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Abstract 

Characterized by self-monitoring and agile adaptation to fast changing dynamics in complex production environ-
ments, smart manufacturing as envisioned under Industry 4.0 aims to improve the throughput and reliability of 
production beyond the state-of-the-art. While the widespread application of deep learning (DL) has opened up new 
opportunities to accomplish the goal, data quality and model interpretability have continued to present a roadblock 
for the widespread acceptance of DL for real-world applications. This has motivated research on two fronts: data cura-
tion, which aims to provide quality data as input for meaningful DL-based analysis, and model interpretation, which 
intends to reveal the physical reasoning underlying DL model outputs and promote trust from the users. This paper 
summarizes several key techniques in data curation where breakthroughs in data denoising, outlier detection, impu-
tation, balancing, and semantic annotation have demonstrated the effectiveness in information extraction from noisy, 
incomplete, insufficient, and/or unannotated data. Also highlighted are model interpretation methods that address 
the “black-box” nature of DL towards model transparency.
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1  Introduction
Throughout the modern history of humankind, manu-
facturing has been of central importance to economic 
advancement. According to statistics from the World 
Bank, the manufacturing industry contributed 16.8% to 
international gross domestic product (GDP) in 2018. The 
contribution to national GDP is as high as 27% in China, 
representing one of the highest proportions among all 
nations [1]. Driven by the evolving demands from “mass 
production” and “mass customization” to “mass per-
sonalization” [2, 3], manufacturing has evolved from 
mechanization and manual operation (Industry 1.0, 18th 
century) to today’s Industry 4.0, where operations take 
place in complex, digitized cyber-physical production 
systems (CPPS) that are characterized by sensor-rich 

monitoring and Internet-enabled edge/cloud computing 
for in-situ failure root cause diagnosis and future per-
formance prognosis [4‒7]. Accompanied by the increas-
ing availability of abundant sensor data [6] as illustrated 
in Figure  1, analytical and numerical models, and com-
putational infrastructure, the state-of-the-art in real-
time condition monitoring, failure root cause diagnosis, 
and machine remaining useful life (RUL) prognosis has 
enabled a higher level of automation, robustness, and 
adaptivity of networked and optimized manufacturing 
systems [8, 9].

The current wave of innovation in manufacturing, 
characterized by the concept of smart manufacturing and 
digital transformation of the factory, is witnessing the 
convergence of big data [6, 8], artificial intelligence (AI, 
e.g., machine learning, ML, and deep learning, DL) [10, 
11], and the expansion of communication and computa-
tional capabilities (e.g., industrial internet of things, IIoT, 
cloud and edge computing, and graphic processing unit, 
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GPU) [12‒14]. The convergence has transformed a vari-
ety of manufacturing practices [15, 16], with condition 
monitoring, fault diagnosis and RUL prognosis among 
the most significant beneficiaries [17]. The increased 
availability of data due to massive deployment of sensors 
and the rapid advancement of DL have made it possible 
to gain insight into the mechanism underlying manufac-
turing operations, leading to enhanced observability of 
machines and processes [18]. It also made it feasible to 
associate data with condition-related parameters (e.g., 
fault and RUL) with unprecedented accuracy [19]. Also, 
advancements in communication and computational 
infrastructure have made it possible to carry out data 
transmission and computation with low latency to satisfy 
the requirement for real-time operation [20].

The past decade has seen a fast growth in the num-
ber of papers on DL-enabled condition monitoring, 
diagnosis and prognosis, which are comprehensively 
summarized in several review articles [21‒23]. While 
contributions from DL have been well highlighted, 
several limitations have also been identified. First, the 
datasets investigated to evaluate DL algorithms are 
generally error-free (e.g., no outliers or missing values) 
and well balanced, with each having sufficient number 
of samples to fully optimize the DL model parameters 
[10]. However, in real-world manufacturing scenarios, 
data errors can occur due to sensing or communica-
tion errors. Collecting a large amount of data from 
faulty equipment for algorithm training is often times 
infeasible, due to both safety and economic reasons. 
The consequence is that datasets with error or imbal-
ance can potentially degrade the performance of other-
wise high-performing DL models if the level of error or 
imbalance is high [23, 24]. Second, the datasets used in 
the reported studies did not require a posteriori (and 
therefore error-prone) labeling. This is due to the fact 

that commonly investigated scenarios, such as faults in 
the inner or outer of a rolling bearing are usually pre-
labeled and seeded into the testing equipment before 
the data is collected. However, in realistic manufac-
turing scenarios, structural faults or anomalies are not 
“pre-labeled” because they are not known a priori, and 
therefore have to be interpreted from the collected data 
a posteriori. As an example, in additive manufacturing 
(AM), part surface defects are observed from images 
acquired after the completion of the AM process, and 
automated defect annotation (data labelling) is crucial 
to supporting the relevant diagnostic and/or predictive 
tasks. Third, the prediction logic of many DL models is 
generally not interpretable (or transparent) to the users 
in a physical sense [25]. Without a clear understand-
ing of the data patterns that a DL-based method uses 
to carry out specific analysis tasks, it is difficult for the 
readers to establish trust in the performance and out-
come of the algorithms.

To tackle these limitations, research on the topics of 
(1) data curation [26], which aims to improve data qual-
ity and provide semantic annotation, and (2) model inter-
pretation, which aims to decipher DL model prediction 
logic [27], has become an indispensable step before and 
after the execution of DL algorithms (Figure 2), and thus 
is gaining attention over the past years. These include: 
(1) data denoising and cleansing methods that remove 
data pollution [28]; (2) generative models that recognize 
patterns underlying the data and synthesize samples to 
resolve problems arising from small or unbalanced data-
sets [29]; (3) semantic data annotation that automates 
the data labeling and contextualization process [30]; (4) 
relevance analysis methods, such as layer-wise relevance 
propagation (LRP), which trace the feature extraction 
processes utilized by neural networks to reveal salient 
information from the input data for decision-making 
[31]; (5) attention mechanisms that enable the incorpora-
tion of interpretable prediction logic at the design stage 
of neural networks for enhanced model interpretabil-
ity [32], and (6) integration of DL and physics to ensure 
consistency between DL discoveries and existing domain 
physical knowledge [33].

Figure 1  Evolution of manufacturing, sensing technology and big 
data, adapted from Ref. [6]

Figure 2  DL-driven pipeline for monitoring, diagnosis and prognosis
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This paper is motivated by the above identified limi-
tations and aims to fill this knowledge gap by analyzing 
research outcomes on data curation and model inter-
pretability enabled by DL for operation monitoring, fault 
diagnosis, and RUL prognosis in manufacturing. As illus-
trated in Figure 3, data provides the material basis for DL 
algorithms, and DL algorithms advance the state of tech-
nology for monitoring, diagnosis, and prognosis.

The rest of this paper is organized as follows: Section 2 
reviews the latest development in data quality assurance 
to support effective data curation. Section  3 highlights 
several methods that improve the outcome interpretabil-
ity of DL models by relating the propagation of reasoning 
logics through the neural network structure to the physi-
cal laws, thereby improving the model interpretability. 
Section  4 examines several manufacturing applications 
that have benefited from these techniques. Conclusions 
and future directions are described in Section 5.

2 � Data Curation
As a co-product of manufacturing, data encodes criti-
cal information underlying the dynamical behaviors of 
manufacturing machines and processes, providing the 
foundation for DL-driven algorithms. Advancements in 
sensing technologies have resulted in an ever-increasing 
amount of data acquired on factory floors [6, 34]. The 
increasing diversity and complexity of data not only pose 
new challenges for handling data quality issues such 
as noise, but also amplify additional problems such as 
data imbalance, outliers, unannotated data, or data with 

missing values. These become more prominent with the 
widespread usage of DL. To help ensure success of DL 
analysis, low-quality data need to be properly curated 
first [8, 26]. Several representative data curation tech-
niques are summarized in Table  1 and are discussed in 
detail below.

2.1 � Data Denoising
The purpose of data denoising is to extract pertinent 
information (e.g., process and machine dynamics, fault 
characteristic) from occluding background noise, thereby 
improving the effectiveness of data analysis [35]. The 
most adopted approach is to denoise by increasing the 
signal-to-noise ratio (SNR). Relevant techniques include 
projection-based method, such as local geometric pro-
jection (LGP) [36], and frequency or time-frequency 
analysis, such as empirical model decomposition (EMD) 
[37] and wavelet transform [38].

The idea of LGP is that once the data is mapped into 
a high-dimensional phase space, useful information and 
noise embedded in data can be decomposed by orthogo-
nal projection into different subspaces. By reconstruct-
ing the data from the subspace occupied by the useful 
information, noise can be removed. In practice [36], the 
phase space is first segmented into local regions. Within 
each of the regions, the orthogonal projection matrix is 
computed by the method of singular value decomposi-
tion (SVD). Specifically, only the largest eigenvectors in 
SVD are used to form the projection matrix, which con-
tains the majority of data variance in the phase space and 
is likely to capture the useful information. In experimen-
tal evaluations, an SNR improvement of 10 dB has been 
reported. Since LGP does not require prior knowledge 
about the frequency range of the noise components, it is 
more convenient to use than filtering-based methods.

The EMD algorithm decomposes data (commonly time 
series) into a sum of intrinsic mode functions (IMFs). 
The first IMF represents the highest dominant frequency 
in the data and the frequency decreases as decomposi-
tion proceeds [37]. As a result, EMD represents the data 
as a sum of frequency bands, and noise removal can be 
achieved by reconstructing the data from the IMFs that 
only contains the useful information (e.g., critical fre-
quency components). In practice, suitable IMF range can 
be determined based on metrics such as mutual infor-
mation ratio (MIR). For example, the cutoff point can 
be chosen as the one that leads to the largest increase in 
MIR, representing the threshold when useful data infor-
mation is captured by IMF [37].

One of the time-frequency techniques for data denois-
ing is wavelet transform, which is based on thresholding 
small wavelet coefficients and reconstructing the data 
using inverse wavelet transform. This is because large 

Figure 3  Interactions in an DL-enabled monitoring, diagnosis, and 
prognosis paradigm
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wavelet coefficients usually contain dominant data com-
ponents [38]. The threshold value is commonly deter-
mined based on the estimated data variance [39]. Using 
a customized wavelet developed out of the impulse 
response of a sensor-embedded rolling bearing, the SNR 
of the bearing’s vibration data could be improved by up 
to eight times as compared to a standard wavelet [40].

An alternative approach to minimizing the effect of 
noise is stochastic resonance (SR) [41]. The idea is to 
amplify the critical frequency (e.g., fault characteristic 
frequency) through the interactions between the data 
(e.g., time series) and a bistable system [41]. Specifically, 
when the time series is added to the governing equation 
of the bistable system, it can be shown mathematically 
that the critical frequency will be amplified at the system 
output if the “switch” frequency of the system is tuned to 
match the critical frequency [41]. In Ref. [42], an adaptive 
SR strategy is introduced that overcomes the limitation 
of requiring prior knowledge about the critical frequency 
as standard SR method does and can accurately pinpoint 
the fault-related frequency from noisy vibration data that 
is otherwise undetectable. The technique is applicable to 
a wide range of critical frequency extraction applications.

More recently, hybrid denoising methods have been 
reported that take advantage of both the pattern recogni-
tion capability of DL and the physical understanding of 
noise contamination [43, 44]. Specifically, the methods 
first establish a contamination model y = G(x) based on 
the knowledge of the contaminants, where x is the ideal, 
clean data representing the physical phenomenon and y 
represents the measured data, contaminated with noise 

and determined by G. The contamination model serves 
as the guidance for data denoising as only the clean data 
that satisfies the model will be recovered (e.g., improv-
ing SNR in a physically meaningful way). Since solving x 
from y is a generally ill-posed problem (i.e., a large num-
ber of x can satisfy the model), the solution x must also 
be regularized to be consistent with prior knowledge 
about the data [45]. For this purpose, the method follows 
the Bayesian theory by iteratively minimizing the incon-
sistency between the solution x and the contamination 
model G(x), as well as the inconsistency with the prior 
knowledge, R(x). Mathematically, the denoising problem 
is expressed as:

The outcome of the process is termed the maximum-
a-posteriori (MAP) estimation and is graphically illus-
trated in Figure  4. Essentially, x is iteratively recovered 
by alternately projecting the intermediate outcome onto 
the cluster (orange line) that satisfies the contamination 
model and the cluster (blue line) that satisfies the prior 
knowledge. At the end, the joint distance between x and 
the clusters are minimized, leading to the denoised data 
that is most consistent with the physical contamination 
knowledge as well as the prior knowledge.

A major challenge to solving Eq. (1) is to analytically 
formulate R(x), given the limitation in prior knowledge 
to characterize x [46]. To solve this problem, DL-based 
prior characterization has been developed, and two rep-
resentative algorithms are described below.

(1)x = argminx

[

||y − G(x)||22 + R(x)
]

,

Table 1  Representative techniques for data curation

Data denoising Ref. Outlier detection Ref. Data imputation Ref.

Projection-based Local geometric 
projection

[36] Data-level Autoencoder [48, 55] Time series Recurrent neural 
network

[62, 65, 66]

Frequency-based Empirical model 
decomposition;

Wavelet transform

[37‒40]

Noise-assisted Stochastic reso-
nance

[41, 42] Model-level Probabilistic neural 
network; Tem-
perature scaling; 
Input perturba-
tion

[56‒61] Image Convolutional 
neural network;

Hybrid approach

[67, 68]

Data-driven/hybrid Generative prior;
Unrolled optimiza-

tion

[46, 47]

Data balancing Ref. Data annotation Ref.

Data interpolation Synthetic minority 
over-sampling 
technique

[75] Image annotation Fully convolutional 
network;

U-Net; Mask region-
based CNN

[30]
[79, 80]

Generative model Variational autoen-
coder; Generative 
adversarial net-
work

[76]
[29]

Natural language 
processing

Word embedding; 
Transformer; BERT

[83‒88]
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Unrolled optimization. This is motivated by the itera-
tive process of solving Eq. (1) in which each iteration 
can be concatenated as a layered structure. At each layer 
(iteration), two steps are carried out: (1) optimization 
with respect to prior R(xk−1) to obtain the intermediate 
outcome sk , and (2) optimization with respect to contam-
ination model G(sk) to obtain the new estimation for the 
next iteration xk . To formulate R(x) under limited physi-
cal knowledge for characterizing x, optimization w.r.t the 
prior is modeled by a neural network, or sk ← NN(xk−1) . 
The complete layered structure is trained in an end-to-
end manner [46]. As a result of the iteration process, the 
underlying structural pattern of the image is learned and 
improvement of image peak signal-to-noise ratio (PSNR) 
of 3 dB is reported as compared to other techniques. This 
denoising technique is also computationally efficient with 
the processing time per image of around 0.1 s, making it 
suited for real-time applications.

Generative prior. Sensing data in the form of time 
series or images often contain information that can be 
represented in a sparse way under certain representation 
domain (e.g., the Fourier or wavelet domain) [45]. As a 
result, such information sparsity in data can enable the 
formulation of R(x) to regularize the solution for Eq. (1), 
for example, by setting R(x) = ‖x‖1 . However, such algo-
rithms suffer from low efficiency as the computational 
cost increases with the square of data dimension [47]. To 
resolve this limitation, the method of generative prior has 
been developed [47]. Specifically, it first uses a generative 
DL model, such as the variational auto-encoder (VAE), 
to obtain the sparse representation of x. Subsequently, 
by replacing x with its sparse representation z based on 
the decoder of VAE, g(z), the prior term in Eq. (1) can be 
neglected (as the VAE already enforces the sparsity) and 
G(x) becomes G(g(z)), resulting in a low-dimensional 

problem, as shown in Figure  5, that can be more effi-
ciently solved [47].

A significant advantage of generative prior is its high 
computational efficiency, since it reduces the computa-
tional cost from a quadratic increase with data dimension 
to a linear increase while achieving comparable denois-
ing results. Table 2 summarizes the advantages and dis-
advantages of unrolled optimization and generative prior.

2.2 � Data Cleansing
The widespread deployment of sensors and increas-
ing complexity of machines and processes have also 
increased the vulnerability of in-situ data to problems, 
such as outliers [48] or missing values [49]. Data cleans-
ing addresses these problems by detecting, removing, or 
correcting outliers and/or missing values among normal 
samples to improve data quality.

Outlier detection. An outlier (also known as an out-of-
distribution, or OOD, sample) generally refers to a data 
sample that significantly deviates from the expected data 
pattern associated with the physical phenomenon that 
it represents [50]. Common outlier detection methods 
can be classified into the following categories [48]: (1) 
statistical methods, which detect outliers based on the 
likelihood of seeing the sample under the assumed data 
distribution (e.g., Gaussian) [51]; (2) distance-based 
methods, which assume that within-distribution sam-
ples are located in a dense region in the data space while 
outliers are located further away [52]; (3) density-based 
methods, which are based on the assumption that the 
data distribution should be similar around within-distri-
bution samples and significantly different around outliers 
[53]; and (4) cluster-based methods, for which clustering 
techniques are applied and outliers are detected as sam-
ples not in the neighborhood of any clusters [54]. Despite 
ongoing progress, these methods are limited when han-
dling high-dimensionality and nonlinearity [48]. Most 

Figure 4  Illustration of MAP estimation

Figure 5  Generative prior for simplification of Eq. (1)
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recently, DL-based methods have been reported, which 
focus primarily on enhancing the separability between 
within-distribution samples and outliers to facilitate the 
determination of outlier detection threshold.

One DL-based method for outlier detection is to use 
autoencoders (AE) to find latent features by project-
ing data into network layers with progressively reduced 
dimensions. The basic idea is that data reconstruction 
error is expected to be small for within-distribution sam-
ples and large for outliers [55]. This is because within-dis-
tribution samples are generally well clustered in the data 
space while outliers are likely to be randomly scattered. 
Therefore, the gradients induced by outliers during AE 
training are likely to be mitigated by the within-distri-
bution sample gradients. Accordingly, the weights of the 
related layers of the network will be updated using pre-
dominantly those of within-distribution samples. Con-
sequently, data reconstruction error will be minimized 
primarily for within-distribution samples rather than out-
liers [55]. It is reported in Ref. [48] that by training an AE 
using only within-distribution samples, the reconstruc-
tion error serves as a good indicator for outlier detection 
based on a simple 3-standard deviation threshold.

For datasets in which within-distribution samples are 
polluted with a comparatively small number of outliers 
(which is not ideal as compared to the scenario in Ref. 
[48]), an iterative approach has been developed in Ref. 
[55], where two steps are involved at each iteration: (1) 
discriminative labeling, which estimates within-distribu-
tion samples from the mixed data based on the recon-
struction errors at that iteration, and (2) reconstruction 
learning, which updates the AE to reduce the reconstruc-
tion error for the identified within-distribution samples. 
This iterative approach has shown to gradually con-
verge to the level of performance comparable to that of 
the AE trained using within-distribution samples only. 
The advantage of AE-based approaches is that the out-
lier detection is done completely at the data level and is 
therefore task-agnostic.

Besides AE, probabilistic neural networks have also 
been investigated for outlier detection. The idea is to 
quantify the uncertainty associated with the predicted 
outcome (e.g., type of a structural fault), for which a high 
uncertainty suggests that the input can potentially be an 
outlier. Commonly used techniques for neural network 

probabilistic formulation include ensemble learning [56] 
and Monte Carlo (MC) methods [57, 58], which assume 
that multiple DL diagnostic/prognostic models exist for 
any task, and uncertainty is quantified based on the pre-
diction entropy across all model outputs.

One of the latest developments is a multi-head network 
[59] (Figure  6), which consists of shared layers at lower 
part of the network structure, while diverging to multi-
ple classifiers at the upper part. In this work, a distrib-
uted gradient is developed for DL network training, in 
which only a fraction of the gradient is used to update 
the classifier with the best performance at each itera-
tion to increase accuracy, while the remaining fraction 
of gradient flows through the other classifiers to improve 
generality for unseen data. As the multi-head network is 
trained only on within-distribution samples, the prob-
ability that the network can produce similar uncertainty 
for both within-distribution samples and outliers is 
expected to drop quickly as M becomes large [59]. The 
result is that it facilitates the determination of an uncer-
tainty-based threshold for outlier detection. Table 3 sum-
marizes probabilistic network techniques.

DL-based outlier detection methods, e.g., based on 
temperature scaling and input perturbation, have been 
developed for pretrained DL classifiers [60]. In this exam-
ple, temperature scaling refers to calibrating the scaling 
factor in the softmax function in the classifier. Math-
ematically, larger scaling factors lead to larger softmax 
scores for within-distribution samples than outliers. Per-
turbation refers to preprocessing the input by adding a 
perturbation term calculated based on the gradient of the 
softmax function with respect to the input, which tends 

Table 2  Comparison between hybrid denoising techniques

Technique Advantage Disadvantage

Unrolled optimization Suited for data with sparse or non-sparse 
structure; End-to-end learning

Denoising progression not accessible; Intermediate 
tweak not possible

Generative prior Complete denoising progression accessible; 
Allow intermediate tweak

May not perform well for data with non-sparse structure

Figure 6  Multi-head network, adapted from Ref. [59]
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to have a larger value for normal samples than outliers 
based on experimental observations. Therefore, by add-
ing this gradient as perturbation to the input, the softmax 
scores with respect to within-distribution samples are 
likely to be greater than the outliers. Collectively, tem-
perature scaling and perturbation enhance the separabil-
ity of the softmax scores between the within-distribution 
samples and outliers, allowing a threshold to be set up 
flexibly for outlier detection.

The work reported is further extended in Ref. [61]. 
Rather than relying on a single score at the final network 
layer for outlier detection, a Mahalanobis distance-based 
confidence score is calculated in this work for all layers 
based on the layer-wise features, and the final score is 
represented by a weighted sum of all scores.

Data imputation. Besides outliers, another frequently 
encountered data quality issue is missing values, which 
is commonly caused by sensing or communication errors 
[62]. Imputation of missing values improves data quality 
by filling data gaps. Typical data imputation methods are 
based on statistics, such as linear interpolation or auto-
regressive modeling [63, 64]. However, these methods 
often require strong assumptions (e.g., linearity) with 
respect to the data generation process, making them less 
effective to more complex data in which the assumptions 
do not hold.

One of the actively researched topics recently is time 
series data imputation based on recurrent neural net-
works (RNN) and their variants, such as long short-term 
memory (LSTM) and gated recurrent units (GRU) [62, 
65, 66]. These techniques capture the non-linear time 
evolution pattern underlying the data for estimation of 
missing values. The main idea is to use a rolling window 
that progressively predicts the missing values by analyz-
ing the data sequences that immediately precede these 
gaps.

The newly developed methods mainly differ in the 
approach with which the missing value is handled at the 
network input. In Refs. [65, 66], the input to the network 
is designed as a weighted sum of the observed value at 
the current step and the predicted value from the previ-
ous time step, when the observed value is available at the 

current step (Figure 7). When data is missing at the cur-
rent step, these methods use the predicted value from the 
previous time step directly as network input at the cur-
rent step.

In contrast to Refs. [65, 66] in which the missing val-
ues are replaced by the predicted values of the same 
sequence, a different approach has been developed in Ref. 
[62] that aligns a separate, auxiliary “source” sequence 
to the “target” sequence with missing values. Then, it 
replaces the missing values with the corresponding val-
ues in the source sequence that are adjusted by the mean 
values of both sequences.

The development of DL, especially the convolutional 
neural networks (CNNs) that are specialized in image 
processing, has advanced image imputation that was 
previously considered challenging [67]. One strategy of 
image imputation is to train an end-to-end CNN that 
learns the direct mapping between the images with miss-
ing pixels to the corresponding, complete images.

However, this approach has shown to produce unsatis-
factory results that tend to blur out the regions of miss-
ing pixels rather than learning the underlying structural 
pattern. This is mainly because the network training is 
guided by the reconstruction error that is averaged over 
all pixels [67]. One remedy is to treat image imputation as 
a special “denoising” process and implement the hybrid 
approach as described in Section  2.1 [68]. The other 
approach, which has attracted increasing attention, is to 

Table 3  Comparison of probabilistic network techniques

Technique Advantage Disadvantage

Deep ensemble Highest model diversity; Easy to parallelize Multi network struc-
ture; Most parameter 
tuning

MC dropout Single network structure; Easy to parallelize Potentially unstable 
when applied 
throughout large 
network

Multi-head network Single network structure; Fewest parameter tuning Lowest model diversity

Figure 7  Time series imputation with RNN, adapted from Ref. [66]
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add an “adversarial” training loss that penalizes the CNN 
when the recovered image does not resemble the original 
image [67]. Adversarial approaches are gaining popular-
ity for high-fidelity data generation. In the context of data 
curation, one of its most significant applications is in data 
balancing, which will be described in the next Section.

2.3 � Data Balancing
Data balancing addresses the need for having sufficient 
faulty data to produce a balanced dataset when training 
neural networks to minimize learning bias [69]. This is 
particularly important for tasks involving data classifi-
cation, e.g., in fault diagnosis [70]. However, operating 
machines under faulty conditions just for the purpose of 
collecting faulty data for algorithm training is not feasible 
in real-world applications, since machines are required 
to maintain normal operating conditions to ensure prod-
uct quality. One approach to remedy this issue is transfer 
learning, which allows to transfer the diagnostic model 
or feature from a source domain in which faulty data is 
sufficient to the target domain which lacks sufficient data 
for network training. The latest development of transfer 
learning has been summarized by a series of review and 
technical papers [71‒74]. The other research direction 
has been typically relying on high fidelity synthetic data 
to augment the number of samples and improve data bal-
ancing, which is the primary focus of this section.

Early works of data synthesis mainly relied on data 
interpolation, e.g., synthetic minority over-sampling 
technique or SMOTE [75]. The idea is to first select ran-
domly a minority class sample and one of its neighbors. 
Then, a synthetic example is generated as a convex com-
bination of the two chosen samples. While the method 
works well for low dimensional data such as process 
parameters and machine settings, SMOTE and related 
techniques cannot capture the complex characteristics as 
commonly shown in high dimensional data, such as high-
speed time series or images [24].

A more systematic approach is made available by the 
AE-based generative model [76]. The idea is to learn a 
latent representation of the existing data and its underly-
ing distribution using the AE and generate synthetic data 
from that distribution via data sampling. However, as the 
generation process is not guided by any supervision with 
regards to the quality of the outcome, the result of the AE 
can be dissatisfactory. A major breakthrough came with 
the development of the generative adversarial networks 
(GAN) [29], which is a specialized DL architecture that 
allows for high fidelity data synthesis with supervision.

The main structure of GAN is composed of a genera-
tor and a discriminator, as shown in Figure 8. The GAN 
operates on the premise that the generator can be trained 
to convert a random noise vector into synthetic data (e.g., 

time series or image) that closely resembles the real data. 
The performance of the generator is evaluated by a dis-
criminator, which aims to correctly classify an input as 
either “real” or “generated”. Specifically, the discrimina-
tor randomly takes as input either the real data or the 
synthetic data produced by the generator and outputs a 
scalar representing the probability that the input data is 
“real”. Conversely, the objective of the generator is to gen-
erate synthetic data that are indistinguishable from the 
real ones and deceive the discriminator. This is realized 
through the training of the GAN, in which the generator 
and discriminator play a minimax game: the generator 
will try to minimize the discriminator’s accuracy, while 
the discriminator tries to maximize it. The final training 
outcome will be an equilibrium point, at which the dis-
criminator will no longer be able to distinguish the gen-
erated data from the real ones, and the generator can no 
longer synthesize “better” data as the discriminator no 
longer provides useful feedback for further improvement. 
At this point, the generator is capable of synthesizing 
data with high-fidelity to augment the number of samples 
in the minority classes and reduce dataset imbalance.

2.4 � Data Annotation
Data annotation is about associating data with proper 
contextual information under which it is acquired by 
using proper semantic format. The use of image data, 
which contain rich spatial information that are not cap-
tured in time series signals, has become an important 
aspect of DL-based techniques [6]. At the same time, 
annotation and labeling of the image regions of inter-
est (ROIs) semantically, which are indicative of critical 

Figure 8  GAN for image data synthesis, adapted from Ref. [29]
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information on the condition of the machine and pro-
cess of interest, has become a challenge due to the lack 
of techniques to effectively parse abstract image patterns. 
Traditionally, the method of thresholding has been exten-
sively applied [77, 78] with the goal to set a pixel intensity 
threshold value that separates the ROI from the remain-
ing regions. However, the technique assumes that: (1) all 
pixels with intensity values within an established range 
belong to the same ROI, and (2) ranges for different ROIs 
are non-overlapping. In reality, both of the assumptions 
are often times invalid.

Built upon the image analysis capability of the CNNs, 
fully convolutional networks (FCNs) have been devel-
oped for the purpose of image semantic annotation 
[30]. A typical FCN is constructed by a pair of CNNs: 
an encoder and a decoder. The encoder, consisting of 
convolutional layers and pooling layers, distills essential 
information from the input image that is most relevant 
to semantic annotation. The decoder, which consists of 
upsampling operations and a classification layer, gener-
ates the annotated images.

At the classification layer, instead of producing a single 
probability distribution indicating the probabilities with 
which the image belongs to different categories (e.g., fault 
types) as in standard CNNs, the FCNs utilizes the soft-
max function at the pixel level, generating for each pixel 
a probability distribution that the corresponding pixel 
belongs to different ROIs (e.g., defect, tool wear) or non-
ROI. Each pixel is then classified as the ROI or non-ROI 
with the highest probability.

Over the years, various semantic annotation methods 
built upon FCNs have been developed. The two widely 
used techniques are U-Net [79] and mask region-based 
CNN (RCNN) [80]. The basic structure of U-Net is 
shown in Figure 9. Compared to FCN, U-Net is designed 
in a symmetric fashion with the progressive upsampling 
layers in the decoder that match the encoder layers. In 
addition, the corresponding layers in the encoder and 
decoder are connected via skip connections for network 
training [82].

In mask RCNNs, instead of analyzing the image as 
a whole, a region proposal network (RPN) is attached 
before the FCN to allow the network to first focus on 
small regions that potentially contain ROI, before carry-
ing out FCN-based annotation [80]. Once annotated, the 
image can be not only used for direct diagnosis purpose 
(e.g., surface defect diagnosis, tool wear evaluation), the 
information extracted from the ROIs, such as area and 
geometry features, can also serve as the input to the DL 
model for other predictive tasks.

Besides image data, semantic annotation and labeling 
of text is also attracting increasing attention, as reflected 
in the development of natural language process (NLP) 

techniques [83]. The fundamental problem of annotat-
ing text in manufacturing, such as maintenance logs and 
inspection reports, is to convert text into computable 
representations while maintaining their semantic infor-
mation. One of the most widely investigated techniques 
is embedding, which refers to the mapping of words to 
their representations in a high-dimensional space [84]. 
To establish domain-specific embedding and annotate 
manufacturing context, a key step is to train the embed-
ding mapping in order to maximize the consistency 
(quantified as inner product) between an individual word 
and its existing manufacturing context while minimiz-
ing the consistency with the non-existing contexts. This 
allows word semantics to be implicitly encoded in their 
respective representations based on the number and fre-
quency of the shared contexts, and the semantically simi-
lar words are expected to have similar representations.

Once the embedding is established, DL-based language 
models can be trained to decompose interested texts 
into interpretable labels for diagnosis and prognosis [85]. 
Common DL-based models include 1-D CNN and RNN 
(and its variants), both of which allow the analysis of 
sequential patterns, which is a prerequisite for language 
understanding [86]. Recently, more dedicated, and pre-
trained language models have emerged, such as trans-
formers [87] and bidirectional encoder representations 
from transformers, or BERT [88]. These models generally 
consist of a stack of encoders and self-attention modules, 
which allow efficient analysis of relationship among dif-
ferent words in the inputs and outputs. For example, the 
key element in the transformer is a {query, key, value} 
tuple that is computed for each word, and the association 
among different words is quantified as the inner product 
of their corresponding tuple values. These pre-trained 
models provide a backbone for general language analy-
sis, which can be adapted for specific purpose through 

Figure 9  Structure of U-Net, adapted from Ref. [81]
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fine-tuning with a task model [89]. In Figure 10, the gen-
eral flowchart for text annotation/labeling is shown.

3 � Model Interpretation
The capability of DL algorithms to automatically learn 
characteristic features from data to minimize errors in 
diagnosis or prognosis and reduce the need for extensive 
human knowledge is often credited as the advantage of DL 
[10]. However, the prediction logic of DL-based algorithms 
is generally not clearly interpretable in a physical sense, 
thus making it difficult to establish trust from the users in 
the model performance. To address the need for under-
standing the working mechanisms of DL and facilitate its 
broad acceptance, several representative techniques that 
improves the interpretability of DL models are highlighted 
in this section, and are summarized in Table 4.

3.1 � Relevance Analysis
One major research activity towards improving DL 
model interpretability is to determine the association, 
or relevance of each input with the output. For tasks in 
which different regions of the input have semantic mean-
ings, such as images or frequency spectrums, the pre-
diction logic of the DL model can then be evaluated and 
verified against human knowledge by means of relevance 

analysis. Representative techniques include saliency 
maps [90, 91], deconvnet [92], layer-wise relevance prop-
agation (LRP) [31].

Saliency maps. Saliency maps provide the ranking of 
the individual inputs based on their influence on the net-
work decision [90]. The idea is to approximate the net-
work in the neighborhood of the inputs using a Taylor 
expansion and quantify the sensitivity of the decision 
relative to changes in each input. Once the sensitivity of 
each input is computed, a sensitivity heatmap can then 
be generated to visualize the input regions that most 
influence the network decision, as shown in Figure 11.

Deconvnet. An approach similar to the saliency maps 
is deconvnet [92]. Intuitively, a deconvnet is a network 
that uses the same kernels and pooling operations as the 
standard CNN that carries out the decision making, but 
in a reversed direction. For example, instead of comput-
ing a weighted sum of image pixels based on convolu-
tional operations to generate features, it distributes the 
features backwards to the individual pixels. In practice, 
the deconvnet is attached to its corresponding CNN, 
forming a U-shape structure as shown in Figure  12. At 
each convolutional layer, each individual neuron is evalu-
ated by first setting all other neurons in the layer to zero. 
Next, the generated feature maps are passed as input to 
the attached deconvnet layer to reconstruct its association 
with the layer beneath that produces the output of the 
selected neuron. This process is then repeated until the 
associations from individual image pixels are obtained.

LRP. Different from saliency maps and deconvnet in 
which the relevance is determined via network weights, 
the concept of LRP is to redistribute the network’s out-
come backwards using local distribution rule based on 

Figure 10  Flowchart of NLP in text annotation, adapted from Ref. 
[86]

Table 4  Representative techniques for DL model interpretation

Relevance analysis Ref. Interpretable structure Ref.

Weight-based Saliency maps; Deconvnet [90‒92] Attention mechanism Bahdanau attention;
Luong attention

[32, 94]

Weight and activation-based Layer-wise relevance propagation [31] Physics-integrated Physical model compensation; 
numerical parameter calibration; 
physics-informed training

[99, 101‒104]

Figure 11  Example of saliency maps,  adapted from Ref. [91]
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both network weights and activations, until it assigns 
a relevance score to each individual input [31]. Specifi-
cally, the relevance scores are propagated starting with 
the final layer in the neural network. The scores are then 
propagated to the early layers in a way that the sum of the 
score is preserved at each layer. Mathematically, the local 
distribution rule is expressed as:

where R(l)
i  is the relevance score for the ith neuron in the 

lth layer. sign() represents the sign function, ǫ is a numer-
ical stabilizer, and zij is the contribution (neuron pre-
activation value times the corresponding weight) of the 
ith neuron in the lth layer to the jth neuron in the (l+1)
th layer. Eq. (2) indicates that the relevance scores can be 
positive or negative.

Using the diagnosis of machine fault types as an exam-
ple, a positive-valued relevance score represents the evi-
dence for the diagnostic decision, while a negative-valued 
score indicates the evidence against the diagnostic deci-
sion. By analyzing relevance scores propagated to the 
input of the DL model, the input regions assigned with 
high positive scores can be interpreted as an indication 
that the corresponding regions significantly contribute to 
the diagnostic decision, and vice-versa for regions with 
high negative scores. An illustrative example of recogniz-
ing major structural features of an airplane image using 
LRP is shown in Figure 13.

3.2 � Attention for Interpretable Structure
Different from the relevance analysis for interpreting a 
trained DL model, the attention mechanism is a struc-
ture incorporated into the network design to establish 
the prediction logic that is inherently interpretable [32, 
94]. The design of the attention mechanism comes from 
domain knowledge and is most suited for capturing the 

(2)R
(l)
i =

∑

j

zij
∑

i’zi’,j + ǫsign(
∑

i’zi’ ,j)
R
(l+1)
j ,

dynamic relationship of the processes. For example, in 
the sequential printing process of additive manufac-
turing (AM), the layer-wise influence on the final part 
property induced by thermal activities can be different 
for different parts, for the same number of printed lay-
ers. In addition, the number of total printed layers of a 
part also varies as the setting of layer height changes. 
This means that the prediction logic of the DL model 
is required to be adaptive to the variations. This poses 
a challenge for the standard neural network, since it 
uses network weights to encode the relationship that 
become fixed values after training and are independ-
ent of the input. Therefore, they cannot capture the 
dynamic relationships.

Attention mechanisms provide a means to alleviate 
this limitation by enabling dynamic weight generation 
based on the specific context in the process. Specifi-
cally, the weights are generated by a separate context 
network that takes the relevant context as the input. For 
example, to compute the thermal influence of a particu-
lar printed layer i to the part property in AM, the con-
text can include the machine settings, material property 
and the thermal activities of the adjacent printed layers. 
The related adaptive weights wi , i=1, 2,…, N, are com-
puted with the corresponding unnormalized weights 
being first generated through a dense layer in the con-
text network. Subsequently, to ensure that the relative 
influences of all printed layers add up to one for inter-
pretability, a softmax layer is incorporated to normalize 

Figure 12  Structure of deconvnet,  adapted from Ref. [93]

Figure 13  Illustration of LRP, adapted from Ref.  [31]
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the generated weights. Mathematically, the process can 
be expressed as:

in which Wattn,dense represents the weights of the dense 
layer in the context network, xcontext are the inputs to the 
context network, and w’

i is the unnormalized weights. 
This version of attention mechanism is called Bahdanau 
attention, named after its creator [32]. Luong et  al. [94] 
later improved the Bahdanau version by replacing the 
dense layer in the context network with inner product to 
improve computational efficiency.

3.3 � Integrating Neural Network with Physics
Although the attention-based network structure provides 
a pathway to capturing interpretable relations, it does not 
guarantee that the discovered relation is consistent with 
the underlying physics of the machine or process. This is 
because during network training, the update of the net-
work weights, which determine the exact relationship 
between the inputs and the outputs that the network rep-
resents, is guided by the prediction error only. Therefore, 
there is no guarantee that the network will converge to 
the relation that is also physically meaningful. The “spu-
rious” relations discovered by the neural networks often 
cannot generalize to unseen scenarios and can be detri-
mental for critical tasks such as machine fault diagnosis 
and performance prognosis [95]. In an effort to remedy 
this issue, the integration of neural networks and physics 
is attracting increasing attention in recent years. Three 
representative approaches are described in this section.

The first approach is based on the fact that physi-
cal models underlying machines and processes often 
involve assumptions and simplifications [96]. For exam-
ple, physical predictive models for machining pro-
cesses such as grinding and milling often include the 
effects from major process parameters only, such as 
depth of cut, while having limited capability to incor-
porate other factors, such as the operating conditions 
[97, 98]. Therefore, while these models can general-
ize well, their predictive accuracy is often lacking due 
to the incompleteness of physical phenomena that are 
accounted for. On the other hand, neural networks have 
the advantage of learning the deviation of the physical 
model from real-world observations by leveraging the 
in-situ sensing data that reflects the operating condi-
tions. Therefore, by using a neural network to compen-
sate for the deviation of the physical model (Figure 14), 

(3)w’
i = Wattn,densexcontext,

(4)wi =
exp(w’

i)
∑

j=1,2,...,N exp(w
’
j)
,

the complementary strength of the two can be synergis-
tically integrated [99], leading to improved predictive 
accuracy as compared to physical models alone, and 
enhanced network capability to generalize as compared 
to pure data-driven methods.

The second approach leverages neural networks 
to numerically calibrate the unknown parameters in 
the physical models that are time-consuming or dif-
ficult to calibrate experimentally. As an example, Par-
is’s law for fatigue crack propagation is expressed as: 
da/dt = C�K

m , in which both C and m are unknown 
parameters that require experimental testing to deter-
mine [100]. In addition, the stress intensity range �K  
also depends on the parameter that is related to the 
part geometry [100]. In this scenario, a neural network 
can be used to calibrate these unknown model param-
eters by associating them to the in-situ sensing inputs, 
thereby preserving the physical intuition of the model 
while alleviating the requirement for extensive experi-
ment parameter calibration [101].

The third approach involves adding physical con-
straints during the network training process, such that 
the relation discovered by the network will be consist-
ent with the physical domain knowledge. The physical 
constraints can be in the form of analytical equations or 
experimentally verified trends. For example, machine 
performance degradation should be monotonic, there-
fore, the performance predicted by the neural network 
should be monotonically decreasing as the operation 
cycle increases [102]. With the physical constraint, the 
network is forced to follow the physical equation or 
trend imposed by the constraint and can generalize well 
outside of the range of training data [103, 104]. Table 5 
summarizes the comparison of these three approaches.

Figure 14  Integration of physical model and neural network [99]
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4 � Application Highlights
The ultimate goal of data curation and model interpre-
tation is to improve data quality to ensure effectiveness 
and reliability of DL-based analysis and improve inter-
pretability of DL-based methods. In this section, several 
applications in manufacturing that have benefited from 
data curation and model interpretation techniques are 
highlighted.

4.1 � Condition Monitoring of Machines and Processes
Condition monitoring refers to monitoring the quality 
and performance-related variables of a machine or pro-
cess to identify significant deviation that is indicative of 
potential faults or anomalies [105]. One prerequisite for 
effective condition monitoring is the assurance of data 
quality such that the important variables can be faithfully 
reflected. Recent developments in data curation have 
contributed to data quality improvement in condition 
monitoring; two representative examples based on data 
annotation and data imputation are presented as follows.

In many condition monitoring scenarios, although 
part quality related information is captured in the sens-
ing data, it is often not directly computable and requires 
significant manual examination. One example is machine 
tool wear images. While a human worker can delineate 
regions of tool wear and consequently estimate the tool’s 
condition from images, automated annotation that saves 
time has long been missing until the recent development 
of DL-based methods. In Ref. [106], Miao et al. presented 
a U-Net based approach for tool wear annotation in cut-
ting process, as shown in Figure 15. Considering that the 

worn region of the tool typically covers only a small por-
tion of the image, making the numbers of the worn region 
and normal region pixels unbalanced, a Matthews Corre-
lation Coefficient (MCC)-based loss function is designed 
to alleviate the effect of data imbalance during the U-Net 
training. Effectiveness of the developed method has been 
confirmed in the experimental evaluation, achieving over 
95% accuracy in tool wear ROI annotation.

With the increasing variety of data sources, data with 
missing values has become a frequent phenomenon, 
which negatively impacts the effectiveness of condition 
monitoring and potentially lead to faults or anomalies 
going undetected. DL-based data imputation has pro-
vided an effective mean of dealing with this issue. In 
Ref. [62], a bi-directional LSTM-based method has been 
developed for time-series imputation in energy con-
sumption monitoring. In addition to the rolling-window 
strategy and auxiliary sequence alignment as described 
in Section  2.2, this work also features a bi-directional 
strategy that allows the missing values to be estimated 
based on two estimators in order to further improve the 
accuracy and robustness [107]. Experimental evaluation 
demonstrated a clear advantage of the developed method 
over traditional techniques in terms of imputation accu-
racy (root mean squared error reduced from 170.8 W to 
90.3 W), especially in the situation of continuous missing 
values.

While common machine and process variables such 
as temperature can be measured in real-time, other 
important variables may not be directly measurable in-
situ. They often only become available at the end of the 
process through post-process inspection. Therefore, 
predictive models are required to infer these variables 
from in-situ sensing data for timely detection of faults or 
anomalies. While DL-based predictive modeling for con-
dition monitoring has been an active research field, the 
recent development of interpretable DL models has the 
potential to facilitate their widespread acceptance.

In Ref. [102], a bi-directional GRU with physics-
informed network training has been developed for tool 
wear monitoring in milling. The input to the network 
at each step consists of statistical, frequency, and time-
frequency features extracted from real-time force and 
vibration sensing data. The tool wear prediction at the 

Table 5  Comparison of physical model and neural network integration approach

Approach Suited for Not suited for

Physical model compensation Explicit physical model with known parameters Implicit physical model; Empirical and experimental trend

Model parameter numerical calibration Explicit physical model with unknown parameters Implicit physical model; Empirical and experimental trend

Physics-informed network training Explicit and implicit physical model; Empirical or 
experimental trend

Other form of domain physical knowledge

Figure 15  U-Net for tool wear image annotation, adapted from Ref. 
[106]
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network output is regularized by a physics-based loss 
function, which penalizes the network training when any 
pair of predicted tool wear values do not monotonically 
increase with the increasing cycle number. This penalty 
guides the network weight update to achieve maximum 
physical consistency. Experimental evaluation has dem-
onstrated that the integration of neural network with 
physics not only eliminated the physical inconsistency 
in tool wear prediction, but also consistently achieved 
higher predictive accuracy as compared to the networks 
without physics-informed training.

In Ref. [108], an attention-based AM process monitor-
ing and part predictive modeling method has been devel-
oped as shown in Figure 16. The attention mechanism is 
designed to capture the dynamic layer-wise thermal influ-
ence on the AM condition and part property. To generate 
the dynamic weights for each printed layer, the machine 
settings, material properties and the thermal activities 
up to that printed layer are selected as context for the 
attention mechanism. Evaluation results have shown that 
larger weights are generated for the layers printed later in 
the AM process as compared to the earlier layers and the 
trend is consistent under different AM machine settings.

4.2 � Diagnosis of Fault and Anomaly
DL-enabled diagnosis requires associating condition-
related features extracted from sensing data to the cor-
responding fault or anomaly root cause. To handle a large 
number of fault types with multiple fault severity levels, 
DL models often require a large number of training sam-
ples in order to fully optimize. In real-world applications, 
the collection of faulty data is often limited by production 
and safety constraints.

Recently, the method of data synthesis based on 
GAN to alleviate the lack of high-fidelity data for model 
training has shown great potential. As an example, the 

effectiveness of GAN in synthesizing sensing data fea-
tures related to a faulty motor is presented in Ref. [109]. 
Specifically, the features evaluated are the IMFs from the 
EMD. The evaluated motor conditions include normal 
condition, inner race and outer race faults of a motor 
bearing, and broken rotor bar. In addition, different data 
imbalance ratios (from 2:1 to 16:1) between the normal 
and faulty datasets are considered. For data synthesis, 
both the generator and the discriminator of the GAN 
are formulated as fully connected networks, with the 
synthesized features serving as an input to another fully 
connected network for motor condition diagnosis. It has 
shown that the GAN-based method has consistently out-
performed SMOTE-based approach in terms of fault rec-
ognition accuracy.

In Ref. [110], an auxiliary classifier GAN, or ACGAN, 
has been presented to incorporate the classification capa-
bility for the fault types directly into the discriminator, as 
show in Figure 17. In this work, vibration signal from the 
motor is used as the target for data synthesis. To analyze 
the temporal pattern embedded in the time series data, 
both the generator and the discriminator are constructed 
as stacked 1-D CNNs. Evaluated on a set of six differ-
ent motor conditions, including normal, stator winding 
defect, unbalanced rotor, inner race bearing fault, broken 
rotor bar and bowed rotor, the GAN-based method has 
shown significant improvement in diagnosis accuracy for 
the dataset with a 2:1 imbalance ratio. A similar work has 
been reported by Wang et al., in which they investigated 
synthetic vibration signals for gearbox fault diagnosis 
[111].

In addition to machine fault diagnosis, GAN has 
also been investigated for non-compliant tool condi-
tion detection. In Ref. [112], synthesis of wavelet time-
frequency spectrums using GAN has been investigated 
for non-compliant tool detection in milling. Different 
from the previous works in which the classifier is either 

Figure 16  Attention-based AM monitoring and part property 
prediction [108] Figure 17  Auxiliary classifier GAN, adapted from Ref. [110]
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constructed separately or incorporated with the discrimi-
nator, the generator of the GAN is inverted to perform 
non-compliance detection in this work, resulting in a 
25% improvement in accuracy for the dataset with 2:1 
imbalance ratio.

Besides data balancing, the capability of image seman-
tic annotation based on FCN has also enabled process 
condition monitoring and anomaly detection that would 
otherwise require significant human intervention. One of 
the successful applications is AM. In Ref. [113], a com-
prehensive investigation of layer-wise anomaly detection 
and evaluation based on image semantic annotation has 
been reported for three AM technologies: laser fusion, 
binder jetting and electron beam fusion. A total of 12 
common surface anomalies, such as spatter and recoater 
streaking, have been evaluated. The network structure 
of the developed annotation method is built upon the 
U-Net while being enhanced by multi-stream analysis of 
the image at multiple scales. Evaluation of the developed 
method has shown that it can be executed in real-time 
on image data of resolution up to 3672×5496 pixels. The 
performance of the developed method is also shown to 
be superior to that of previous state-of-the-art in terms 
of anomaly ROI segmentation accuracy. A similar work 
has been reported for over-extrusion detection in the 
fused filament fabrication process [114].

In addition to the AM processes, Wu et al. developed 
a solder joint annotation method based on mask RCNN, 
as shown in Figure 18, which allows to locate, segment, 
and classify solder joint regions at the same time, which 
is critical for quality assurance in printed circuit board 
(PCB) manufacturing [115]. Due to the limitation in 
training images for solder joint, the method of transfer 
learning has also been investigated, which transfers a pre-
trained network using the large-scale “common objects in 
context” dataset (by Microsoft) for the purpose of sol-
der joint annotation. Four defective joint conditions are 
evaluated. The mask RCNN-based method has shown to 
achieve 100% condition recognition accuracy and 97.4% 
ROI segmentation accuracy.

Recent development of text annotation has also con-
tributed to the field of fault diagnosis. In Ref. [89], a text 
semantic decomposition method based on BERT has 
been described that extracts fault-related information, 
such as equipment, fault, cause, and solution directly 
from text documents. In addition to BERT as the pre-
trained backbone language model, the developed method 
also features a stacked LSTM and conditional random 
field (CRF) [116] as a task model. The whole network 
structure is shown in Figure 19. In experimental evalua-
tion, the developed method has achieved state-of-the-art 
performance, outperforming the method based on LSTM 
+ CRF in terms of annotation accuracy for “equipment” 

(from 89.7% to 83.7%), “fault” (from 61.6% to 53.8%), 
“cause” (from 77.4% to 76.3%) and “solution” (from 44.2% 
to 36.7%). On the other hand, it is noted that the absolute 
performance is still far from satisfactory. For example, 
the accuracy of extracting “fault”, “cause” and “solution” 
information is significantly worse than that of the “equip-
ment” information, indicating that NLP for fault diagno-
sis is still at its early development stage and has a long 
way to go before reaching its full potential.

Beyond data curation, research on improving the inter-
pretability of the DL-based diagnostic models has also 
been reported. Grezmak et al. investigated LRP to deter-
mine which regions of the wavelet time-frequency spec-
trum of the vibration signal that contribute the most to 
the motor fault diagnosis performance [117]. The diag-
nostic model is first constructed as a CNN, which takes 
the time-frequency spectrums as the input and determine 
which of the four conditions the corresponding motor 
belongs to—normal, bowed rotor, broken rotor bar and 
unbalanced rotor. Subsequently, LRP is investigated to 
determine how the fault-related information embedded 
in the input are learned by network to recognize different 
fault types. Figure 20 shows the corresponding flowchart 
of the developed method. Experimental evaluation con-
firms that the CNN learns to distinguish different fault 
types through different frequency bands in the wavelet 
spectrums such that the patterns are consistent for the 
same motor conditions, while being robust to the initial 

Figure 18  Mask RCNN for solder joint annotation and defect 
detection, adapted from Ref. [115]
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network weights during the training process. A similar 
work has been reported for gearbox fault diagnosis based 
on frequency spectrums of vibration signal [118]. In 
Ref. [119], different relevance-based DL interpretation 
methods are compared under the context of LCD panel 
inspection, in which LRP has shown to produce the most 
desirable relevance heatmap for defect detection.

In addition to relevance analysis, attention mechanism 
has also been increasingly investigated to determine 
how input elements are being associated by DL models 
to machine and process conditions. Li et al. designed an 
attention-incorporated network to determine the influ-
ence of different segments of bearing vibration time 
series signals on the decision-making process of fault rec-
ognition [120]. In this work, for each evaluated vibration 
signal segment, the context of the attention mechanism 
includes the segments within a time interval in its vicin-
ity. Experimental evaluation has shown that the attention 
mechanism tends to assign large weights to the segments 

that contain or are located closer to fault-related impulses 
and smaller weights to the remaining regions, which is 
consistent with human logic. A similar work is reported 
in Ref. [121].

Recently, new interpretable neural networks structures 
have been reported. For example, Li et  al. developed 
WaveletKernelNet [122], in which a continuous wavelet 
convolutional layer (CWConv), as shown in Figure 21, is 
designed to replace the standard convolutional layer in 
the CNN to discover interpretable filters. By parameter-
izing the filter using a scaling and a translation parameter 
[123], the network is shown to generate highly custom-
ized wavelet filters by learning from the raw time series 
signals, which are shown to be effective for bearing and 
gearbox fault diagnosis.

4.3 � Prognosis of Remaining Useful Life
Prognosis aims at predicting the temporal evolution of 
machine performance from the current time into the 
future, and possibly until its functional failure. Accu-
rate RUL prediction provides the technological basis for 

Figure 19  Flowchart for fault-related information extraction from text documents based on NLP [89] (The input (in Chinese) means “the drain valve 
does not match the pressure applied”)

Figure 20  Interpretable CNN using LRP for motor fault diagnosis, 
adapted from Ref. [117]

Figure 21  Operation of CWConv layer [122]
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predictive maintenance and contributes directly to the 
reduction of unexpected downtime in manufacturing [7].

In general, DL-based prognosis consists of establish-
ing a machine performance evolution model that parses 
the sequential pattern embedded in the performance 
evolution and forecasts its future progression based on 
its historical trajectory. Relevant DL models are usually 
trained with a set of run-to-failure sequences, which 
can be time-consuming to obtain. This limitation can be 
well addressed by GAN through run-to-failure data syn-
thesis. Khan et al. investigated this approach for bearing 
degradation prognosis [124]. Bearing health degradation 
is represented as the evolution of the root mean square 
(RMS) value of the vibration signal over time. The deg-
radation trajectories generated by GAN have shown to 
highly resemble the run-to-failure data collected from 
the real experiment and provides the foundation for the 
degradation model training.

Hou et  al. developed an integrated method based on 
GAN and LSTM for RUL prediction [125]. The network 
structure is shown in Figure 22.

Different from the conventional GAN-based method, 
the data synthesis function of the GAN is utilized in this 
work to improve the quality of the feature extracted from 
the sequential data to support RUL prediction, rather 
than generating more training samples. Specifically, the 
generator is constructed as an AE, and is supervised by 
a 1-D CNN-based discriminator. In addition, the latent 
feature extracted by the AE is associated to the RUL by 
a LSTM. As a result, the training process is guided by 
two objectives: improving the capability of data synthesis 
from the latent features (which is implicit) and the RUL 
predictive accuracy based on these latent features. Once 
trained, the encoder in the generator and the LSTM 
are directly used to take an on-going sequence as input 
and predict its RUL. The authors demonstrated that the 
developed method has reduced the RUL prediction error 
for aircraft engine by up to 15% as compared to the previ-
ous state-of-the-art.

Similar to the application in diagnosis, attention 
mechanism has also been increasingly investigated 
in RUL prognosis. The objective is to determine the 
importance of individual features from the sequential 
data as well as the relevance of individual time steps in 
the past trajectory to the machine’s RUL. Chen et  al. 
developed an attention-based DL model that not only 
fuses the temporal features learned using a LSTM from 
different time steps, but also with the handcrafted fea-
tures, such as the mean and the coefficient of a regres-
sion model based on the historical sequential data 
[126]. The context of the attention mechanism at each 
time step is represented by the sequential evaluation 
pattern up to that time step as generated by the LSTM. 
The developed network structure is shown in Figure 23.

In the experimental evaluation for aircraft engine 
RUL prediction, the weights generated by the atten-
tion mechanism indicates that the features from the 
more recent time steps have larger influence on the 
RUL prediction and the importance decreases for the 
earlier time steps. This is consistent with the logic used 
by human for prediction. An attention-based method 
has also been investigated for bearing RUL prediction 
[127]. In this work, an encoder-decoder structure based 
on gated recurrent unit (GRU) network has been devel-
oped. The encoder first distills the essential information 
from the temporal features and stores them in hidden 
states. Then, the attention-incorporated decoder ana-
lyzes the hidden states and adaptively determine the 
information to be used for RUL prediction.

Figure 22  RUL prediction based on GAN and LSTM, adapted from 
Ref.  [125] Figure 23  Attention-based RUL prediction, adapted from Ref. [126]
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5 � Conclusions and Future Work
While the convergence of big data, DL and computation 
has provided an unprecedented opportunity to advance 
the state-of-the-art in machine condition monitoring, 
fault diagnosis and RUL prognosis, uncertainty associated 
with data and the resulting low data quality, as well as the 
general “black-box” nature of DL algorithms, have posed 
significant challenges to the effectiveness and broad 
acceptance of DL-based methods in manufacturing. To 
improve data quality and promote user trust in DL, two 
critically related topics—data curation and model inter-
pretability, have been comprehensively reviewed in this 
paper. Major techniques covered include: (1) data denois-
ing that utilizes both physical modeling and data-driven 
characterization for contamination removal; (2) data 
cleansing that detects, corrects or removes outliers and 
missing values to ensure data completeness and validity; 
(3) data synthesis that resolves biases caused by insuf-
ficient and unbalanced dataset to reduce bias in model 
learning; (4) semantic annotation that provides condi-
tion-related contextualization to the sensing data; (5) 
relevance analysis that quantifies the contribution from 
different inputs in the decision-making process of the 
neural networks; (6) attention mechanism that allows the 
capturing of process dynamic relationships for improved 
model interpretation and performance, and (7) integra-
tion of DL with physics to ensure the consistency of DL 
findings with domain physical knowledge. To explain 
how these techniques are utilized in practical scenarios, 
typical manufacturing applications that were enabled by 
these techniques are highlighted.

As research on DL-enabled manufacturing continues 
to accelerate, several topics that closely relate to data 
curation and model interpretation are summarized here, 
as recommendations for future study:

Uncertainty quantification. Uncertainty quantification 
is critical to ensuring the robustness of DL models. DL 
algorithms do not natively incorporate data uncertainty 
into the analysis, and few reported research on DL-ena-
bled monitoring, fault diagnosis and RUL prognosis has 
discussed uncertainty quantification [128]. This makes it 
difficult to translate algorithms developed in academic 
laboratories into critical applications on the factory floor, 
where analysis and prediction results without uncertainty 
quantification cannot be considered realistic and trust-
worthy. Several uncertainty quantification techniques 
have been proposed recently for DL models, such as 
Bayesian deep learning [56, 57, 129, 130]. Still, more rig-
orous and general approaches need to be developed.

Physics-informed learning. While researchers have 
started to explore the integration of nerual network 

with physics by incorporating relevant physical knowl-
edge directly into DL models to ensure the consistency 
between the DL findings and physical laws [99, 101, 
102], physics-informed learning is still in its infancy. 
Manufacturing is characterized by rich physical-
domain knowledge that has been accumulated over the 
past century. However, most of the knowledge still can-
not be incorporated into the existing physics-informed 
learning framework. A broad, systematic approach is 
needed for transforming physical knowledge in various 
forms into elements that can be recognized and oper-
ated on by the DL algorithms.

Mitigating false discovery. One of the most com-
pelling aspects of DL is the discovery of potential 
new knowledge, such as the unknown associations 
between machine settings and process parameters 
and the resulting material characteristics of the prod-
uct. A common limitation associated with the current 
DL techniques is that they are generally not capable 
of controlling false discovery rate (FDR). This leads to 
significant waste of resources in the verification of the 
DL algorithms’ findings. Researchers have started to 
develop techniques that integrate analytical rigor into 
DL algorithms to control FDR [131]. Successful adap-
tation of these techniques into DL-based analysis in 
manufacturing continues to present an exciting future 
research direction.
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