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Abstract 

Current research on spherical parallel mechanisms (SPMs) mainly focus on surgical robots, exoskeleton robots, enter-
tainment equipment, and other fields. However, compared with the SPM, the structure types and research contents of 
the SPM are not abundant enough. In this paper, a novel two-degree-of-freedom (2DOF) SPM with symmetrical struc-
ture is proposed and analyzed. First, the models of forward kinematics and inverse kinematics are established based 
on D-H parameters, and the Jacobian matrix of the mechanism is obtained and verified. Second, the workspace of the 
mechanism is obtained according to inverse kinematics and link interference conditions. Next, rotational characteris-
tics analysis shows that the end effector can achieve continuous rotation about an axis located in the mid-plane and 
passing through the rotation center of the mechanism. Moreover, the rotational characteristics of the mechanism are 
proved, and motion planning is carried out. A numerical example is given to verify the kinematics analysis and motion 
planning. Finally, some variant mechanisms can be synthesized. This work lays the foundation for the motion control 
and practical application of this 2DOF SPM.
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1  Introduction
Spherical parallel mechanism (SPM) is a special spatial 
parallel mechanism. Its end effector can rotate freely 
around the point. The SPMs have important applica-
tion value and have been widely used, such as the azi-
muth tracking system [1], the bionic robot [2], surgical 
robot [3], and the medical device [4]. The research about 
SPM mostly focuses on 2DOF SPM [5] and 3DOF SPM 
[6]. The theoretical research and practical application of 
3DOF SPM are quite mature. For example, theoretical 
research about the typical 3-RRR 3DOF SPM has been 
studied in terms of its working space [7], singularity [8], 
dexterity [9], stiffness [10], dynamics [11]. In practi-
cal engineering applications, Gosselin et  al. proposed 

the famous agile eye in 1994 [12], etc. In most cases, the 
2DOF SPM can satisfy application requirements, such 
as pointing mechanisms [13] used in spherical engrav-
ing machines, azimuth tracking of satellite antennas, and 
automatic ground tracking equipment for various air-
craft, etc., and some 2DOF artificial wrists sorted out by 
Bajaj et al. [14].

The representative 2DOF SPM is the spherical 5R 
mechanism. Ouerfelliz et  al. [15] studied the direct and 
inverse kinematics, kinematic and dynamic optimization 
of a general spherical 5R linkage. Cervantes-Sanchez et al. 
[16] analyzed its workspace and singularity. Zhang et al. 
[17] had a further analysis of the workspace of spherical 
5R mechanism and 2DOF SPM with actuation redun-
dancy, as well as dynamic analysis [18, 19], trajectory 
planning [20], and parameter optimization [21]. Yu et al. 
[22] introduced a simple and visual graphic method for 
mobility analysis of parallel mechanisms and presented a 
novel 2DOF rotational parallel mechanism derived from 
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well-known Omni Wrist III. Dong et al. [23] analyzed the 
kinematics, singularity, and workspace of a class of 2DOF 
rotational parallel manipulators in a geometric approach. 
Chen [24] proposed a new geometric kinematic modeling 
approach based on the concept of instantaneous single-
rotation-angle and used for the 2DOF RPMs with sym-
metry in a homo-kinetic plane. Kim et al. [25] deformed 
the spherical 5R mechanism, designed the spatial self-
adaptive finger clamp, and conducted constraint analysis, 
optimization design of the structure, and grasping exper-
iment on it. Xu et al. [26] established a theory regarding 
the type synthesis of the two-rotational-degrees-of-free-
dom parallel mechanism with two continuous rotational 
axes systematically. Terence et  al. [27] conducted the 
decoupling design of the 5R spherical mechanism and 
compared it with the traditional 5R spherical mechanism 
in motion characteristics and workspace. Cao et al. [28] 
obtained a three-rotation, one-translation (3R1T) manip-
ulator for minimally invasive surgery by connecting the 
revolute pair and the prismatic pair to a 2DOF spherical 
mechanism, and analyzed its kinematics and singular-
ity. Alamdar et al. [29] introduced a new non-symmetric 
5R-SPM and developed a geometrical approach to ana-
lyze its configurations and singularities.

In this paper, a novel 2DOF SPM with symmetric 
structure and its variant Mechanisms are proposed. The 
paper is organized as follows: Section 2 gives the descrip-
tion of a SPM structure, analysis of its mobility, the mod-
els of forward kinematics and inverse kinematics are 
established, and the Jacobian matrix of the mechanism is 
obtained and verified. In Section 3, the workspace of the 
mechanism is obtained. The rotation characteristics of 
SMP are analyzed in Section 4. Section 5 describes vari-
ant mechanisms of the 2DOF SPM. Conclusions are pre-
sented in Section 6.

2 � Kinematics Analysis of the 2DOF SPM
2.1 � Mobility Analysis
The schematic diagram of the 2DOF SPM is shown in 
Figure  1, all the revolute axes intersect at one-point O, 
called the rotation center of the mechanism. The base 
is connected with the end effector by three spherical 
serial 3R sub-chains: B1B2B3, B4B5B6, and B7B8B9. There 
is a special spherical sub-chain consisting of link 9, link 
10, and component 11 and connected by two arc pris-
matic pairs, limiting the revolute axes OB2, OB5, and 
OB8 on a plane, which is defined as the mid-plane of the 
mechanism. And the spherical 3R sub-chains B7B8B9 and 
component 11 forming a symmetric double arc slider-
rocker mechanism aims at keeping the mid-plane always 
coplanar with the angular bisector of spherical angle 
∠B1B2B3 [30], ensuring the base and the end effector are 

symmetric concerning the mid-plane during the move-
ment of the mechanism.

The DOF of the parallel mechanism can be calculated 
by using the G-K formula:

where d is the order of a mechanism (for the spheri-
cal mechanism d =  3), n is the number of components 
including the base, g is the number of kinematic pairs, fi 
is the freedom of the ith kinematic pair. For this mecha-
nism n = 11, g = 14, and ∑fi = 14. Therefore, the degree 
of freedom of this mechanism is two.

2.2 � Inverse Kinematics of the SPM
2.2.1 � Establishment of the Coordinate Systems
As shown in Figure 2, a global coordinate system O-x0y0z0 
is located at the rotation center O with the x0-axis pass-
ing through point Q, the midpoint of arc link B1B2, the 
z0-axis is perpendicular to the plane where the arc link 
B1B2 lies on, and y0-axis is defined by right-hand rule. 
The parameter θij, where ij = 21, 32, 43, 54, 65, 61, 74, 
87, 81, represents the angle between the two planes that 
the two adjacent links lying on. Looking at the rotation 
center along the revolute axis, the positive direction is 
counterclockwise.

Due to the characteristics of the SPM that each revo-
lute axis intersects at the rotation center O, the param-
eters αi and dij equal zero, where ij = 21, 32, 43, 54, 65, 
61, 74, 87, 81. The ith local coordinate systems are also 
located at the rotation center O. The xi-axis along with 
each revolute axis, where x1 coincides with x9, x2 coin-
cides with x10, x3 coincides with x7, x5 coincides with x11, 
and x8 coincides with x12. The zi-axis is perpendicular to 
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Figure 1  Schematic diagram of the 2-DOF SPM
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the plane where the ith link is located and the yi-axis is 
defined by the right-hand rule.

Because this SPM has two DOFs, the configuration can 
be represented by two angles φ and γ, where φ represents 
the angle between the OP and x0-axis, and γ represents 
the angle between the mid-perpendicular plane of the 
end effector and the plane O-x0z0. Designate point P as 
the output reference point of the mechanism, and the 
driving parameters of the mechanism are θ21 and θ61.

In the inverse kinematics, the driving parameters θ21 
and θ61 can be solved when the configuration parameters 
φ and γ of the end effector are given.

2.2.2 � Description of the Configuration
Suppose each link moves on a spherical surface with a 
radius R, and the position of outputs reference point P 
can be described by angle φ and ω:

where ω is the angle between the plane OPQ and the 
plane O-x0z0, which also represents the angle between 
the projection of OP on the plane O-y0z0 and the positive 
direction of the z0-axis. The relationship between γ and 
ω can be derived from the spherical triangle PQM and 
MNQ. According to the characteristics of the spherical 
mechanism and the knowledge of spherical trigonometry 
[31], the relevant parameters are expressed in Figure 3 for 
clear observation.

(2)P =





x
y
z



 = R





cosϕ

sin ϕ sinω

sin ϕ cosω



,

The point M in Figure 3(a) is the intersection point of 
the arc MQ (intersecting line of the mid-perpendicular 
plane of the end effector and spherical surface) and arc 
MP (intersecting line of the plane O-x0z0 and spheri-
cal surface), and the point M’ in Figure 3(b) is the same 
point with M for convenient description. The point N is 
the midpoint of the arc PQ (intersecting line of the plane 
passing through the two lines OP and OQ and spherical 
surface), that is, the arc MN is the intersecting line of the 
midplane and spherical surface.

According to the spherical triangular sine theorem, 
from the spherical triangle M’NQ shown in Figure 3(b) it 
can be derived that:

Similarly, it is available in a spherical triangle PQM 
shown in Figure 3(a):

In Eqs. (3) and (4), ∠M=180°−γ, ∠M’=∠M/2, ∠m=φ, 
∠m’=∠m/2, ∠q=∠n, and ∠N=90°.

It can be derived from Eqs. (3) and (4) that:

2.2.3 � Solutions of Coordinates with Configuration 
Parameters

As shown in Figure 3, the circle where arc B2B5 is located 
in the large circle corresponding to the middle plane of 
the mechanism, so the equation of the circle where arc 

(3)
sin∠M′

sin∠m′
=

sin∠N

sin∠n
.

(4)
sin∠Q

sin∠q
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.
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ϕ
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Figure 2  Kinematic model and parameter representation of the 
2-DOF SPM
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Figure 3  Schematic of spherical triangle PQM (a) and MNQ (b)
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B2B5 is located in the base coordinate system O-x0y0z0, 
can be expressed as

The trajectory of point B2 in the global coordinate sys-
tem O-x0y0z0 is determined by a spherical surface and a 
plane. As shown in Figure 4, the radius of the spherical 
surface is OB1 and the center is O. The plane is vertical to 
OB1 and passing through the line B2B2’.

The trajectory equation is:

Therefore, the coordinate of B2 = [x2 y2 z2]T in the 
global coordinate system O-x0y0z0, can be obtained by 
Eqs. (6) and (7). And the coordinate of B5 = [x5 y5 z5]T 
in the global coordinate system O-x0y0z0, can be obtained 
similarly.

2.2.4 � Solutions of Coordinates with Driving Parameters
The coordinates of B2 and B5 can also be derived by D-H 
link parameters.

i−1
i T  is a forward transformation matrix [32] between 

the adjacent local ith and (i−1)th coordinate system, 
which is the coordinate transformation from ith link to 
(i−1)th link, it can be obtained by the following equation:

i
i−1

T  is an inverse transformation matrix between the 
adjacent local ith and (i−1)th coordinate system, which 
is the coordinate transformation from (i−1)th link to ith 
link, and is the transpose matrix of i−1

i T  . Then, it can be 
derived that:

(6)

{

x2 + y2 + z2 = R2,

(cosϕ − 1) · x + sin ϕ sinω · y+ sin ϕ cosω · z = 0.

(7)
{

x2 + y2 + z2 = R2,

cos
α1
2
· x − sin

α1
2
· y = R cosα2.

(8)
i−1
i T = Rot(z,αi)Trans(0, 0, ai)Trans(αij , 0, 0)Rot(x, θij).

The coordinates of revolute pairs B2 and B5 in the 
global coordinate system O-x0y0z0 can be obtained from 
Eqs. (8) and (9):

where, b55 =
[

R 0 0
]T are the coordinates of revolute 

pairs B2 and B5 in the local coordinate system O-x2y2z2 
respectively.

Derived from the coordinate of B2=[x2 y2 z2]T and Eq. 
(10):

Derived from the coordinate of B5=[x5 y5 z5]T and Eq. 
(11):

In Eqs. (12) and (13), z2 and z5 both have two solu-
tions (z2 < π/2, z2 > π/2, z5 < π/2 and z5 > π/2), which 
means one position corresponds to four sets of solu-
tions. The four initial configurations with different 
arrangements of the drive links are shown in Figure 5. 

(9)i
i−1T = i−1

i T−1 = i−1
i TT

.

(10)b20 = 1
0T · 21T · b22 =

[

x2 y2 z2
]T
,

(11)b50 = 6
0T · 56T · b55 =

[

x5 y5 z5
]T
,

(12)θ21= arcsin
z2

R sin α2
.

(13)θ61= arcsin
z5

R sin α6
.

B2

B1

Oα 2

B2'

Figure 4  Front view of link B1B2

Figure 5  Four initial configurations with different arrangements of 
the drive links
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Meanwhile, the initial configurations in Figure  5(a) 
were selected to analyze the kinematics characteristic 
of the spherical mechanism.

2.3 � Forward Kinematics of the SPM
Given the driving parameters θ21 and θ61, the solution 
of the configuration parameters φ and γ can be figured 
out, that is the forward kinematics of the spherical 
mechanism. And the normal vector of the mid-plane is 
obtained by Eqs. (10) and (11):

 where,

The equation of the mid-plane can be described as:

The midpoint of the fixed link Q = [R 0 0]T and point 
P  =  [x y z]T are symmetric with respect to the mid-
plane. The intersection point of the line PQ and the 
mid-plane is H = [xh yh zh]T.

Assuming that xh−R
r =

yh
s =

zh
t = k , the coordinate of 

the outputs reference point P can be obtained from the 
symmetrical characteristic of the mechanism:

It can be obtained by the spherical triangular cosine 
theorem from the spherical triangle M’NQ in Fig-
ure 3(b) that:

(14)b20 × b50=
[

r · i t · j s · k
]T
,

r = R
2
sin α6 sin θ61(sin

α1

2
cosα2 + cos

α1

2
sin α2 cos θ21)

− R
2
sin α2 sin θ21(sin

α1

2
cosα6 + cos

α1

2
sin α6 cos θ61),

s = R
2
sin α2 sin θ21(cos

α1

2
cosα6 − sin

α1

2
sin α6 cos θ61)

− R
2
sin α6 sin θ61(cos

α1

2
cosα2 + sin

α1

2
sin α2 cos θ21)

− R
2
sin α6 sin θ61(cos

α1

2
cosα2 + sin

α1

2
sin α2 cos θ21),

t = −R2(cosα6 sin α2 cos θ21 − cosα2 sin α6 cos θ61).

(15)r · x + s · y+ t · z = 0.

(16)







x = 2xh − R,
y = 2yh,
z = 2zh.

(17)
cos∠M′ = − cos∠N cos∠Q + sin∠N sin∠Q cos∠m′

.

According to Figure  3(a), the configuration param-
eters can be obtained by Eqs. (2), (16), and (17):

2.4 � Jacobian Matrix Analysis
By taking the derivative of Eq. (2) with respect to time, 
the following equation can be obtained:

From the symmetrical characteristic of the mechanism, 
we can know that:

Take the derivative each side of Eq. (20) with respect to 
time, the following equation can be obtained:

where ḃ20 =
[

ẋ2 ẏ2 ż2
]T , ḃ50 =

[

ẋ2 ẏ2 ż2
]T.

It can be derived by Eqs. (10), (11), and (19) that:

J in Eq. (22) is the inverse kinematics Jacobian matrix.

where

Di = R sin αi sin
α1
2
sin θi1, Ei = R sin αi sin

α1
2
cos θi1,

Fi = R sin αi cos θi1, (i = 2, 6, when i = 2 and 6, j = 2 
and 5 respectively).

(18)

{

ϕ = arccos
x
R ,

γ=180◦ − 2 arccos(sin(arctan
y
z ) cos(

1

2
arccos

x
R )).

(19)

Ṗ =





ẋ
ẏ
ż



 =





−R sin ϕ

R cosϕ sinω

R cosϕ cosω

0

R sin ϕ cosω

−R sin ϕ sinω





�

ϕ̇

ω̇

�

.

(20)
{

OB2 ·OP = b20 · P = R2 cos∠QOB2,

OB5 ·OP = b50 · P = R2 cos∠QOB5.

(21)

{

ḃ20 · P + b20 · Ṗ = R2 sin α2 sin
α1
2
sin θ21 · θ̇21,

ḃ50 · P + b50 · Ṗ = R2 sin α6 sin
α1
2
sin θ61 · θ̇61,

(22)
[

θ̇21 θ̇61
]T

= J
[

ϕ̇ ω̇
]T
.

(23)J =

[

e2/d2 f2/d2
e6/d6 f6/d6

]

,

di = Di(x − R)+ Eiy+ Fiz,

ei = −R(−xj sin ϕ + yj cosϕ sinω + zj cosϕ cosω),

fi = −R(yj sin ϕ cosω − zj sin ϕ sinω),
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2.5 � Verification of Kinematic Analysis
When two tiny values are given as inputs, the correctness 
of the Jacobian matrix and the forward kinematics are 
verified by comparing the numerical solution of Eqs. (22) 
and (23) and with the measurements of the 3D model 
[33].

Four sets of data under two general configurations 
are given, as shown in Table 1. Then, the correctness of 
the inverse kinematic model is verified in the same way, 
which means the correctness of the kinematics analysis 
of the 2DOF SPM.

3 � Workspace Analysis
Due to the interference of the mechanism, the reference 
point P of the end effector can’t reach every point on 
the spherical surface. As shown in Figure 6, suppose the 
width of each link of the mechanism is 8 mm, the effec-
tive radius is R = 200 mm, that is, OP = OQ = 200 mm, 
α1 = α4 = 60°, α2 = α3 = α5 = α6 = 40°, and α7 = α8 = 50°.

To avoid interference, considering the width of the 
links, assume that the angle between the rotation axes 
OB1 and OB3 and the angle between OB4 and OB6 is not 
less than 10°. The workspace of the mechanism in Fig-
ure 6 can be obtained according to the inverse kinematics 
and the interference condition. The specific limited con-
figuration and corresponding position parameters of the 
mechanism are shown in Table 2.

4 � Equivalent Rotation Characteristics 
of the Mechanism

4.1 � Equivalent Rotation Characteristics
The end effector of the 2DOF SPM can realize continu-
ous rotation around the axis that passes through the rota-
tion center and lies on the mid-plane during the moving 
process. Moreover, the 2DOF SPM also has the following 
motion properties: Given the initial position and the end 

position, the end link can realize the pose transformation 
through a rotation around a fixed axis, which is called the 
equivalent rotation of the mechanism.

As the simplified motion model shown in Figure 7(a), 
the end effector moves from position I to position II, 
and the mid-planes at the initial and final positions are 
s1 and s2, respectively. The symmetric points of Q about 
the mid-plane are P1 and P2, respectively. The line l is the 
intersection line of the two mid-planes, and the axis of 

Table 1  Verification of the Jacobian matrix

Institutional 
parameters of the 
initial configuration 
(°)

Tiny 
input θ21; 
θ61(°)

The theoretical 
value of 
Jacques 
φ, γ
(×10-3 °/s)

The value of 
the CAD model
∆φ, ∆γ (×10-3 
°/s)

θ21 = 14 0.001 3.4397 3.4417

θ61 = 23 0.002 − 0.3657 − 0.3505

φ = 59.0786 − 0.003 0.9701 0.8857

γ = − 4.7420 0.004 − 3.6240 − 3.6368

θ21 = 31 0.001 − 1.1911 − 1.2617

θ61 = 12 − 0.002 1.5686 1.6108

φ = 64.9472 − 0.003 1.4643 1.6035

γ = 9.2984 0.004 − 3.5059 − 3.5913

Figure 6  Workspace of the spherical mechanism

Table 2  Limited configuration parameters of the spherical 
mechanism

Limited 
configuration

φ (°) � (°) Configuration of the 
mechanism

1 49.8502 − 67.5085

2 49.8502 67.5085

3 95.8430 0

4 11.5519 0
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the equivalent rotation [34]. For a clear obversion, a plane 
s3 is set, which passes through line OP1 and is perpendic-
ular to line l, as shown in Figure 7(b). S is the intersection 
point of the line l and the plane s3. K is the intersection 
point of line QP1 and plane s1. J is the intersection point 
of line QP2 and plane s2.

4.2 � How to Realize the Equivalent Rotation
As shown in Figure 7(a), the two parameters φ1 and γ1 
of the initial configuration of the mechanism and the 
two parameters φ2 and γ2 of the final configuration are 
given. The coordinates of output reference point can be 
obtained by Eq. (2). The equation of axis l, which is the 
intersection line of the two mid-planes, can be obtained 
by Eq. (15). The equation of plane s3, which is passing 
through lines QP1 and QP2, can be obtained according 
to the structural characteristics. And the coordinates of 
the point S can be obtained by the equations of axis l 
and plane s3.

Then the rotated angle of the output reference point P 
can be derived that:

where SP1 = P1−S and SP2 = P2−S.
The direction vector l = [lx ly lz]T and the rotation 

angle θ of the end effector rotating around the axis l are 
already obtained, and the rotation matrix R(θ) can be 
expressed by:

where ξ = (1− cos θ).
The vector QP2 can be expressed as:

(24)θ = arccos

(

SP1 · SP2

|SP1| · |SP2|

)

,

(25)

R(θ) =





lxlxξ + cos θ lylxξ − lz sin θ lzlxξ + ly sin θ
lxlyξ + lz sin θ lylyξ + cos θ lzlyξ − lx sin θ
lxlzξ − ly sin θ lylzξ + lx sin θ lzlzξ + cos θ



,

The coordinates of point P2 can be obtained by Eq. 
(26), and the other parameters of the mechanism can 
be obtained by the inverse kinematics described in 
Section  2.2. Thereby, the driving parameters θ21 and 
θ61 of the rotation process can be obtained. It pro-
vides the basis for the motion planning of the spherical 
mechanism.

4.3 � Motion Planning of the Equivalent Rotation
As shown in Figure  2, suppose the effective radius is 
R = 200 mm, that is, OP = OQ = 200 mm, α1 = α4 = 60°, 
α2 = α3 = α5 = α6 = 40°, and α7 = α8 = 50°. The param-
eters of the initial position are φ1 = 75°, γ1 = − 20°, and 
the parameters of final position are φ2 =  70°, γ2 =  20°. 
The four configurations of the mechanism from the initial 
position to the final position are shown in Figure  8(a)–
(d), respectively. The detailed parameters of each config-
uration are listed in Table 3. 

5 � Variant Mechanisms of the 2DOF SPM
Based on the 3DOF planar sub-chain, a group of variant 
2DOF SPMs with the same characteristics are synthe-
sized, providing more potential possibilities for practical 
application.

In the middle of this mechanism, there are two arc pris-
matic pairs connecting links 9, 10, and 11, which func-
tion to keep the lines OB2, OB5, and OB8 on the same 
mid-plane. According to the mechanism theory, the 
3DOF planar sub-chain can restrict the revolute to the 
middle plane of the mechanism, ensuring that the relative 
motion between each motion pair is only planar. There-
fore, the 3DOF planar sub-chains are used to replace the 
spherical links to provide the same constraints. By this 
method, a set of 2DOF SPMs without arc prismatic pairs 
can be obtained.

(26)QP2 = R(θ)SP1 +QS.

P1

O S

Q

Ⅰ

Ⅱ

s3
P2

s2
s1

P1

K
S

Q

s3

P2

s2
s1

J

(a) (b)

l

Figure 7  Schematic diagram of the initial and final configuration (a) 
and front view of plane s3 (b)

Figure 8  Numerical example of the equivalent rotation
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There are seven different configurations of the 3DOF 
planar sub-chain can be obtained: [RRR], [RPR], [PRR], 
[RRP], [PPR], [PRP], [RPP], in which R represents revo-
lute pair and P represents prismatic pair [34]. Based on 
the 3DOF constrained planar sub-chain, seven kinds of 
equivalent 2DOF SPMs can be obtained, four of which 
are shown in Figure 9.

6 � Conclusions
A novel 2DOF Spherical Parallel Mechanism (SPM) 
is proposed. The SPM can realize continuous rotation 
around any line on the mid-plane which passes through 
the rotation center of the spherical mechanism, and the 
rotational axis can be fixed during the rotation process, 
which means any form of motion of the mechanism can 
be transformed into a rotation with a fixed axis.

The forward and inverse kinematics of the mecha-
nism are solved based on D-H parameters and ana-
lytical geometry. The inverse Jacobian matrix of the 
2DOF SPM is obtained by taking the derivative of the 
constraint equation, and its workspace is analyzed by 
considering the interference condition of the links. The 
correctness of the kinematics and motion planning of 
the mechanism is verified by the motion examples 
presented.

A group of variant 2DOF SPMs are constructed based 
on the different 3DOF planar sub-chain that can provide 
more possibilities for practical application.
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