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Energy-Optimal Braking Control Using 
a Double-Layer Scheme for Trajectory Planning 
and Tracking of Connected Electric Vehicles
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Abstract 

Most researches focus on the regenerative braking system design in vehicle components control and braking torque 
distribution, few combine the connected vehicle technologies into braking velocity planning. If the braking intention 
is accessed by the vehicle-to-everything communication, the electric vehicles (EVs) could plan the braking velocity for 
recovering more vehicle kinetic energy. Therefore, this paper presents an energy-optimal braking strategy (EOBS) to 
improve the energy efficiency of EVs with the consideration of shared braking intention. First, a double-layer control 
scheme is formulated. In the upper-layer, an energy-optimal braking problem with accessed braking intention is 
formulated and solved by the distance-based dynamic programming algorithm, which could derive the energy-
optimal braking trajectory. In the lower-layer, the nonlinear time-varying vehicle longitudinal dynamics is transformed 
to the linear time-varying system, then an efficient model predictive controller is designed and solved by quadratic 
programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and 
safety. Several simulations are conducted by jointing MATLAB and CarSim, the results demonstrated the proposed 
EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy. 
Finally, the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration, 
battery charging power, and motor efficiency, which could be a guide to real-time control.

Keywords: Connected electric vehicles, Energy optimization, Velocity planning, Regenerative braking, Dynamic 
programming, Model predictive control
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1 Introduction
Increasingly stringent fuel economy and emission stand-
ards in recent years promote the development of electric 
vehicles (EVs) [1]. However, the driving range of EVs is 
still too short compared with the internal combustion 
engine vehicle, because the battery energy density is 
insufficient. The short driving range is the main obstacle 
for the wide diffusion of EVs [2]. To extend the driving 
range, one of the popular ways is increasing the battery 
capacity, however, the battery size and vehicle price are 
increased simultaneously [3]. Recycling vehicle kinetic 

energy in the braking process is another prominent 
approach to extend the driving range, which is called 
regenerative braking in some literature [4].

Regenerative braking is the prior choice in some traf-
fic conditions for EVs, e.g., approaching an intersec-
tion with the red signal, following the slowed preceding 
vehicle, and reaching a destination, because the EVs 
can transfer vehicle kinetic energy to electric energy by 
regenerative braking while without additional battery 
energy consumption. Since approximately 30%‒50% of 
driving energy can be recycled in urban traffic [5], several 
studies have investigated regenerative braking in recent 
decades. Some studies tried to optimize the powertrain 
configuration and vehicle components for increasing 
regeneration energy. Hellgren et al. [6] demonstrated that 
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the distributed-driven configuration of EVs has superior 
energy recycle potential than a central driven. Joy et  al. 
[7] presented an integrated power circuit and electronic 
commutator control strategy to improve the motor gen-
erating energy of EVs. Kiddee et al. [8] designed a hybrid 
energy storage system, which uses the super-capacitor 
and lithium-ion battery to enhance the harvesting of 
braking energy. Zhang et  al. [9] proposed an electrical-
hydraulic integrated brake configuration based on the 
electronic stability program to achieve an efficient and 
safe braking system.

Another approach to improve regeneration energy is 
the regenerative braking strategy (RBS) design. The con-
ventional RBS focus on braking force distribution of each 
wheel (axle), which cooperating with the motor brak-
ing and friction braking force to improve regeneration 
energy, while ensuring braking safety, stability, and com-
fort [10]. Sun et  al. [11] integrated the braking control 
strategy with the objective of high braking stability and 
regeneration energy, which including three braking force 
operating modes. Xu et al. [12] presented two regenera-
tive braking force optimization controllers to promote 
regeneration energy, it considering motor efficiency to 
distribute the friction and motor braking torque of the 
front and rear wheels. Li et al. [13] proposed a compos-
ite RBS to optimize regenerative and plugging braking 
simultaneously with the driver’s intention recognition. 
Lian et  al. [14] designed an optimal braking force dis-
tribution strategy, while uses a safety distance model to 
avoid collision. In addition, the rule-based algorithm [9], 
PID algorithm [15], sliding mode control [16], fuzzy logic 
control [17], design of experiment method [11], model 
predictive control (MPC) [12], and dynamic program-
ming (DP) algorithm [18] were adopted to refine the RBS.

Recently, the emerging of connected vehicle technolo-
gies, i.e., vehicle-to-everything (V2X) communication, 
provides possibilities to further improve energy efficiency 
and reduce emission [19]. The traffic, road, and vehicle 
information can be accessed by V2X, which is used to 
plan the energy-optimal velocity, i.e., the surrounding 
vehicle states [20], road slope [21], road curvature [22], 
and traffic signal phase and timing [23]. However, most 
researches focus on the RBS design in vehicle compo-
nents control and braking torque distribution, few com-
bine the connected vehicle technologies into braking 
velocity planning. If the braking intention is accessed by 
the V2X (i.e., braking distance and terminal velocity), the 
EVs could plan the braking velocity for recovering more 
energy.

Therefore, this paper proposes an energy-optimal 
braking strategy (EOBS), where the key is using shared 
braking intention to planning energy-optimal braking 

trajectory. The major contributions of this paper are 
threefold. First, a double layer control scheme is pro-
posed: in the upper-layer, the energy-optimal braking 
trajectory is planned by the distance-based DP for fast 
computation. Second, to follow the optimal trajectory, 
the lower-layer designs a tracking controller using the 
linear time-varying MPC (LTV-MPC), to minimize the 
trajectory tracking errors while ensuring braking comfort 
and safety. Third, the mechanism of energy-optimal brak-
ing is derived. The energy-optimal braking trajectory is 
consists of multiple phases, which can be converted to a 
rule-based braking strategy.

The remainder of this paper is organized as follows. 
Section  2 introduces the EVs model and regenerative 
braking strategy. Section 3 formulates the energy-optimal 
braking problem and double-layer EOBS. Section 4 veri-
fies the performance of the proposed EOBS, and inves-
tigates the energy-optimal braking mechanism. Finally, 
conclusions are presented in Section 5.

2  Vehicle Model and Regenerative Braking 
Strategy

2.1  Vehicle Model
This paper optimizes the braking velocity of four-wheel-
independent-driven electric vehicles, which is powered 
by four in-wheel motors (IWM).

2.1.1  Vehicle Dynamics
This paper focuses on the energy-optimal braking con-
trol problem in the context of daily driving on a straight 
and high adhesion road. Therefore, only the longitudinal 
dynamics is modeled, as shown in Eq. (1):

where m is the vehicle mass, δ is the vehicle rotational 
inertia coefficient, g is the acceleration of gravity, θ is the 
road slope, f is the rolling resistance coefficient, CD is the 
aerodynamic drag coefficient, Ar is the frontal area, and ρ 
is the air density. x =  [d v]T is the states variable, d is the 
distance, v is the velocity. u = F is the control variable, F is 
the vehicle force, positive for traction force and negative 
for braking force.

In the traction process, the vehicle force is supplied by 
IWM, i.e., F = ∑Fm. In the braking process, the vehicle 
force including motor force Fm and friction braking force 
Ff, i.e., F = ∑Fm + ∑Ff. In this paper, the dynamics of the 
motor is not mainly considered, so the motor response 
model is simplified by using first-order lag relation

(1)ẋ = f (x, u) =

[

0 1

0 −
0.5CDArρv

2+mgf cos θ+mg sin θ
δmv

]

x +

[

0
1
δm

]

u,

(2)τmḞm + Fm = Fmd ,
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where Fmd is the desired motor force, which is derived by 
regenerative braking strategy. τm is the motor time con-
stant coefficient.

The friction braking force is generated by a hydraulic 
brake system (HBS). We also use the first-order lag rela-
tion to represent the HBS response, i.e.,

where pw is the brake wheel cylinder pressure, τh is the 
HBS time constant coefficient. pwd is the desired brake 
wheel cylinder pressure, which is calculated by Eq. (4):

where κ is the conversion coefficient of wheel cylinder 
pressure, rw is the radius of the wheel.

2.1.2  Energy Consumption
The power of motor is calculated by Eq. (5)

where Pm is the instantaneous motor power, positive for 
propulsion power and negative for generation power. n is 
the motor rotational speed.

This paper ignores the energy losses in electric wires 
and considers the accessory power Pa. Then the battery 
power Pb is

where Pa is the power consumption by the vehicle acces-
sories, e.g., vehicle headlight, air conditioning, assisted 
motor of the steering system, etc. ηb is the battery effi-
ciency, sign(⋅) is the signum function, ηm is the motor 
efficiency which is determined by the motor torque and 
speed as shown in Figure 1.

The battery is modeled as a simple equivalent circuit 
[24], which charging current Ib is expressed as Eq. (7)

where E is the open-circuit voltage, and Ro is the internal 
resistance. The battery state of charge (SOC) can be cal-
culated by Eq. (8)

where SOC0 is the battery initial SOC, Cb is the battery 
capacity.

(3)τhṗw + pw = pwd ,

(4)pwd = Ff rwκ ,

(5)Pm =
Fmrwn

9.55
,

(6)Pb =
∑

Pmη
−sign(Pm)
m η

−sign(Pm)
b + Paη

−1
b ,

(7)Ib =
E−

√

E2−4RoPb

2Ro
,

(8)SOC = SOC0 +

∫

Ibdt

3600Cb
,

2.2  Regenerative Braking Strategy
The RBS including twofold: braking force distribution 
on the front and rear axles, motor and friction brak-
ing force distribution on each wheel. The distributed 
braking force on the front and rear axles affect braking 
stability, then we use ‘ideal distribution strategy’ to pre-
vent wheel locking [25]

where Fbf and Fbr are the braking force on the front and 
rear axle, respectively. β is the ideal distribution ratio, 
which is proportional to vehicle axle normal forces

where Lb is the distance from the rear axle to the center 
of vehicle mass, Lw is the vehicle wheelbase, hg is the dis-
tance from the ground to the center of vehicle mass, z is 
the brake strength.

We assume the vehicle driving on the straight road, 
then the braking force on the left and right wheels are 
identical. The motor force is preferred to recycle more 
energy, and HBS provides the remained force while the 
motor force can not meet the demand. For an example 
of the front-rear wheel, the motor and friction braking 
force are calculated by Eqs. (12) and (13), respectively:

where Fmmax is motor maximum braking force.

(9)Fbf = βF ,

(10)Fbr = (1− β)F ,

(11)β =

(

Lb + zhg
)

Lw
,

(12)Fmd = min
(

Fmmax, 0.5Fbf
)

,

(13)Ff = 0.5Fbf − Fm,

Figure 1 The efficiency map and peak torque of IWM
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3  Energy‑optimal Braking Strategy
This section formulates the energy-optimal braking prob-
lem and proposes a double-layer EOBS to improve regen-
eration energy while ensuring braking comfort and safety. 
In the upper-layer, the energy-optimal braking trajec-
tory is planned by solving the optimal control problem. 
In the lower-layer, a tracking controller is used to track 
the optimized trajectory accurately while ensuring brak-
ing comfort and safety. Figure 2 shows the scheme of the 
proposed double-layer EOBS.

3.1  Energy‑optimal Braking Trajectory Planning
The energy-optimal braking trajectory is planned by the 
DP algorithm. Since the DP has been widely used in the 
energy optimization problem [19], which divides the 
optimal control problem into simpler sub-problems and 
calculates recursively based on the Bellman optimality 
principle [26].

3.1.1  Optimization Problem Formulation
Figure  3 shows the scenario of braking, where D is the 
distance to the destination (can be a stop line of the sig-
nalized intersection or a stopped preceding vehicle), 
Vs and Ve are the initial and desired terminal velocity, 
respectively. We assume the D and Ve are accessed by 
V2X communication, the Vs is obtained by using on-
board sensors.

In this paper, the braking distance D is fixed, thus the 
whole problem is discretized in distance-domain by dis-
tance step Δd. The total number of distance step ND is 
determined by the D and Δd, i.e., ND = D/Δd + 1. The 
velocity is selected as the state variable, i.e., xD = v, and 
the braking deceleration a is selected as the control vari-
able, i.e., uD = a. Since the distance step is small, the brak-
ing deceleration of each sub-problem is assumed to be 
constant. Thus, the energy-optimal braking problem is 
expressed in Eq. (14) indexed by k:

Figure 2 Control scheme of proposed EOBS

Figure 3 Process of braking
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s.t.,
xD(0) = Vs,
xD(ND) = Ve,
v(k) ∈ [vmin, vmax],
uD(k) ∈ [amin, amax] , where vmin and vmax are the 

minimum velocity for efficient traffic and the maxi-
mum velocity for road limitation, respectively. amin 
and amax are the deceleration depend on braking com-
fort and vehicle resistance, respectively. ΔtD is the 
time interval. Note that the terminal condition of the 
velocity has been relaxed by converting them to soft 
constraints and merged into the objective function as 
Eq. (14), with weighting factor α for the latter term.

Besides, the state transfer of vehicle velocity and 
time interval in k step are calculated by Eqs. (15) and 
(16), respectively.

3.1.2  DP Solving
Denote the transitional cost-to-go function from k 
step to k+1 step W(xD(k), uD(k)) and the penalty func-
tion for the terminal states G(xD(ND)), i.e.,

The formulated control problem is solved recursively 
by following the Bellman optimality principle [[26]]:

ND − 1 step:

k step:

(14)

Minimum
uD∈U

JD(xD(k),uD(k))

=

k=ND
∑

k=1

Pb(k)�tD(k)+ α(v(ND)− Ve)
2,

(15)

v(k + 1) =

{√

v2(k)+ 2a(k)�d, v2(k)+ 2a(k)�d > 0,

0, v2(k)+ 2a(k)�d ≤ 0,

(16)�tD(k) =
v(k + 1)− v(k)

a(k)
.

(17)W (xD(k),uD(k)) = Pb(k)�tD(k),

(18)G(xD(ND)) = α(v(ND)− Ve)
2.

(19)J∗ND−1(xD(ND−1))

min
uD∈U

{W (xD(ND − 1),uD(ND − 1))+ G(xD(ND))},

(20)
J∗k (xD(k)) = min

uD∈U

{

W (xD(k),uD(k))+ J∗k+1(xD(k + 1))
}

,

where Jk
*(xD(k)) is the minimum cost-to-go value at the 

moment k. Then, the energy-optimal braking trajectory 
and control law can be obtained by backward calculation.

3.2  Tracking Controller
3.2.1  Tracking Problem Formulation
The objective of the tracking controller is to minimize 
the tracking error between the actual and original opti-
mal trajectory, while adapts to traffic conditions for 
braking comfort and safety. In this paper, the vehicle 
velocity and distance error and vehicle force increment 
are defined as soft constraints, thus, the tracking prob-
lem is shown in Eq. (21):

s.t.,
umin

(

k + j
)

≤ uM
(

k + j
)

,
D−L ≤ d(NM) ≤ D,
Ve−ϑ ≤ v(NM) ≤ Ve,
where x̃ = [d−dref, v−vref] is the vehicle states error. 

dref and vref are the original distance and velocity in the 
upper-layer solution, respectively, which are derived from 
the upper-layer optimization. Δu is the increment of the 
control variable, (uM|k) represents the derived control 
variable of the controller at k moment. Q, R, and β are 
the weighing factor matrix, ε is the relaxation factor, Np 
and Nc are the prediction horizon and control horizon, 
respectively. NM is the tracking problem horizon, which 
is determined by the length of the original trajectory. L is 
the vehicle length, ϑ is the velocity slack.

In tracking problem Eq. (21), the constraints includ-
ing twofold. First, the vehicle force is subject to physi-
cal limits umin, which is determined by the maximum 
comfort braking force and road adhesion. Secondly, the 
virtual stop region that including distance and velocity 
is defined as a buffer space that relies on safety distance 
and minimum steady velocity of EVs, then the actual 
terminal braking distance and velocity are meet the 
second and third constraints.

3.2.2  Linear Time‑varying State Prediction Model
Since the vehicle dynamics in Eq. (1) is nonlinear, it 
greatly increases the computational burden of MPC. 
Therefore, we employ the approximate linearization 
method [27] to transform the nonlinear time-varying 
model Eq. (1) to a linear time-varying (LTV) system:

(21)

Minimum
uM∈U

JM(uM |k) =

Np
∑

i=1

∥

∥x̃(k + i|k)
∥

∥

2

Q

+

Nc−1
∑

j=1

∥

∥�u
(

k + j|k
)∥

∥

2

R
+ βε2,
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where x̃ =
[

d − dref v − vref
]T , ũ =

[

F − Fref
]T , Fref is 

the original braking force, which calculated by Eq. (23):

Since the MPC calculates the control law discretely, 
the LTV system in Eq. (22) is converted to the discrete-
time system using the Euler method [28]:

where ΔtM is the time step.
Denote a state prediction matrix:

where (i|k) represents the i-step-ahead predicted error 
at the kth step. Substituting Eq. (24) into Eq. (25), a new 
state-space model is derived:

with

Ak ,i =





1 �tM 0

0 1−
CDArρvref (i|k)�tM

δm
�tM
δm

0 0 1



,

Finally, the state prediction model is listed in Eq. (27) 
by converting Eq. (26):

with

(22)˙̃x =

[

0 1

0 −
CDArρvref

δm

]

x̃ +

[

0
1
δm

]

ũ

(23)
Fref = mgf cos θ +mg sin θ + 0.5CDArρv

2
ref (k)+mδaref (k).

(24)

x̃(k + 1) =

[

1 �tM

0 1−
CDArρvref (k)�tM

δm

]

x̃(k)+

[

0
�tM
δm

]

ũ(k),

(25)ς(i + 1|k) =

[

x̃(i|k)
ũ(i − 1|k)

]

,

(26)
{

ς(i + 1|k) = Ak ,iς(i|k)+ Bk ,i�ũ(i|k),

υ(i|k) = Ck ,iς(i|k),

Bk ,i =
[

0 �tM
δm 1

]T
,

Ck ,i =

[

1 0 0
0 1 0

]

.

(27)Ỹ (k) = Ŵkς(k)+�k�Ũ(k),

Ỹ (k) =
[

υ(k + 1|k) · · · υ(k + Nc|k) · · · υ
(

k + Np|k
)

]T

1×Np

,

�Ũ(k) =
[

�ũ(k|k) �ũ(k + 1|k) · · · �ũ(k + Nc|k)
]T

1×Nc
,

Ŵk =

[

Ck ,iAk ,i · · · Ck ,iA
Nc

k ,i · · · Ck ,iA
Np

k ,i

]

1×Np

,

where Ỹ (k) and �Ũ(k) are output and control increments 
of the prediction model, respectively. Noted that accord-
ing to the principle of MPC, the Nc ≤ Np, and the control 
input that beyond Nc is equal to the last control input of 
Nc.

3.2.3  Quadratic Programming Solving
The tracking problem is solved using the quadratic pro-
gramming (QP) algorithm. Then, the objective function 
and constraints in Eq. (21) are converted to standard 
QP form Ref. [29], i.e.,

s.t.,
D−L ≤ d(NM) ≤ D,
Ve−ϑ ≤ v(NM) ≤ Ve,

Umin ≤







1 · · · 0
...
. . .

...
1 · · · 1







Nc×Nc

�Ũ(k)+ 1Nc�ũ(k − 1),

where  1Nc is the column vector with Nc rows, Umin is the 
minimum value set of control input

A series of control input increments �Ũ∗
k  in the control 

horizon can be obtained by solving the QP problem. The 
predicted control input ũ∗(k) is the first term of the con-
trol sequence plus the previous control input ũ(k − 1):

Finally, the predicted vehicle braking force u*(k) is

�k =





























Ck ,iBk ,i 0 · · · 0

Ck ,iAk ,iBk ,i Ck ,iBk ,i · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

Ck ,iA
Nc

k ,i Bk ,i Ck ,iA
Nc−1

k ,i Bk ,i · · · Ck ,iAk ,iBk ,i

.

.

.

.

.

.
.
.
.

.

.

.

Ck ,iA
Np−1

k ,i Bk ,i Ck ,iA
Np−2

k ,i Bk ,i · · · Ck ,iA
Np−Nc−1

k ,i Bk ,i





























Np×Nc

,

(28)

JM

(

�Ũ |k

)

=
1

2

[

�Ũ(k)
T

ε

][

2
(

�T
k
Q�k + R

)

0

0 2β

]

[

�Ũ(k)
T

ε

]T

+

[

2ET
k
Q�k

0

]T[

�Ũ(k)
T

ε

]T

(29)
Umin =

[

umin(k) umin(k + 1) · · · umin(k + Nc − 1)
]T

1×Nc
.

(30)ũ∗(k) = ũ(k − 1)+
[

INc 0 · · · 0
]

1×Nc
�Ũ∗

k .

(31)u∗(k) = ũ∗(k)+ Fref (k).



Page 7 of 12Dong et al. Chin. J. Mech. Eng.           (2021) 34:83  

4  Simulation Results and Discussion
In this section, a simulation is conducted by jointing 
MATLAB (version 9.4, R2018a) and CarSim (version 
20959, 2016.1) on a PC with an Intel Core i7-8700 @ 
3.20 GHz CPU, the joint simulation structure as shown 
in Figure 2. In addition, the index αr is defined to eval-
uate the performance of regeneration efficiency as 
described in Eq. (32) [9]:

where ve is the actual terminal velocity in the lower-layer.

4.1  Simulation Setup
The EVs model is established using C-Class hatchback 
2012 vehicle in CarSim, and the main parameters of 
EVs are f = 0.016, m = 1421  kg, CD = 0.3, Ar = 2.22   m2, 
rw = 0.325  m, ρ = 1.206  kg/m3, g = 9.8  m/s2, δ = 1.022, 
L = 4.85  m, Lw = 2.91  m, Lb = 1.9  m, hg = 0.54  m, and 
Pa = 300 W. The specifications of IWM are the peak pro-
pulsion power and generation power are 20.75  kW and 
− 20.53 kW, respectively. The peak propulsion torque and 
generation torque are 312.50 N⋅m and − 311.50 N⋅m, 
respectively, and the peak rotational speed is 1600 r/min. 
The specifications of battery are E = 360 V, Cb = 140 A⋅h, 
Ro = 0.45  Ω, SOC0 = 0.8, and ηb = 0.9. According to the 
HBS module in CarSim, the τh of all wheels is 0.06, the κ 
of wheels in front axle and rear axle are 250 MPa/(N⋅m) 
and 150 MPa/(N⋅m), respectively.

In the DP optimization, the distance step Δd = 0.01 m, 
the grid step of state variable v and control variable a are 
0.1 m/s and 0.05 m/s2, respectively. In the LTV-MPC con-
troller, the lengths of prediction horizon Np and control 
horizon Nc both are 100, which finds a good compromise 
between optimality and computational efficiency, as veri-
fied by a systematic simulative analysis for various hori-
zon lengths. The weight matrices are Q = 1000I2Np×2Np 
and R = 200INc, and the sampling time ΔtM = 0.01 s.

Two typical braking scenarios are simulated to evalu-
ate the regeneration energy efficiency of the proposed 
strategy. The scenarios are referred to as Scenarios A and 
B, i.e., normal braking with small deceleration and emer-
gency braking with big deceleration. The main parame-
ters of these two scenarios are listed in Table 1.

4.2  Benchmark Strategy
The proposed EOBS is compared with the regular con-
stant deceleration braking strategy (CDBS) for bench-
marking proposes. For CDBS [30], the vehicle will brake 
by using a constant deceleration, and the lower-layer uses 
the same LTV-MPC controller as the proposed EOBS to 
track the constant deceleration velocity trajectory. The 

(32)αr =

∫

Pbdt

0.5mδ
(

V 2
s − v2e

) × 100

trajectory tracking performance in the sense of regenera-
tion energy optimality and braking safety is evaluated by 
comparing the LTV-MPC controller with the PID con-
troller. For the PID controller, the velocity error is used as 
the input and the deceleration is defined as the output to 
achieve speed tracking. In addition, we define the origi-
nal solution of the upper-layer as the original trajectory. 
While the safety-guaranteed solution in the lower-layer is 
defined as the actual trajectory.

4.3  Performance of the Proposed EOBS
4.3.1  Tracking Performance
The tracking performance of the LTV-MPC controller 
will be verified in Scenario A, and compared with the 
regular PID controller. The LTV-MPC and PID control-
ler is used to track the same original trajectory derived 
in the upper-layer of EOBS. Figures 4, 5, 6 and Table 2 
are the simulation results.

Figure 4 shows the vehicle trajectory of distance and 
velocity, Figures 5 and 6 show the vehicle braking force 
and slip rate, respectively. The regeneration energy, 
vehicle terminal states are listed in Table 2. In Figure 4 
and Table  2, the actual terminal velocity and braking 
distance error of the LTV-MPC controller are 0.01 m/s 
and 0.03 m respectively, and 0.72 m/s and 9.96 m of PID 
controller. The error data shows better tracking perfor-
mance of the LTV-MPC controller than the PID con-
troller. The distance exceeds the maximum permissible 
distance (201.58‒196.73 m) in the PID controller, which 
causes collision possibly. Figure  5 shows the braking 
force both do not exceed constraints of LTV-MPC and 
PID controller, however, the PID controller leads to a 
large tracking error, which is the cause of state tracking 
error as shown in Figure 4. Figure 6 shows the small slip 
rate of each wheel, which indicates the braking stability 
is still ensured by employing the LTV-MPC.

As shown in Table 2, the vehicle with the LTV-MPC 
controller achieves regeneration energy efficiency 
increase by 3.83% compared with the PID controller, 

Table 1 Braking scenarios

Scenario A Scenario B

Initial velocity Vs (m/s) 34 20

Terminal velocity Ve (m/s) 20 0

Distance to destination D (m) 204 50

Adhesion coefficient φ 0.85

Velocity slack ω (m/s) 0.2

Safety distance slack ϑ (m) 4.85

Road adhesion θ 0
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and decreases by 0.03% compared with the original tra-
jectory. Thus, the regeneration energy efficiency of the 
LTV-MPC controller is superior to the PID controller, 
because of the excellent tracking performance.

4.3.2  Regeneration Energy Efficiency
The regeneration energy efficiency of EOBS is evaluated 
by compared with CDBS in Scenarios A and B. The simu-
lation results are shown in Figure 7 and Table 3. Figure 7 
shows the braking deceleration. The braking deceleration 
of CDBS is constant (e.g., Scenario A is − 1.89 m/s2 and 
Scenario B is − 4.26  m/s2, which is the average deceler-
ation of EOBS), while the EOBS derives a varied decel-
eration for energy-optimal consideration. Table 3 shows 
the regeneration energy and vehicle terminal states of 
EOBS and CDBS. We can observe the vehicle could stay 
within the defined region in Scenarios A and B, and the 
proposed EOBS has improved the regeneration energy 
in Scenario A and Scenario B by 11.42% and 3.19% than 
CDBS.

These above-mentioned results show that the proposed 
EOBS guarantees braking safety, while improving regen-
eration energy, especially in normal braking scenario. 
Further, the energy-optimal braking mechanism of EVs 
will be analyzed in detail in Section 4.4.

(a) Velocity trajectory             (b) Distance trajectory
Figure 4 Braking trajectory of EVs

 

Figure 5 Braking force of EVs

Figure 6 Slip rate of EVs by LTV-MPC

Table 2 Simulation result of LTV-MPC and PID controller

Regeneration energy efficiency 
αr (%)

Braking duration (s) Distance d (m) Terminal 
velocity ve 
(m/s)

Original trajectory 68.21 7.30 198.85 20.09

LTV-MPC controller 68.18 7.32 198.88 20.10

PID controller 64.35 7.68 208.81 20.13
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4.4  Energy‑optimal Braking Mechanism
Figures 8, 9, 10 are the motor braking force, braking cyl-
inder pressure of HBS (the sum of every wheel), and bat-
tery charging power, respectively. The motor efficiency 
during the regenerative braking and its average value are 
listed in Table 4.

In Scenario A, as shown in Figure  7a, the decelera-
tion of EOBS including three phases: increasing firstly, 
then decreasing, and increasing again. The wheel cyl-
inder pressure increases firstly and then drops to 

approximately zero in the second and third phases (see 
Figure 9a). In the first phase, a large braking decelera-
tion is operated. Although the friction braking force 
increased with the large deceleration (see Figure  9a), 
the battery charging power is increased. This means 
that the vehicle can make full use of the peak genera-
tion power to recover more vehicle kinetic energy. The 
second and last phases of EOBS should be discussed 
together because these two phases are complemen-
tary compared to CDBS. Figures  8a and 10a illustrate 

(a) Scenario A  (b) Scenario B
Figure 7 Simulation results of braking deceleration

Table 3 Simulation results of EOBS and CDBS

Regeneration energy 
efficiency αr (%)

Improvement (%) Distance d (m) Terminal 
velocity ve 
(m/s)

Scenario A EOBS 68.18 11.42 198.88 20.10

CDBS 56.76 N/A 198.94 20.10

Scenario B EOBS 44.61 3.19 46.97 0.10

CDBS 41.42 N/A 47.13 0.11

(a) Scenario A                                           (b) Scenario B
Figure 8 Braking torque of motor
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a complementary relationship: the motor braking force, 
battery charging power of EOBS less than CDBS in the 
second phase, but larger than CDBS in the last phase. 
In the second phase, the braking deceleration decreases 
quickly to reduce friction braking force (see Figure 9a). 
In the last phase, to make full use of the motor (see 
Figures  8a, 10a), the braking deceleration of EOBS 
increases.

In Scenario B, as shown in Figure 7b, the braking decel-
eration of EOBS can be divided into three phases same 
as Scenario A and for the same reasons. The first and 

second phases are discussed together, in the first phase, 
the deceleration of EOBS decreases and increases in the 
second phase. In the third phase, the braking deceleration 
decreases because the motor generating force is gradually 
dwindling and replaced by the friction braking force in 
low-speed operating conditions (see Figures 8b and 9b). 
As shown in Figure  10b, the battery charging power of 
EOBS and CDBS are similar, which causes the regenera-
tion energy improvement of EOBS is not obvious in the 
emergency braking case (see Table 3).

In addition, Table  4 shows the motor efficiency of 
EOBS and CDBS. The average motor efficiency in EOBS 
is greater than CDBS in Scenario A, but it less than CDBS 
in Scenario B. This phenomenon indicates only focus on 
maximum motor working efficiency does not mean max-
imum regeneration energy. The regeneration energy is 
related to motor generation power and motor efficiency, 
and the co-optimization of motor generating power and 
motor efficiency is the key to achieve the energy-optimal 
braking control. Therefore, the energy-optimal braking 
control requires reasonably reducing friction braking 
force and increasing motor braking force for improving 

(a) Scenario A                                          (b) Scenario B
Figure 9 Wheel cylinder pressure of HBS

(a) Scenario A                                        (b) Scenario B
Figure 10 Battery charging power

Table 4 Efficiency of motor (%)

Front axle Rear axle Average 
efficiencyLeft/right wheel Left/right wheel

Scenario A EOBS 90.59 87.73 89.16

CDBS 90.55 87.75 89.15

Scenario B EOBS 77.99 77.93 77.96

CDBS 79.49 79.49 79.49



Page 11 of 12Dong et al. Chin. J. Mech. Eng.           (2021) 34:83  

the motor generation power, and operating the motor 
working at a high-efficiency point at the same time.

5  Conclusions
This paper presented a double-layer energy-optimal 
braking strategy to improve the regeneration energy 
using accessed braking intention. First, the energy-
optimal braking trajectory is derived by distance-based 
dynamic programming in the upper-layer. Then, in the 
lower-layer, the linear time-varying model predictive 
controller is formulated to follow the optimal trajec-
tory accurately while ensures braking safety and com-
fort. The simulation results demonstrate the proposed 
energy-optimal braking strategy achieves prominent 
regeneration energy improvement than the regular con-
stant deceleration braking strategy, and the trajectory 
tracking performance of the linear time-varying model 
predictive controller is superior to the regular PID 
controller. The analysis of the energy-optimal braking 
mechanism indicates the optimal regeneration energy 
operation is required to reasonably reduce the friction 
braking force and increasing motor braking force, while 
ensures the motor working at a high-efficiency point as 
much as possible.

In future work, we will develop a synthesis method 
to optimize vehicle speed and wheel braking force 
synchronously, i.e., integrates energy-optimal braking 
velocity planning problem with the braking force dis-
tribution ratio of motor and friction braking system on 
each wheel for improving regeneration energy further.
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