+ (Fx1 sin(δ)+ Fy1 cos(δ))Lf

+(Fx2 cos(δ)− Fy2 sin(δ))
Db

2
+ (Fx2 sin(δ)+ Fy2 cos(δ))Lf

−Fx3
Db

2
− Fy3Lr + Fx4

Db

2
− Fy4Lr ,

Figure 4  The four-wheel  vehicle dynamics model for FWIA EVs
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where Db is the track width. In order to make the result-
ant forces and yaw moment approach their target values, 
an objective function Vo is set as

ε1, ε2 and ε3 are the weighting coefficients for adjusting 
tracking priorities among the longitudinal force, lateral 
force and yaw moment of the vehicle. Considering that 
obstacle avoidance is feasible only when the violent over-
spinning motion is suppressed in the early stage to a cer-
tain extent, the yaw moment bears more importance and 
should be given higher priority. Thus, ε3 is recommended 
to be slightly larger than the other two.

To ensure that the optimization problem can be solved 
within a feasible timeline, the constraints are analyzed. The 
tire forces are strongly associated with the cornering veloc-
ities, vertical forces at each tire and road friction coeffi-
cient. Assuming that the vehicle velocities (Ux, Uy) and yaw 
rate r can be attained in real-time, the vehicle longitudinal 
and lateral velocities (vxi, vyi) at the i-th tire center can be 
calculated as

The sign in Eq. (41) is set to be positive for the right 
wheels while negative for the left. The sign in Eq. (42) is set 
to be positive for the front wheels while negative for the 
rear. Then, the side-slip angle of the i-th tire can be calcu-
lated by

It should be noted that the roll dynamics of the sprung 
mass can influence the vertical tire forces. The vehicle roll 
dynamics and state estimation have been investigated in 
our previous studies [31], which can provide precise verti-
cal forces. In this study, a simplified quasi-static calculation 
method is utilized for simplification. The vertical forces 
at different corners Fzi can be approximatively calculated 
according to the longitudinal acceleration ax and the lateral 
acceleration ay by

(40)
Vo = ε1(Fxo − Fx)

2 + ε2(Fyo − Fy)
2 + ε3(Mzo −Mz)

2,

(41)vxi = Ux ± Dbr/2,

(42)vyi = Uy ± L(f , r)r.

(43)


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αi(i=1,2) = δ − arctan

�

vyi

vxi

�

,

αi(i=3,4) = − arctan

�

vyi

vxi

�

.

where h is the height of CG and L is the wheelbase given 
by

It is difficult to precisely capture the tires forces due to 
its nonlinear characteristics and the coupling relationship 
between the longitudinal and the lateral force [40]. In order 
to simplify the tire force constraints, a combination of the 
lateral force Magic Formula and the elliptical formula is 
utilized to represent the nonlinear characteristics and cou-
pling relationship in this study.

The lateral Magic Formula under pure sideslip conditions 
can be expressed as

where By, Cy, Dy and Ey are the stiffness, shape, peak and 
curvature coefficients, which can be calculated by

where b1–b8 in the Magic Formula are identified by fit-
ting the bench test data obtained from CARSIM. The 
road friction coefficient corresponding to the test data is 
set to be 1. The fitting is conducted offline through the 
Curve Fitting Tool in MATLAB and the results are listed 
in Table 1.

The Magic Formula model only avails for a certain road 
friction condition. In order to extend its feasibility on vari-
ous road surfaces, a method called friction similarity is 
used [41]. It predicts the change in the limit shear force 
while maintaining the linear behavior for light slip. Given 
the road friction coefficient μ0 for tire measurements and 
the road friction coefficient μ for simulation, the modified 
lateral force with no longitudinal tire force is given by

(44)
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Fz1 =
mgLr

2L
−

mhax

2L
−

mayhLr

DbL
,

Fz2 =
mgLr

2L
−

mhax

2L
+

mayhLr

DbL
,

Fz3 =
mgLf

2L
+

mhax

2L
−

mayhLf

DbL
,

Fz4 =
mgLf

2L
+

mhax

2L
+

mayhLf

DbL
,

(45)L = Lf + Lr .

(46)
Fymf = Dy sin(Cy arctan(Byα − Ey(Byα − arctan(Byα)))),

(47)




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



By = b3 sin(b4 arctan(b5Fz)/CyDy,

Dy = b1F
2
z + b2Fz ,

Ey = b6F
2
z + b7Fz + b8,

Table 1  The offline fitted lateral Magic Formula parameters

Cy b1 b2 b3 b4 b5 b6 b7 b8

1.141 −5.98 965.7 2536 2.071 0.04436 −0.04443 0.5792 −3.076



Page 9 of 18Wang et al. Chinese Journal of Mechanical Engineering           (2022) 35:54 	

The lateral force would decline as the longitudinal tire 
force increases. Instead of adjusting the tire force based on 
the slip rate and sideslip angle in the traditional Magic For-
mula, the ellipse formula is utilized to depict the coupling 
relationship as shown in Eq. (49). The correction coefficient 
ξ is utilized to adapt to the longitudinal tire force attenua-
tion due to the transition from rolling to sliding while the 
slip rate is approaching its limit, and it is set to be 0.95. The 
comparison between the combination tire model and the 
test data from CARSIM Tire Tester is shown in Fig. 5. Dif-
ferent from the adhesion ellipse formula induced by anisot-
ropy, the ellipse formula used here can depict the working 
point of tire force under a specified sideslip condition. The 
error is small when α is 8° and is relatively larger when α 
is 3°. Considering the extreme conditions after collisions, 
the tire sideslip is severe in most of the time and the error 
is within an acceptable range. Also, it should be noted that 
the lateral force and sideslip angle should always be at the 
same side, which is given by

Also, the magnitude and changing rate boundaries of 
the front steering wheel  angle and each driving/braking 
torque are formulated into the constraints as

where δmin and δmax are the lower and upper bounda-
ries for the steering wheel angle; Twmin and Twmax are the 
lower and upper torque limits for each wheel; �δmax and 
�Twmax are their respective maximum changing-rates; rw 
is the effective rolling radius with its variation neglected.

The optimal allocation problem can be summarized 
into finding the optimum control input xc to minimize 
the objective function Vo while satisfying the tire force 
and actuator output constraints. It can be expressed as

The nonlinear optimization problem is then solved 
using the fmincon toolbox in MATLAB. In order to 
improve the computing efficiency, the warm booting 
technique is utilized, which adopts the solution of the 
previous time step as the initial value at the current time 
step. After obtaining the optimal longitudinal tire forces, 

(48)Fy0i =
µ

µ0
Fymfi(Fzi,

µ0

µ
αi).

(49)
(

Fxi

µξFzi

)2

+
(

Fyi

Fy0i

)2

= 1, sign
(

Fyiαyi
)

> 0.

(50)




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

δmin ≤ δ ≤ δmax,
Twmin ≤ Fxrw ≤ Twmax,
�

�δk − δk−1

�

��δmax,
�

�Fxk − Fx(k−1)

�

�rw ≤ �Twmax,

(51)
xc = arg minVo,

s.t. Eqs. (49) (50).

the single wheel dynamics model is established to calcu-
late the wheel torque Twi by

where Jw, Tfi and ωi are the rotational inertia, rolling 
resistance and angular velocity of the i-th wheel, respec-
tively. A positive value for Twi represents a drive torque 
while a negative one corresponds to a brake torque. With 
the rolling resistance and rotational inertia ignored, the 
propulsion or braking torque can be calculated as

5 � HIL Test Results and Discussions
The proposed scheme is examined based on the HIL 
tests against the disturbances of signal delays, computing 
power limitation and communication errors. The control 
area network (CAN) is used to connect different subsys-
tems. The HIL test rig mainly includes the Simulink Real-
time system, ZLG CAN bus monitor system and ETAS 
LABCAR system. The Simulink Real-Time is an embed-
ded kernel that helps create real-time applications from 
Simulink models and serves as the rapid control proto-
typing (RCP) in this study. After configuring the drivers 

(52)Twi − Fxirw − Tfi = Jwω̇i,

(53)Twi = Fxirw .

Table 2  The detailed vehicle specifications

Description Value

Vehicle mass m (kg) 1610

Vehicle yaw moment of inertia about CG Iz(kg*m2) 2059

Distance between CG and front axle Lf(m) 1.05

Distance between CG and rear axle Lr(m) 1.61

Wheelbase L (m) 2.66

Vehicle track Db(m) 1.565

Wheel rolling radius rw(m) 0.347

wheel rotational inertia w(kg*m2) 0.9

Figure 5  Tire forces from the proposed tire model and the CARSIM 
Tire Tester
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and Vector CAN Interface Support from the Vehicle Net-
work Toolbox, the Simulink Real-Time can receive and 
transmit CAN signals through a specified CAN card. In 
this study, the RCP of the Simulink Real-Time runs on a 
computer with a CPU of AMD 3700 and a RAM of 32 
GB.

The ETAS LABCAR can carry the predefined vehicle 
model in CARSIM and serves as the controlled plant. The 
vehicle model together with the input and output ports is 
compiled first and then downloaded to LABCAR through 
RJ45. The LABCAR system receives control commands 
from the Simulink Real-time and broadcasts vehicle 
states through the CAN network. In addition, another 
ZLG CAN card with an upper computer is connected to 
the CAN network for signals monitoring. The overall HIL 
system is shown in Figure 6.

A medium SUV from the CARSIM database is used 
to verify the effectiveness of the proposed scheme with 
its detailed specifications listed in Table  2. The original 
drive system is replaced with an independent in-wheel 
drive system at each wheel to simulate the characteristic 
of an FWIA EV [42]. The torque commands are directly 
applied to four wheels.

The actual collision scenarios could be complicated 
since the impact directions and strengths can be diverse. 

The theorem of momentum is used to depict an impact 
process, and the impact on vehicle is simplified to an 
impulse (Px, Py, Pz) on a reference point (Xp, Yp, Zp) in the 
vehicle coordinate. Although CARSIM cannot deal with 
the impact process, it can provide a user-defined exter-
nal force acting on a specified point of the vehicle, which 
is utilized to load the impact impulse. The phase plane 
analysis in Ref. [43] showed that the post-impact instabil-
ity mainly results from the large yaw rate followed by the 
sharply increased vehicle sideslip angle. Thus, the lateral-
rear offset impact is adopted to examine the performance 
of the proposed control scheme in such an extreme con-
dition and the lateral impulse Py is imposed as shown 
in Figure 7. According to the crash test data, the impact 
impulse can be represented by the haversine, sine, square 
and triangular pulses with a duration of 0.1–0.15 s [44]. 
In this study, a triangular pulse of 0.1 s is adopted.

The overall control scheme is constructed in the Sim-
ulink Real-time. The motion planning module is activated 
once the impact impulse ends, followed by the tracking 
and the allocation controller working with a sampling 
time of 0.02 s. It should be noted that solving the non-
linear optimization problem using the fmincon tool-
box is time-consuming. In order to improve computing 
efficiency, some modifications are made to the fmincon 
toolbox configuration. The sqp optimization algorithm is 
chosen and the maximum iteration is set to be 40. The 
overall controller parameters are well calibrated through 
massive tests and are given as

Considering the capabilities of different actuators, the 
actuator control outputs are constrained by

(54)
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k1 = k2 = k3 = 1 k4 = 0.9,

Q = diag([5 5 90 6× 105 5× 105 1× 106]),
R = diag([1× 10−4 1× 10−4 1× 10−4]),
ε1= 9 ε2=1 ε3=10.

Figure 6  The overall HIL system

Figure 7  The lateral-rear offset impact scenario
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5.1 � Motion Planning Test in Complicated Environments
In this section, the proposed scheme is examined under 
the scenario, in which the vehicle is forced to execute a 
leftward lane change to avoid the obstacles ahead while 
suppressing the instability after an initial impact. A 
road with two lanes of 4 m width is established and a 
normal road surface with the road friction coefficient of 
0.9 is adopted. The vehicle is driving straightly at an ini-
tial speed of 108 km/h and the lateral-rear offset impact 
impulse is set to be 2400 N∙s, referring to the collision 
scene configuration in Ref. [22]. The reference impact 
point is set to  (−3.7, −0.9, 0.65). Also, two obstacles 
are assigned on two lanes, which are 30 and 40 m ahead 
of the collision location as shown in Figure 8. The safety 
distances for the road boundaries and obstacles are set 
to be 1 and 1.7 m. The terminal constraints for motion 
planning are chosen as Y (τf ) = 4 , Ẏ (τf ) = 0 , ψ(τf ) = 0 
and ψ̇(τf ) = 0 while the terminal time τf is set to be 3.6 
s.

(55)
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δmin = −0.24π ,

δmax = 0.24π,

�δmax = 0.02π,

Twmin = −1561 N ·m,

Twmax = 1561 N ·m,

�Twmax = 278 N ·m.

Figure 8 shows the planned vehicle motion and trajec-
tory at different time and the contour map of the poten-
tial function. It can be seen that the planned motion 
can lead the vehicle back to stability while avoiding a 
second collision with the obstacles and road boundaries 
after the initial impact. A similar leftward lane change 
trajectory is successfully given, and the vehicle would 
safely drive onto the other lane with an attitude similar 
to drifting.

Figure 9(a) and (b) show the evolutions of the planned 
acceleration and  of the rear tire lateral forces, both of 
which are within their respective limits as described in 
Equations (11) and (16). It means that the motion plan-
ning results are reasonable while satisfying the vehicle 
dynamics constraints. It should be noted that the result 
is a locally optimal solution due to the nonconvexity of 
the optimization problem and the adopted gradient-
based method. In most cases, the locally optimal solu-
tion is effective and sufficient.

5.2 � Control Performance Comparison and Analysis
In order to prove the superiority of the NOA algorithm 
under extreme conditions over the existing allocation 
methods, the quadratic programming allocation (QPA) 
method is used as the baseline for comparison [45, 46]. 
It simplified the tire force coupling relationship to form 
a quadratic programming problem and considered 
the tire workload usage  as the  optimization objective. 
It optimizes the four longitudinal tire forces to real-
ize the desired vehicle longitudinal force and direct yaw 
moment, while the four lateral tire forces are left as the 
constraints. For simplicity, the quadratic programming 
problem is formulated into Eq. (56), where ρ=0.1, ξ1=1 
and ξ2=1 are the weighting coefficients for adjusting the 
priorities among the tire workload usage and the vehicle 
longitudinal force and direct yaw moment. The direct 

Figure 8  The planned motion and trajectory in the lateral-rear offset 
impact scenario

Figure 9  The constraint satisfaction analysis in motion planning
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yaw moment M∗
zo is calculated by removing the yaw 

moment produced by lateral tire forces from the desired 
overall yaw moment. The steering angle is set to zero. 
Then the QPA problem can be solved by the quadprog 
toolbox. For fare comparison, the same desired result-
ant vehicle forces and yaw moment from the TVLQR and 
vehicle states are provided for the NOA and QPA in the 
following analysis.

First, the motion tracking performance is analyzed. 
Figure  10(a)–(c) demonstrate the motions and trajec-
tories after a left-rear impact under the proposed con-
trol scheme, AFS control and no control. Partial ghosts 
trail from CARSIM VS Visualizer is also used, where 
two traffic barrels are configured on the road to rep-
resent obstacles. It can be seen that the post-impact 
vehicles under the proposed and the AFS controller 
can both return back to stability, but their trajectories 
exhibit considerable deviations. The vehicle under the 
proposed scheme can closely track the planned motion 
while avoiding the barriers and road  boundaries. The 
vehicle with the AFS controller is closer to the road 
boundaries due to larger tracking errors. The vehicle no 
control falls into rapid spinning and drifting, resulting 
in a secondary collision.

To be more specific, the trajectories under the 
TVLQR and the AFS are compared quantitatively as 
shown in Figure  11(a) together with the trajectory 
planned in Section 5.1. It can be seen that the TVLQR 
can closely follow the planned trajectory through-
out the maneuver with a maximum error of about 0.2 
m. However, a large deviation of up to 0.8 m can be 
observed for that under the AFS controller, which 
results from the system inertia and oscillation after the 
initial impact.

The β − β̇ phase plane analysis is also provided in 
Figure  11(b), which is widely used as a stability assess-
ment  criterion. Three phase paths corresponding to the 
TVLQR, AFS and without control are compared. It can 
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�

.

be seen that all the three phase paths are compelled to 
the point A from the initial stable point O with the side-
slip angular rates increasing sharply. This results from 
the large, sudden yaw rate change due to the lateral-rear 
offset impact, which indicates that the point A is also the 
impact ending time. The phase path of the vehicle with-
out control moves in the direction of increasing sideslip 
angle while both  the TVLQR and AFS can control the 

vehicle back to the initial stable point O. Also, it can be 
seen that the AFS controller can more efficiently suppress 
the sideslip motion before the intersection point B, with a 
maximum sideslip angle of 45° compared with 60° under 
the TVLQR. Since the TVLQR has to produce large lon-
gitudinal force to achieve obstacle avoidance during the 
drifting process as shown in Figure 13(a), the stabilizing 
effect is partially sacrificed. After the intersection point 
B, the TVLQR stabilizes the vehicle quickly while the 
AFS experiences sustained oscillations.

The simulation results in the time domain are also 
provided to verify the TVLQR’s superior tracking per-
formance. In particular, Figure  12(a) shows the vehi-
cle longitudinal and lateral velocities with the planned 
motion extracted from the polynomial curve as the 
reference. It can be seen that both the vehicle longitu-
dinal and lateral velocities can closely track their refer-
ences. Similarly, the vehicle yaw angle and yaw rate can 
also accurately follow the planned motion throughout 
the maneuver as shown in Figure  12(b). The excellent 
motion tracking the foundation for obstacle-avoidance 
and stability control.

Second, the control allocation performance of the 
NOA and QPA are compared as shown in Figure 13. Fig-
ure 13(a)–(c) depicts the comparison results of the longitu-
dinal forces, lateral forces and yaw moment of the vehicle, 
respectively. The NOA algorithm tracks the desired result-
ant forces and yaw moment from the TVLQR better 
than the QPA does. The failure of the QPA can be mainly 
ascribed to the optimization boundary simplification 

Figure 10  Vehicle motion and partial ghosts trail after the initial left-rear impact
(See figure on next page.)
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Figure 10  (See legend on previous page.)
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and model linearization. The lateral tire force has nearly 
exhausted the tire adhesion force for a drifting or spinning 
vehicle, and there is no room to adjust the longitudinal 
tire force. It can be seen in Figure 13(e) that the tire work-
load usages under the QPA and NOA are both close to 1, 
meaning saturated tire forces. Thus, the QPA only avails 
with unsaturated tire forces while the NOA can extend the 
optimization boundary to tire force saturation scenarios to 
obtain superior performance.

Moreover, no active steering angle adjustment fails to 
fully capitalize on the potential of chassis coordinated 
control and only makes the lateral force a passive vari-
able. On top of this, the QPA exhibits considerable lateral 
force allocation error as shown in Figure 13(b). Instead, 
the steering angle is well optimized by the NOA algo-
rithm as shown in Figure 13(d) and is restricted between 
δmin and δmax . For example, the counter-steering process 
is observed at the initial stage to restrain over-spinning 
similar to vehicle drifting maneuver.

The optimization derivation time can be controlled 
within the HIL sampling time of 20 ms despite of the 
existence of packet loss as shown in Figure 13(f ).

As shown in Figure  14, the desired tire forces from 
the presented NOA allocator and from the actual ones 
exported from the Labcar model are consistent in most 
of the time albeit there are slight delays and lateral force 
deviation. The delays may result from ignoring the rota-
tional inertia of wheel in the wheel dynamics model, 
while the lateral force deviation can be ascribed to 
the errors of the proposed combined tire force model. 
But the delays and deviation are still within acceptable 
ranges and have little influence on the overall control 
performance.

In a nutshell, the traditional path planning and steer-
ing control cannot deal with the complicated scenarios 
of obstacle avoidance after an initial external impact. 
The impact breaks the nonholonomic constraints of 
vehicle dynamics and thus cause the AFS lose trajec-
tory tracking ability. Simultaneously, large overshoot and 
oscillations exist in the approaching process to the sta-
bility point. Moreover, the existing QPA algorithm can-
not efficiently allocate the desired control commands 
in drifting or over-spinning conditions. In contrast, the 
proposed scheme can effectively restrain the post-impact 

Figure 11  Performance comparison of different control schemes

Figure 12  Velocities and yaw motion tracking results of TVLQR
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over-spinning and restore vehicle stability while keep-
ing high-accuracy tracking of the planned trajectory for 
obstacle avoidance.

6 � Conclusions
Traditional path planning and motion control need be 
executed under normal conditions with the assumption 
of a quasi-steady state, in which the vehicle sideslip angle 
and tire lateral forces are small. However, the assumption 
may become invalid under extreme conditions especially 
after an external impact. This paper presents an enabling 

scheme for automated vehicles to achieve obstacle avoid-
ance and stability restoration after initial impacts. First, 
a motion planning method based on the polynomial 
is developed to regulate the vehicle trajectory and yaw 
motion at the same time. Then, a discrete time-varying 
vehicle dynamics model is established and a time-varying 
linear quadratic regulator is proposed to track the desired 
motions. Finally, a nonlinear-optimization allocation 
algorithm based on a combined tire model is designed 
to coordinate multiple chassis  actuators to achieve the 
desired resultant forces and yaw moment. The complete 

Figure 13  Performance comparison of different control allocation methods
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Figure 14  Tire forces comparison
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scheme is examined under critical driving conditions 
based on the HIL tests. The results verify the feasibil-
ity and effectiveness of the proposed control scheme to 
restore vehicle stability while realizing obstacle avoidance 
after initial collisions under extreme scenarios.
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