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Lifetime and Aging Degradation Prognostics 
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Abstract 

Aging diagnosis of batteries is essential to ensure that the energy storage systems operate within a safe region. This 
paper proposes a novel cell to pack health and lifetime prognostics method based on the combination of transferred 
deep learning and Gaussian process regression. General health indicators are extracted from the partial discharge 
process. The sequential degradation model of the health indicator is developed based on a deep learning framework 
and is migrated for the battery pack degradation prediction. The future degraded capacities of both battery pack 
and each battery cell are probabilistically predicted to provide a comprehensive lifetime prognostic. Besides, only a 
few separate battery cells in the source domain and early data of battery packs in the target domain are needed for 
model construction. Experimental results show that the lifetime prediction errors are less than 25 cycles for the bat-
tery pack, even with only 50 cycles for model fine-tuning, which can save about 90% time for the aging experiment. 
Thus, it largely reduces the time and labor for battery pack investigation. The predicted capacity trends of the battery 
cells connected in the battery pack accurately reflect the actual degradation of each battery cell, which can reveal the 
weakest cell for maintenance in advance.
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1  Introduction
Lithium-ion batteries have been widely used as energy 
storage systems in electric areas, such as electrified trans-
portation, smart grids, and consumer electronics, due to 
high energy/power density and long life span [[1]]. How-
ever, as the electrochemical devices, lithium-ion batteries 
suffer from gradual degradation of capacity and incre-
ment of resistance, which are regarded as the aging of 
batteries [[2]]. The health status of the batteries largely 
determines the safety and reliability of the energy storage 
systems during operation [[3]]. Therefore, prognostics 
and health management (PHM) is essential for battery 

operation, where accurate health prognostic is the key 
to guide predictive maintenance and cascade utilization 
[[4]]. Predictive maintenance is a significant function in 
battery management system to diagnosis the potential 
dangerous in advance, which can ensure the safe opera-
tion and enlarge the lifetime. Battery health prognos-
tics usually refer to the estimation of the state of health 
(SOH) and the prediction of the remaining useful life 
(RUL). SOH is usually defined as the ratio of the present 
capacity to the nominal capacity or the present resistance 
to the resistance of a fresh battery cell. RUL is defined 
as the remaining cycles before the end of the service life 
(usually when the capacity defined SOH reaches 70% or 
80% [[5]]). SOH reflects the battery health status at the 
present cycle, while RUL reflects the future remaining 
service life of the battery until end of life (EOL). In recent 
years, the rapid development of materials improves the 
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energy density of batteries, which makes the battery have 
larger capacity [[6]]. So, it would take too much time and 
labor to do the aging experiment. SOH prognostics can 
be seen as state estimation with some measured param-
eters, while there is a greater challenge facing RUL pre-
diction due to the need to predict the degradation in 
the future. RUL prediction could not only guide cascade 
utilization but also cut down the time of battery design 
and development. Unlike a battery cell, the battery pack 
consists of many cells connected in series and/or parallel 
[[7]], which makes the RUL prediction more complicated. 
Besides, inconsistency is one of the most important fac-
tors that need to be considered [[8]]. This is why the RUL 
prediction for battery packs is much more difficult than 
the RUL prediction of the battery cell. The advanced 
machine learning-based technologies have been widely 
used in lithium-ion batteries production and manage-
ment [[9]]. This paper focuses on the issue of lifetime 
prognostics and degradation prediction for lithium-ion 
battery packs.

Generally, health prognostic and lifetime prediction 
for lithium-ion batteries can be divided into model-
based, data-driven, and hybrid methods [[1]]. One type 
of model-based method is based on empirical or semi-
empirical models of the degradation curve under specific 
aging conditions. Several factors are considered in the 
empirical expression, such as depth of discharge, state 
of charge, temperature, and charging/discharging rate, 
etc. [[10]]. Generally, the fitted expression is updated 
by a Kalman filter or particle filter with the measured 
parameters during operation [[11], [12]]. After fitting, 
the fitted expression is applied directly to other test bat-
teries for SOH estimation and RUL prediction accord-
ing to their aging conditions based on the interpolation 
method. Sometimes, the equivalent circuit model is con-
structed to identify certain parameters, such as capacity 
and resistance [[13]]. Then, an empirical model is used 
to model the degradation of these parameters. However, 
this method lacks generalization due to the requirement 
of specific battery types and aging conditions. Also, the 
internal chemical variations cannot be known. Another 
type of model-based method is based on the physics-
based aging models, where some physical changes are 
considered during operation [[14]]. Physics-based mod-
els can effectively capture the internal chemical reactions 
of the battery by modelling the main factors that con-
tribute to the degradation [[15]]. Many researchers argue 
that solid electrolyte interphase layer growth is the main 
factor that leads to the aging of the battery [[16]]. Other 
chemical reactions, including loss of lithium inventory 
[[17]], loss of active material [[18]], surface cracking 
[[19]], electrolyte oxidation at the cathode [[20]], were 
also considered and modelled to reflect the aging status 

of batteries. The health status can be estimated by iden-
tifying specific parameters and RUL can be predicted 
by obtaining the future simulation data to calculate the 
remaining cycles until the discharge capacity drops below 
the pre-defined threshold. However, the physics-based 
model is very difficult to build, more chemical considera-
tions cause and parameter changes are mostly approxi-
mated by empirical expressions, which may lack accuracy 
and generality.

Data-driven methods develop the mapping between 
inputs and outputs in the training process and then 
can be directly implemented for the health prognostics. 
Due to the large amount of data collected by intelli-
gent big data platforms, data-driven methods for PHM 
have shown promising progress and have developed 
rapidly recently [[21]]. One way to predict RUL is to 
extract health indicators (HIs) from experimental data, 
and then develop a prediction model between HIs and 
RUL [[22]]. Usually, a simple linear regression model 
can meet the requirements. This method can provide 
accurate RUL prediction results for one type of bat-
tery under specific aging conditions. However, a large 
amount of experimental data is required, and degrada-
tion pattern prediction is missing. In another method, 
the historical capacity data is split into two parts. 
One is the data before the current time and another 
contains the data after the current time, where a few 
parameters of the former cycles are regarded as inputs 
and the same parameters of the latter cycles are used 
as outputs. In this way, the historical capacities can 
be divided into inputs and outputs, and the sequen-
tial relationship can be obtained by training the data-
driven models [[23]]. Then, the future capacity can be 
predicted and RUL can then be obtained. The main 
drawback of this method is that no physical mean-
ing is included and the model diverges easily. Popular 
machine learning techniques include support regres-
sion machine, relevant regression machine, and gauss-
ian process regression (GPR), etc. [[24], [25]]. Recently, 
the deep learning method is also widely used in battery 
health prognostics [[26]]. Another obstacle is the diffi-
culty of measuring the capacity in real applications due 
to the incomplete discharge process. To solve this issue, 
researchers proposed HIs to estimate capacity first and 
then used estimated capacity for the regression training 
[[27]]. Various HIs, including measured and calculated, 
have been proposed in published papers and have been 
summarized in Ref. [[28]]. Among them, the incremen-
tal capacity (IC) analysis is regarded as a useful way of 
investigating battery degradation mechanisms [[29]]. 
The IC analysis transfers the voltage plateaus caused by 
the electrode phase transition into intuitive and identi-
fiable peaks on the IC curve [[30]]. Besides, the general 



Page 3 of 16Che et al. Chinese Journal of Mechanical Engineering            (2022) 35:4 	

HIs proposed in Refs. [[31], [32]] also show great physi-
cal coupling relationships with battery capacity. The 
future capacities are predicted by iterating the regres-
sion model until the capacity reaches the failure thresh-
old [[33]]. However, the lack of the entire lifetime 
information in the regression model can easily lead to 
poor predictions. Therefore, researchers used transfer 
learning (TL) to take advantage of the available entire 
lifetime data from other batteries [[34]]. The pre-model 
trained based on the entire lifetime data from other 
batteries is used as the initial model of the test bat-
tery, and some parameters are then fine-tuned by using 
some early data of the early cycles [[35]]. In this way, 
the model training time for the test battery is reduced 
while prediction accuracy is improved.

Hybrid methods are based on a combination of model-
based and data-driven methods or a combination of dif-
ferent data driven methods. For example, the model 
parameters (such as internal resistance) can be identi-
fied by the model-based method, and its future value 
can be predicted by using the data-driven method [[36]]. 
Besides, different machine learning/deep learning tech-
niques can be hybridized to obtain more accurate pre-
diction results [[37]]. The optimized combination of 
different methods largely determines the performance of 
prognostics.

In summary, conventional methods either use the his-
torical data for model training, which makes the pre-
diction to be divergent easily due to the lack on future 
knowledge, or transfer the capacity degradation model 
directly, which means other battery packs with similar 
degradation are needed, would be time and labor-con-
suming and also lack accuracy due to the inconsistencies 
which often evolve in different ways during degradations 
[[38]]. Also, the regression model of capacity degrada-
tion lacks physical meaning. The prediction of the future 
capacity distribution of battery cells in the battery pack 
is also meaningful, which can guide the maintenance in 
advance. Unfortunately, the above issues have not been 
considered in published works.

In this article, a deep learning method that combines 
transferred deep learning (TDL) and GPR is developed 
for battery pack health prognostics and future degrada-
tion prediction. The conventional capacity extrapolation 
method is reformulated as the future degradation predic-
tion based on physical meaningful HIs extracted from 
the daily partial voltage curves. Firstly, general HIs are 
extracted from partial discharge curve. Then, a usefulness 
evaluation strategy is used to assess the HIs. Thirdly, the 
capacity estimation models are built by GPR with a modi-
fied kernel, and the HIs degradation model is constructed 
by long short-term memory (LSTM) neural network. 
Next, the TDL is designed to transfer the information of 

battery cell to battery pack for lifetime prediction. Finally, 
the experimental data are used for the verification. The 
main advantages and contributions are summarized in 
the following areas.

(1)	 The knowledge from separate battery cells (SBCs) is 
transferred to realize the prediction of the battery 
pack, without the need of other battery packs that 
have similar degradation patterns.

(2)	 The probabilistic prediction of the entire capacity 
degradation of the battery pack based on extended 
HIs that can be generally extracted and used for 
model fine-tuning in real applications is firstly pro-
posed.

(3)	 The capacities of the connected battery cells (CBCs) 
are predicted to reveal the inconsistency evolu-
tion and capacity distribution in the aging pro-
cess, which can reveal the weakest cell clearly for 
advance maintenance.

(4)	 More than 85% of the time for the aging experiment 
can be saved by this method, which is very helpful 
for testing and investigation of newly generated bat-
tery packs that conventionally consume too much 
time and labor cost.

The remainder of this paper is organized as follows. 
Section  2 introduces the experimental data and HI 
extraction method. Then, Section 3 proposes the lifetime 
prognostic method. Next, experimental results are evalu-
ated in Section 4, and main conclusion is finally summa-
rized in Section 5.

2 � Experiment and HI Extraction
Generally, aging experiments are conducted through 
cyclic charging and discharging processes to accelerate 
battery aging, and the aging data for the verification of 
prognostics methods can be collected from the experi-
ments. The dataset and HI extraction method are intro-
duced in this section.

2.1 � Experimental Dataset
The aging experiments for battery cells and the battery 
pack are carried out. The aging process consists of con-
stant current charging and constant discharging with a 
rest between them. The battery is made of LiFePO4 (LFP) 
cathode and carbon anode; the nominal capacity is 100 
Ah. Seven SBCs are aged at different environmental tem-
peratures and current rates, and the test specifications 
are listed in Table 1. A battery pack with 16 CBCs of the 
same battery type connected in series is also used for the 
aging test. The voltage and temperature of each CBC are 
measured together with the pack voltage and current. The 
sampling interval is 10 s for SBC and 30 s for the battery 
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pack. The capacity degradation curves of each battery cell 
and the battery pack are shown in Figure 1. Different cells 
show different capacity fading patterns even under the 
same aging condition. Therefore, it is a challenging task 
to apply the capacity estimation strategy trained based on 
one battery data to other different battery cells, and it is 
more difficult to apply it to battery packs. Obviously, the 
SBCs are aged to different final capacities with different 
aging rates according to Table 1. The current rate is the 
ratio of the nominal capacity. For example, 1 C refer to 
100 A. In this paper, we use the data collected throughout 

the entire test instead of the data from fresh cell to 20% 
degradation (i.e., 80% remaining capacity).

2.2 � General HI Extraction
For data-driven health prognostics, the extraction of HIs 
is one significant step that determines the accuracy and 
reliability of prediction. In this section, the HIs extraction 
based on the experimental data is introduced. HIs those 
have physical meaning can tell the aging status more 
convincing. IC is one accepted method that reflects the 
electrode phase transition of the battery. Here the data 
of Cell#2 that has the longest lifetime are used for dem-
onstration. The IC curves of Cell#2 of whole cycles are 
shown in Figure 2(b). The IC curve is an effective way to 
convert the plateaus on the Q (charge amount)~V curve 
(shown in Figure 2(a)) into identifiable peaks [[39]]. It can 
be seen from Figure  2(b) that the main peak decreases 
gradually with aging cycles. Therefore, the peak value of 
the IC curve during the discharging process is selected 
as one HI. The IC is obtained by the ΔQ/ΔV calcula-
tion. Using the ΔQ sequence in another way by calculat-
ing the standard deviation, another general HI denoted 
as std(Q(V)) or stdQ can be extracted [[31]]. The ΔQ 
sequence is obtained by the 50 segments between the 
voltage range from 3.15 V to 3.3 V which is similar to 

Table 1  Specific information for the experimental data

Battery Current (C) Temperature 
(℃)

Capacity range (Ah) Lifetime 
(cycles)

Cell#1 0.5‒0.5 35 103.755‒85.215 646

Cell#2 0.5‒0.5 35 102.553‒77.524 810

Cell#3 0.5‒0.5 35 102.750‒71.433 744

Cell#4 1.0‒1.0 25 103.040‒70.954 495

Cell#5 0.5‒0.5 55 102.813‒71.457 409

Cell#6 0.5‒0.5 55 103.435‒72.680 389

Cell#7 1.0‒1.0 55 102.910‒70.784 314

Pack 0.5‒0.5 35 100.294‒77.031 415

Figure 1  Capacity degradation of the SBCs and battery pack.
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the voltage range of the IC peak. This ensures the online 
HI extraction using partial voltage curves. It can be seen 
from Figure 2(c) that the ΔQ sequence gets lower during 
aging, which makes the stdQ decrease according to the 
aging status. These two HIs are selected as the learning 
information in deep learning, which has practically phys-
ical correlations to aging status. It is worth mentioning 
that the capacity is calculated by ampere-hour counting 
during the HI extraction according to the experimental 
data. But in real application, for more accurate Q calcula-
tion, many advanced estimation methods can be adopted 
[[7], [40]]. The HIs for each CBC are extracted according 
to the voltage of CBC and the capacity of the battery pack 
to illustrate the cell inconsistencies. It worth noting that 
under real onboard use, the noise may affect the extrac-
tion. And various filtering methods can be used in pre-
processing to help extract the HIs effectively [[28]].

The extracted HIs of the SBCs and CBCs are shown 
in Figure 3, where the stdQ is shown in Figure 3(a) and 
the IC peak is shown in Figure  3(b). The correlation 
coefficients, including the Pearson correlation coeffi-
cient (PCC) and Spearman correlation coefficient (SCC) 
[[41]], are shown in Figure 3(c). PCC analysis is a proper 
way to evaluate the linear dependence, while SCC analy-
sis is better at monotone evaluation between HIs and 
capacities. The numerical results are listed in Appendix 
(Tables A1 and A2). The results show that both stdQ and 
IC peak are highly correlated to the capacity (all PCC and 
SCC are larger than 0.98). In addition, the HIs present 
different degradation patterns for CBCs, showing incon-
sistencies clearly.

3 � Methodology
The method for battery pack lifetime prognostics is 
proposed in this section. Specifically, GPR models are 
developed for the capacity prediction of the battery pack 
and the CBCs in Section  3.1. Then, TDL is proposed 

for future degradation curve prediction in Section  3.2. 
Finally, the prognostics framework is proposed in 
Section 3.3.

3.1 � Capacity Estimation Based on GPR
Data-driven capacity (or SOH) estimation generally 
includes HI extraction, model training, and model test-
ing. The general HI extraction process is introduced in the 
earlier section. For model training and testing, machine 
learning is widely used and has shown great estimation 
performance. Among the various machine learning algo-
rithms, GPR shows superiority because it is based on the 
Bayes optimization and probabilistic estimation [[28], 
[32]]. GPR has been widely used in battery pack state of 
charge and SOH estimation, where satisfactory results are 
obtained [[8], [42]]. Therefore, the GPR is adopted in this 
paper to construct the capacity estimation model. Gener-
ally, the relationship between input x and out y is given as 
follows by assuming the noise is additive, independent, and 
gaussian [[43]],

where ε is the white noise with a variance of σ 2
n  . f (x) is a 

latent function, which has a probability distribution:

where m(x) is the mean function, and k(x, x’) is the covar-
iance function. The expressions are shown as follows:

The kernel function is selected as follows:

(1)y = f (x)+ ε, ε ∼ N(0, σ 2
n ),

(2)f (x) ∼ GP(m(x), k(x, x′)),

(3)m(x) = E[f (x)],

(4)k(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))T].

Figure 2  a Q-V curve of Cell#2 of the whole lifetime, b IC curves of Cell#2 of the whole lifetime, c ΔQ sequence curves of Cell#2 of the whole 
lifetime
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where the covariance σ 2
f  represents the output amplitude 

the diagonal matrix, l is the characteristic length scale. 
The predicted mean value y∗ and the predicted covari-
ance value cov(y∗) are expressed as follows,

where the covariance σ 2
f  represents the output amplitude 

of the diagonal matrix, x and y represent the input matrix 
and output matrix, respectively. In is an n-dimensional 
unit matrix. Kf is the kernel matrix. Based on the proba-
bility theory, the 95% confidence interval (CI) can be 
obtained:

(5)k = σ 2
f exp(−

1

2
(x − x∗)l

−2
1 (x − x∗))+ xTx∗/l

2
2 ,

(6)y∗ = K f (x, x
∗)T[K f (x, x)+ σ 2

n In)]
−1y,

(7)
cov(y∗) = K f (x

∗, x∗)−

K f (x, x
∗)T[K f (x, x)+ σ 2

n In)]
−1K f (x, x

∗),

(8)CI = [y∗ − 1.96 ∗ cov(y∗), y∗ + 1.96 ∗ cov(y∗)].

Therefore, the predicted value can be obtained by y∗ 
with a probabilistic distribution interval.

To predict the future capacity of the battery pack, 
two GPR models are constructed. One for battery cells 
and the other for the battery pack. The capacities of the 
CBCs cannot be measured, so we do not have the meas-
ured data to develop the GPR model for CBCs capacity 
estimation. Therefore, the GPR model for CBCs capacity 
estimation is established based on the source batteries, 
a.k.e SBCs. The input and output of the GPR model for 
battery cells are the HIs and capacity at each cycle from 
the aging data of the source batteries, respectively. This 
can make the various aging conditions be considered in 
modeling. The GPR model for CBC capacity estimation 
is established using the entire lifetime data in this way. 
For the GPR model for battery pack capacity prediction, 
only the data of early cycles are obtained, but the actual 
capacity is known. To consider the impact of inconsist-
encies on battery pack capacity, the information of each 
CBC is included by adding the HIs into the input matrix. 
The output of the battery pack GPR model is the pack 
capacity. The data of early cycles are used to construct 

Figure 3  a Normalized stdQ values, b normalized IC peak values of the SBCs and CBCs, c correlation analysis results
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the battery pack GPR model, and the model is used for 
future capacity prediction using the predicted HIs from 
the following algorithms. For different uses, the specific 
relationship between the HIs and the pack capacity can 
be learned by using the specific early data.

3.2 � Regression Extrapolation Based on TDL
The GPR models developed are used for capacity esti-
mation, where HIs are needed as the inputs. Therefore, 
future unknown HIs are required for future capacity 
prediction. Conventional data-driven methods only use 
the historical information of the test battery for training 
the regression model. However, the lack of knowledge of 
the future trend usually leads to poor prediction perfor-
mance. For example, the early trend is linear while the 
latter is exponential. TDL is an effective tool to improve 
the prediction accuracy of the task in the target domain 
by transferring and fine-tuning the known information 
from the source domain [[44]]. In this paper, TDL is used 
to transfer the pre-trained sequential degradation model 
of HIs to the test battery and battery pack.

The sequential relation of the HI is represented by 
m-dimension input and n-dimension output, which are,

where m is chosen as 5 while n is 1 in this paper. Then, 
the relationship between inputs and outputs is modeled 
by the LSTM regression model. The network is shown 
in Figure, where an input layer, a LSTM hidden layer, a 
fully connected layer, and an output layer are included. 
The main advantage of LSTM chose here is the ability 
to avoid the gradient vanishing and exploding problems 
by controlling information flow. And it shows priority in 
battery health prognostic [[34], [45]]. The fully connected 
layers are designed to output the regression layers and be 
used as fine-tuning layers. The four gates of LSTM are 
calculated as [[46]]:

Forget gate:

Input gate:

Update:

Output gate:

(9)x = [HIk−m,HIk−m+1, . . . ,HIk−1,HIk ],

(10)y = [HIk+1,HIk+2, · · · ,HIk+n−1,HIk+n],

(11)f (t) = σ(Wfxx(t)+Wfhh(t − 1)+ bf ),

(12)i(t) = σ(Wixx(t)+Wihh(t − 1)+ bi),

(13)φ(t) = tanh(Wcxx(t)+Wchh(t − 1)+ bc),

(14)C(t) = f (t)⊙ C(t − 1)+ i(t)⊙ φ(t),

where W and b are the weights and biases, σ and tanh 
are the sigmoid and tanh activate function. h(t) and x(t) 
are the flowing and input information respectively; f(t) is 
the remaining information; i(t) and φ(t) are the candidate 
information; C(t) is the cell state while o(t) is the output 
information. The detailed structure of the four gates in 
the LSTM is shown in Figure  4. The expression of the 
fully connected layer is,

where relu is the linear unite activation. Finally, the out-
put HIk+1 can be obtained by the output layer,

In order to avoid overfitting, the dropout (0.05) is con-
sidered [[45]]. The dropout is an effective way to solve the 
overfitting problem by dropping some units during the 
information transmission process, as illustrated in Fig-
ure 4. Other parameters of LSTM are set as follows: the 
time step is 3, the number of units of the LSTM layer is 
15, and the input sequence is 5. During model training, 
the epoch is 300 and learning rate is 0.0008.

TDL has a strong ability to improve prediction perfor-
mance by adapting the existed models. As for the trans-
fer strategy in this paper, the HI degradation model is 
trained based on the SBCs in the source domain and then 
fine-tuned using early data of battery pack for each CBC. 
Specifically, the input layer and LSTM layer are freezed 
while the fully connected layer and regression output 
layer are fine-tuned, which means the w and b of the last 
two layers are adjustable.

(15)o(t) = σ(Woxx(t)+Wohh(t − 1)+ bo),

(16)h(t) = o(t)⊙ tanh(C(t)),

(17)yd(t) = relu(Wdh(t)+ bd),

(18)y(t) = Woutyd(t)+ bout .

Figure 4  Network for TDL, and the structure of a LSTM cell
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3.3 � Lifetime Prognostic for Battery Pack
The capacity estimation model and HIs prediction model 
have been established in the above section. Then the 
combination of them is constructed to predict the life-
time of battery packs in this section. The process of the 
proposed battery pack lifetime prognostics is shown in 
Figure 5. The solid line indicates the data flow; the dot-
ted line is the model migration path; while the dash-dot-
ted line is the model utilization path. The source domain 
contains the available data of the SBCs over the entire 
lifespan, while the target domain contains the early infor-
mation of the battery pack.

For the base model development, general HIs are firstly 
extracted from the partial discharging process and then 
evaluated by correlation analysis and estimated errors of 
battery capacities. This process can assess whether the 
HIs are suitable for battery pack lifetime prognostics. 
Finally, two models, including the cell capacity estimation 
model and HI degradation model, are constructed based 
on the data of batteries in the source domain by GPR and 
LSTM, respectively.

For the battery pack lifetime prognostics in the tar-
get domain, the same HIs are extracted based on the 

measured voltage of each CBC and pack capacity. Then, 
the base HI degradation model trained in the source 
domain is migrated and fine-tuned using the newly 
extracted HIs and known capacities to adapt the deg-
radation pattern for each CBC in the target domain. 
Meanwhile, the battery pack capacity estimation model 
is constructed using GPR. The information (HIs) of 
each CBC is used as input while pack capacity is set as 
output, which considers the influence of inconsistency 
on the capacity of the battery pack. Finally, the pack 
future degradation is predicted by combining the pack 
capacity estimation model and the fine-tuned HI deg-
radation model, while the degradation of each CBC is 
predicted by combining the SBC capacity model and 
the fine-tuned HI degradation model. The future HIs 
are firstly predicted by extrapolating the HI degrada-
tion model and then the future capacities are predicted 
using the corresponding capacity estimation model.

It can be seen from the prognostic process that both 
the future capacity of the battery pack and the future 
capacity evolution of the CBCs are predicted by the 
proposed method. Therefore, more comprehensive 
prognostics are obtained.

Figure 5  Battery pack lifetime prognostic process
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4 � Results and Discussion
In this section, the results of the battery pack lifetime 
prognostics and degradation prediction are evaluated 
based on the experimental data. Firstly, the capacity 
estimation model is evaluated to verify the feasibility of 
future capacity prediction based on the predicted HIs. 
Then, the lifetime prediction of the battery pack, as well 
as the future capacity distribution of the CBCs are pro-
vided and discussed.

4.1 � Capacity Estimation
Because the lifetime is directly reflected by future capaci-
ties, the capacity estimation model is significant and 
should be evaluated. Both the cell model and the pack 

model for capacity estimation are discussed in this 
section.

The cell capacity model is used for CBCs capacity 
prediction by using the first half of the data for model 
training and the rest for testing, and the results are 
shown in Figure 6 (the symbols on the error curve are 
drawn every a few points). Figure 6(a) and Figure 6(b) 
shown the capacity estimation results using stdQ as 
HI of the battery with maximum and minimum error 
respectively, i.e., cell#4 and cell#1. Figure 6(c) and Fig-
ure  6(d) are the results that have the maximum and 
minimum error using IC peak as HI, i.e., cell#4 and 
cell#6. The goal of using a single HI for capacity esti-
mation is to evaluate the performance of that HI. The 
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Figure 6  Capacity estimation results for the battery cells in the source domain: a, b Estimation results of the cell with the largest/smallest error 
using stdQ for HI; c, d Estimation results of the cell with the largest/smallest error using IC peak for HI
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95% CIs are all narrow, which means the estimations 
are reliable. Besides, the statistical results of both two 
HIs for inputs and single HI for inputs for all the seven 
batteries are shown in Figure 7(a). The results illustrate 
that the capacity can be accurately estimated by the HI. 
The combination of two HIs can compensate for the 
disadvantage of a single HI so that the distribution of 
the errors is narrower. Overall, both the mean absolute 
error (MAE) and root mean square error (RMSE) is less 
than 1.2%, which means they have great correlations 
with capacity and can be used in capacity estimation.

As shown in Figure 5, the model for capacity estima-
tion of the CBCs is trained based on the source batter-
ies. It means that the model is trained based on other 

batteries that are different from the battery in the target 
domain. Therefore, it is necessary to verify the capac-
ity estimation performance in this condition. The GPR 
model is constructed using the data from one battery, 
and then the capacity estimations are validated using 
the data from the other batteries. Figure 7(b) shows the 
statistical results of the MAE and RMSE when using 
this strategy for verification. The x-axis is the SBC for 
model training. Most errors are less than 3%, indicat-
ing the model can be migrated for capacity estimation 
of different batteries, which means the CBC capacity 
prediction strategy is effective.

Then, the capacity estimation results for the battery 
pack using two HIs are shown in Figure  8. Specifically, 
Figure  8(a) shows the MAE and RMSE for the model 
training and testing, where the proportion for training 
is set from 0.02 to 0.98 with a 0.02 interval. The results 
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show that the errors fluctuate in the first 0.4 propor-
tion, and then decrease more monotonously in the rest. 
The reason for that may be the fluctuation of the capac-
ity curve in the early cycles. Figure 8(b) shows the results 
when 0.2 and 0.4 proportions of data are used for model 
training. It shows that although the two have similar sta-
tistic errors, the 95% CI of 0.4 is narrower than that of 
0.2. Therefore, the prediction results are more reliable. 
Overall, the battery pack capacity estimation results are 
satisfactory where the inconsistency is considered. The 
capacity estimation models are used for lifetime predic-
tion in the following sections.

4.2 � Lifetime Prognostic
The capacity estimation results shown in the former sec-
tion illustrate that the future capacity can be predicted 
by the trained model if the HIs are available for future 
cycles, which can be realized by extrapolating the HI 
degradation model. The future degradation is predicted 
in this section by the combination of the TDL-based HI 
prediction and GPR-based capacity prediction. Specifi-
cally, different proportions of data are used for model 
fine-tuning and the corresponding battery pack lifetime 
prognostics are given. It should be noted that there is 
not a specified threshold value for the end of life. On the 
contrary, we use the data until the last cycle. Besides, the 
lifetime prediction mainly focuses on the future trend 
instead of local fluctuation, and the fluctuation will also 
influence the performance of the extrapolation process. 
Therefore, the capacity and HIs are smoothed firstly in 
the lifetime prognostics process, where the moving aver-
age filter is adapted.

Firstly, the superiority of the proposed TDL+GPR 
based lifetime prognostics method is demonstrated by 
comparing it to the conventional method that only uses 
the available historical data for model training. The con-
ventional method is demonstrated by using the former 
data for model training and the latter data for prediction. 
For the sake of fairness, the data for fine-tuning of the 
proposed method and the training of the conventional 
method are both set to 200 cycles. The results are shown 
in Figure 9(a). The threshold is drawn by the real capac-
ity of the last cycle. It shows that when the data of the 
first 200 cycles of the battery pack are available for model 
fine-tuning, the future capacity prediction can fit the real 
value with a narrow confidence interval. The predicted 
RUL is 212 cycles now, which is just 3 cycles less than the 
real RUL. And the 95% CI is [391 449], which means the 
prediction results are reliable. However, the results pre-
dicted by the conventional self-training-based method 
show poor performance. The predicted value largely 
deviates from the real value and even has an obviously 
different degradation pattern from the real capacity. The 

Figure 9  a Lifetime prediction results based on the proposed 
method and conventional method when the data of first 200 cycles is 
available; lifetime prediction results with data of the first, b 100/ c 300 
cycles is used for fine-tuning
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reason is that the TDL can transfer the characteristic of 
the future degradation to the testing battery pack using 
the proposed method, while the conventional method 
cannot achieve. Therefore, the proposed method shows 
great improvement for battery pack lifetime prognostics.

Then, the data of different cycles are employed for 
the model fine-tuning to evaluate the TDL+GPR based 
battery pack lifetime prognostics method. The numeri-
cal results are listed in Table  2. The positive value 
means the predicted value is larger than the real value, 
and vice versa. The results show that the prediction 
became more accurate when more data is available for 
model fine-tuning before 200 cycles. But after that, the 
predicted errors remain small with fluctuations. This 
means the model is well-tuned. And it also proves that 
the proposed method can obtain accurate prediction 
based on only a few early data. The model can be accu-
rate and reliable enough with less than 50% data; and 
even with about 10% data for fine-tuning, a satisfac-
tory prediction is obtained. When only the data of the 
first 50 cycles are used, the predicted value is 23 cycles 
less than the real value, which means the error is about 
6.3%. This means a satisfactory prediction is obtained. 
Figure 9(b) and Figure 9(c) show the results of the pre-
diction when the cycles for fine-tuning are 100 and 300, 
respectively. It is shown in Figure 9(b) that although the 
predicted is only 11 cycles less than the real value, the 
predicted future capacities show an obvious difference 
from the real capacity, and the 95% is very large. This 
means an accurate prediction could also be obtained, 
but the reliability of the prediction is not so good. This 
is because the model is more depended on the former 
reference model, and more prediction steps would 
also produce bigger uncertainty. However, the situa-
tion shows significant improvement in Figure 9(c). The 
predicted capacities and the real values are almost the 
same with a quite narrow confidence interval. The pre-
dicted error is 4 cycles and the 95% confidence inter-
val is [409 419], which is an interval of 10 cycles. The 
confidence interval is much narrower than that of 

Figure  9(a), indicating that the predictions are more 
reliable even though the accuracy does not furtherly 
improve after 200 cycles. Therefore, the results indicate 
that the main error corrections are achieved before 200 
cycles; and although the final predictions are all close 
to the real lifetime after 200 cycles, the model is still 
getting more and more reliable, and the predictions 
are more convinced. Overall, the prediction of battery 
pack life is improved compared to conventional meth-
ods, with less than 50 percent of the data guaranteeing 
sufficient accuracy and only 50 cycles guaranteeing an 
acceptable prediction.

Another advantage of the proposed method is that 
it can also predict the future capacities of the CBCs, 
which can show the degradation evolution and capac-
ity distribution clearly. This is significant since it can 
provide key information for the maintenance of the 
weakest cell in advance. Therefore, the prediction of 
the future capacity distribution of the CBCs is finally 
provided and discussed. Figure  10(a) – Figure  10(c) 
show the capacity predictions of CBCs where the data 
for fine-tuning is respective 150 cycles, 200 cycles, and 
250 cycles respectively. The solid lines demonstrate the 
predicted results based on the predicted HIs while the 
symbols are the results estimated by the real HIs. The 
capacities are predicted based on the GPR cell capac-
ity estimation model trained based on the SBCs in the 
source domain. It shows in Figure  10(a) that the pre-
dicted capacities have a similar degradation trend to 
that estimated by the real HIs, when only the data of 
the early 150 cycles is available for fine-tuning of the 
HI degradation model. However, some battery cells 
show faster degradation than the real situations, which 
still shows some obvious predicted errors. The results 
in Figure  10(b) show that the predicted capacities are 
closer to that estimated based on the real HIs, and the 
predicted capacities in Figure  10(c) almost cover that 
estimated by the real HIs. It illustrates that the future 
capacity degradation of each connected battery can be 
well predicted by this strategy; and when about 50% of 
data are used for fine-tuning, the future capacity pre-
dictions of CBCs are almost cover the real degrada-
tion. It can demonstrate the degradation of each CBC 
accurately and clearly, which can help manage the 
weak cell early. Table  3 lists the mean MAE (mMAE) 
and the mean RMSE (mRMSE) of the 16 batteries when 
using the predicted HIs for future capacity prediction 
compared with the results estimated by real HIs. The 
standard deviation of the mMAE (std_mMAE) and 
mRMSE (std_mRMSE) are also given to see the adap-
tation among different cells. The results show that 
the predicted capacities have small errors according 
to the estimated capacities based on the real HIs. The 

Table 2  Lifetime prognostic errors for the battery pack

Cycles for model 
fine-tuning

Predicted RUL Real RUL Predicted errors

50 388 365 −23

100 304 315 11

150 257 265 8

200 212 215 3

250 167 165 −2

300 119 115 −4

350 68 65 −3
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std_mMAE and std_mRMSE are quite small, which 
suggests the predicted model is suitable for all the con-
nected batteries. It demonstrates that even the data of 
early 100 cycles are available, the mMAE is 0.665% and 

mRMSE is 1.054%, which can guarantee satisfactory 
accuracy; the std_mMAE and std_mRMSE are 0.307 
and 0.567 respectively, which means the predictions 

Figure 10  Future capacity distribution prediction results of the battery cells with data of the first: a 150/, b 200/, c 250 cycles is used for fine-tuning
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of all the 16 CBCs are accurate enough. And when the 
data of the first 250 cycles are available, the mMAE and 
mRMSE reduce to 0.146% and 0.152% respectively; the 
std_mMAE and std_mRMSE also reduce to less than 
0.1. This means the predictions now are accurate and 
reliable, which demonstrate the degradation of latter 
life can be predicted precisely using the early data. It is 
significant for PHM to predict the future capacity deg-
radation to manage the weakest batteries in advance, 
and the method proposed in this paper provides a 
promising technique.

5 � Conclusions
Health and lifetime prognostics of series-connected bat-
tery packs are essential for health management. Differ-
ent working conditions and internal chemical reactions 
lead to various aging patterns, and the inconsistency 
largely influences the degradation of the battery packs. 
This paper proposes a novel method for battery pack 
lifetime prediction by the synergy of TDL and GPR. 
HIs are extracted and proved to have high correlations 
with capacities for both SBS and battery packs. TDL is 
designed for future HIs prediction while GPR uses the 
predicted HIs to estimate the future capacities. The pro-
posed method provides not only the future degradation 
pattern of the battery pack but also the lifetime distribu-
tion of the CBCs with probabilistic prognostics. The gen-
eral HIs can be used for battery cell capacity estimation 
under different work conditions, and consider the incon-
sistency for the capacity estimation of battery packs. An 
experiment data set is used to verify the methods. The 
results show that the MAE and RMSE of the SBC capac-
ity estimation models trained by GPR and the extracted 
HIs are less than 1.2% for self-estimation and less than 4% 
for the estimation of other batteries. The MAE and RMSE 
of the battery pack capacity estimation model are less 
than 3.5%, even only a little data is used for model train-
ing. The lifetime prognostics results show the predicted 
errors of the lifetime are less than 25 cycles only with 50 
cycles for model fine-tuning, and the errors are reduced 

to less than 5 cycles when 200 cycles are available. The 
future capacity distribution of the CBCs follows the real 
trend well, which clearly illustrates the future weakest 
cell. Future work will focus on the battery packs with dif-
ferent electrochemical systems under various working 
conditions. The aim is to achieve a fast lifetime investiga-
tion for all kinds of batteries with a general method.

Appendix
See Tables A1 and A2.

Table 3  Lifetime prognostic errors for the CBCs

Cycles for 
model fine-
tuning

mMAE (%) std_mMAE mRMSE (%) std_mRMSE

100 0.665 0.307 1.054 0.567

150 0.436 0.280 0.624 0.452

200 0.293 0.090 0.306 0.145

250 0.146 0.012 0.152 0.015

Table A1  Numerical results of the correlation coefficients for 
SBCs

Battery stdQ IC peak

PCC SCC PCC SCC

SBC#1 0.98990 0.99951 0.98990 0.99918

SBC#2 0.99946 0.99998 0.99946 0.99908

SBC#3 0.99947 0.99999 0.99947 0.99947

SBC#4 0.99771 0.99998 0.99771 0.99793

SBC#5 0.99999 0.99999 0.99999 0.99999

SBC#6 0.99998 0.99999 0.99998 0.99999

SBC#7 0.99149 0.99998 0.99149 0.99990

Table A2  Numerical results of the correlation coefficients for the 
battery pack

Battery stdQ IC peak

PCC SCC PCC SCC

CBC#1 0.99848 0.99960 0.98638 0.99807

CBC#2 0.99854 0.99955 0.99113 0.99747

CBC#3 0.99936 0.99941 0.99676 0.99698

CBC#4 0.99932 0.99951 0.99696 0.99704

CBC#5 0.99967 0.99958 0.99758 0.99811

CBC#6 0.99912 0.99962 0.99699 0.99844

CBC#7 0.99876 0.99951 0.99179 0.99824

CBC#8 0.99751 0.99965 0.99426 0.99838

CBC#9 0.99949 0.99963 0.99754 0.99851

CBC#10 0.99862 0.99956 0.99643 0.99811

CBC#11 0.99918 0.99932 0.99657 0.99754

CBC#12 0.99936 0.99956 0.99640 0.99770

CBC#13 0.99820 0.99959 0.99304 0.99842

CBC#14 0.99731 0.99956 0.98801 0.99818

CBC#15 0.99827 0.99961 0.98529 0.99792

CBC#16 0.99837 0.99962 0.99453 0.99833
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