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Actuation Spaces Synthesis 
of Lower‑Mobility Parallel Mechanisms Based 
on Screw Theory
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Abstract 

The lower-mobility parallel mechanism has been widely used in the engineering field due to its numerous excellent 
characteristics. However, little work has been devoted to the actuator selection and placement that best satisfy the 
system’s functional requirements during concept design. In this study, a unified approach for synthesizing the actua-
tion spaces of both rigid and flexure parallel mechanisms has been presented, and all possible combinations of inputs 
could be obtained, laying a theoretical foundation for the subsequent optimization of inputs. According to the linear 
independence of actuation space and constraint space of the lower-mobility parallel mechanism, a general expres-
sion of actuation spaces in the format of screw systems is deduced, a unified synthesis process for the lower-mobility 
parallel mechanism is derived, and the efficiency of the method is validated with two selective examples based on 
screw theory. This study presents a theoretical framework for the input selection problems of parallel mechanisms, 
aiming to help designers select and place actuators in a correct and even optimal way after the configuration design.
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1  Introduction
The lower-mobility parallel mechanism (PM) [1] gener-
ally refers to parallel mechanisms with two to five degrees 
of freedom (DOFs). With the development and wide 
application of parallel mechanisms, the lower-mobility 
parallel mechanism has become a focus of manipulators 
in international academic and industrial circles because 
of its high stiffness, high speed, high precision, simple 
structure, and being easily controlled. It has been suc-
cessfully applied in many engineering fields, such as flex-
ible micro-positioning platforms [2], precision attitude 
adjusting devices [3], the Z3 spindle head based on the 
3-PRS PM [4], the Tricept hybrid parallel manipulator 
[5], the space docking mechanism [6], and so on.

The configuration synthesis [7–11] of lower-mobility 
parallel mechanisms is regarded as an effective tool to 

find multiple solutions in the conceptual design phase 
of PMs, a series of systematic approaches for achieving 
a comprehensive type synthesis have been proposed, and 
a large variety of PMs generating a specified motion pat-
tern have been developed. On this basis, Yu et  al. [12] 
presented a unified approach for synthesizing both rigid 
and flexure parallel mechanisms in the framework of 
screw theory. However, the input parameters were gen-
erally not considered as design parameters in the above 
synthesis progress. In fact, the selection and placement 
of actuators are considered as important aspects in the 
synthesis of both rigid and flexure PMs. Improper actua-
tor selection or placement in a flexure PM may cause 
additional errors, such as parasitic errors and even lead 
to actuation invalidity or redundancy [13]. In addition, 
it may cause interference [14], actuator singularity [15], 
and different driving modes that could affect the work-
space [16], stiffness characteristic [17], and motion/force 
transitivity performance [18] in a rigid PM. When select-
ing and placing actuators, the moving pairs or frame 
pairs should be selected for convenience in practical 
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application. But this method of selecting actuators is not 
always correct, which may lead to the changes of screw 
system’s linear dependence and consequently result in 
actuation singularity. Based on the linear dependence 
of the screw system and the concept of the constraint 
screw, Zhao et  al. [19] presented a judgement method 
for the input selection of PMs. To identify the rational-
ity of inputs intuitively, Li et al. [20] researched the lin-
ear dependence of screw systems using Klein mapping 
theory. Gao et  al. [21] analyzed the actuating modes of 
the 5-UPS/PRPU parallel machine tool, and evaluated the 
relative merits of the five combinations of inputs utilizing 
the isotropy index of the constraining force or moment. 
The judgements about the rationality of input selection 
and the researches about actuation singularity mentioned 
above were all carried out by that whether the constraint 
matrix established by locking the selected actuated pairs 
is a full-rank matrix. To obtain the rational inputs, the 
constraint matrix often needed to be established more 
than once, and it could only verify whether the selected 
inputs were rational. However, any parallel mechanism 
could have several rational combinations of inputs that 
access the desired DOFs. Chablat et  al. [22] introduced 
a novel three-degrees-of-freedom planar parallel manip-
ulator with variable actuation modes, and its kinematic 
and dynamic performances were optimized by select-
ing the actuation mode on the basis of a certain strategy. 
Hopkins and Culpepper [23, 24] were perhaps the first to 
introduce actuation spaces to study the actuator selec-
tion and layout of flexure systems. In Refs. [23, 24], the 
relation between actuation and output motion was estab-
lished based on screw theory, the selection and place-
ment of linear actuators were considered on the basis 
of freedom space and constraint space, and a total of 26 
actuation spaces were enumerated. Yu et al. [25] derived 
a synthesis criterion stated as “any actuation space of a 
flexure mechanism is always linearly independent of its 
constraint space”, based upon an assumption of small 
deformation, and an analytical approach for synthesizing 
the line actuation spaces of a parallel flexure mechanism 
was presented. Conconi et  al. [26] discussed the notion 
of actuation space in a leg when studying the singulari-
ties of general parallel kinematic chains, and pointed the 
condition that the actuation is well-chosen, is “if and only 
if actuation space and constraint space of a leg are inde-
pendent”. The above researches have provided us with an 
entirely new idea, i.e., that the concept of actuation space 
not only exists in flexure parallel mechanisms, but also is 
suitable for rigid parallel mechanisms, therefore the actu-
ation spaces synthesis of rigid and flexure parallel mecha-
nisms could be considered uniformly.

Therefore, a unified approach has been presented in 
this study for synthesizing the actuation spaces of both 

rigid and flexure parallel mechanisms, and all the rational 
actuation spaces of PMs could be obtained, with the aim 
of helping designers to consider all design concepts and 
to quickly select and place the actuators. An important 
synthesis criterion stating that “any actuation space of 
lower-mobility PMs without redundant actuation is 
always linearly independent of its constraint space” is 
improved, a general expression of actuation spaces in the 
format of screw systems is deduced, and the synthesis 
process is obtained. Based on the synthesis approach and 
process, the typical lower-mobility 3-RPS rigid PM and 
the 3-DOF flexure PM were selected as examples to vali-
date the effectiveness of this unified method.

2 � Criterion for Synthesizing Actuation Spaces
Screw theory is applicable for both rigid and flexure 
mechanisms. So, based on all the achievements in the 
application of these two classes of mechanisms, it can be 
concluded that establishing a unified approach for syn-
thesizing the actuation spaces of both rigid and flexure 
mechanisms based on screw theory is wholly feasible.

2.1 � Actuation Space
The branches of a lower-mobility PM can transmit 
motion, actuation force, and provide constraint force to 
the end effector. The motion, actuation force, and con-
straint force can be represented by motion twist, actua-
tion wrench and constraint wrench in screw theory.

Definition 1. Twist and freedom space
The motion of the kinematic pair and the moving plat-

form of the mechanism can be represented by a twist in 
a rigid parallel mechanism. In a flexure parallel mecha-
nism, the micro-deformation of the flexure system and 
the motion of the moving platform can also be repre-
sented by a deformation twist.

Correspondingly, an n-dimensional freedom space SD , 
reflecting a specified motion pattern, can be spanned by 
n independent motion twists $Di of the moving platform, 
which is written as: 

Definition 2. Constraint wrench and constraint space
The constraint wrench represents the constraint force 

acting on the mechanism, which is the reciprocal screw 
of the twist. Therefore, an m-constraint space SC is 
spanned by m independent constraint wrenches $rj  , i.e., 

Definition 3. Actuation wrench and actuation space
The actuation wrench refers to a wrench that is not 

reciprocal to the twist corresponding to the actuated pair, 

(1)SD =
[

$
T
D1 . . . $TDi . . . $

T
Dn

]T
, i = 1, 2, · · · , n.

(2)Sc =
[

$
rT
1 · · · $rTj · · · $rTm

]

, j = 1,2, · · · ,m.
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but reciprocal to other twists in a branch [27]. Each actu-
ated pair corresponds to an actuation wrench, in conse-
quence a set of actuated pairs were selected, and a set of 
actuation wrenches were generated correspondingly.

Therefore, an n-dimensional actuation space SA is 
spanned by n independent actuation wrenches $Ak , 
which is expressed as: 

In general, the dimension of the actuation space is 
equal to the number of DOF of the mechanism.

2.2 � Criterion for Synthesizing Actuation Space
The sum of the dimension of the freedom space and the 
constraint space of the moving platform is 6, and the 
dimension of the actuation space is equal to the dimen-
sion of the freedom space. Therefore, the sum of the 
dimension of the actuation space and the constraint space 
is 6 [10]. It can be concluded that the actuation space is 
always linearly independent of its constraint space for the 
lower-mobility PMs without redundant actuation, when 
the mechanisms have definite motion. The proof is as 
follows:

For the lower-mobility PM, assuming that the actu-
ation space is linearly dependent of its constraint 
space, there are coefficients αk(k = 1, 2, . . . , n) and 
βj
(

j = 1, 2, . . . , 6− n
)

 that are not all zero, which enable 
the following formula to hold:

where n is the number of DOF of the mechanism.
According to classical screw theory [28, 29], the recip-

rocal product of the constraint wrench $rj  and the motion 
twist $Di is zero, i.e., 

According to Eqs. (4) and (5), this leads to 

Obviously, Eq. (6) is false. According to the relation-
ships between motion, force and power, the reciprocal 
product of the motion twist and the actuation wrench is 
not zero when the actuation wrench works on the mov-
ing platform. Therefore, it can be concluded that the 
actuation wrenches are always linearly independent of 
the constraint wrenches.

(3)SA =
[

$
T
A1 . . . $TAk . . . $An

T
]T

, k = 1, 2, · · · , n.

(4)
n

∑

k=1

αk$Ak =
6−n
∑

j=1

βj$
r
j ,

(5)$
r
j ◦ $Di = 0.

(6)

(

n
∑

k=1

αk$Ak

)

◦ $Di =
6−n
∑

j=1

βj$
r
j ◦ $Di = 0, i= 1, 2, · · · , n.

Therefore, an important criterion for synthesizing the 
actuation space of both rigid and flexure parallel mecha-
nisms is proposed, which is stated as: the actuation space 
is always linearly independent of its constraint space for 
the lower-mobility PMs without redundant actuation, 
when the mechanisms have definite motion.

3 � Synthesizing Process for Actuation Space
According to linear algebra, V1 and V2 are non-zero sub-
spaces of the n-dimensional space Rn . If for all α ∈ V1 , 
β ∈ V2 , there exists α⊥β and dimV1 + dimV2 = dim Rn , 
then V2 is called the orthogonal complement of V1 [30].

The actuation space is always linearly independent of 
its constraint space, and the orthogonal complement can 
satisfy the linearly independent characteristics, so the 
actuation space can be regarded as the complement space 
of the constraint space.

It is wholly feasible to establish a unified approach for 
synthesizing the actuation spaces of both rigid and flex-
ure PMs based on screw theory. But due to the struc-
ture characteristics of the flexure parallel mechanism, an 
analysis method based on a compliance matrix is adopted 
during the freedom analysis in this paper.

Therefore, the synthesizing process of the actuation 
spaces of a lower-mobility parallel mechanism is detailed 
as follows.

(1) Solve the constraint space. The constraint space can 
be represented by a set of linearly independent constraint 
wrenches $rjwhen the mechanism has a defined motion: 

The solving procedures of the constraint wrench sys-
tem for rigid and flexure PMs are different due to their 
different structures. The solving process of the rigid par-
allel mechanism [28] is: (1) Solve the motion twists of the 
motion pairs on each branch in turn. (2) Obtain the con-
straint wrenches according to the reciprocal screw the-
ory. 3) Compute the union set of the constraint wrenches 
of all branches.

The solving process of the flexure parallel mechanism 
[13] is: (1) Calculate the global compliance matrix C of 
the mechanism. (2) Calculate the eigenvalues and the 
eigenvector matrices of the compliance matrix �C� . 
(3) Nondimensionalize the feature values according to 
the compliance type they represent. (4) Compare the 
dimensionless eigenvalues (compare the maximum 
value  �max  of the dimensionless eigenvalues with the 
remaining eigenvalues �i , and assign zero to this eigen-
value if |�i/�max| << 1 ). (5) The feature vectors (screws) 
corresponding to the zero eigenvalue constitute the con-
straint space of the mechanism.

(7)SC =
[

$
rT
1 $

rT
2 · · · $rT6 - n

]T
.
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(2) Compute the freedom space of the mechanism. 
The freedom space, reciprocal to the constraint space, is 
spanned by n independent basis motion twists $Di of the 
moving platform, which is written as: 

The motion continuity of the rigid mechanism has to 
be distinguished, but it is not necessary to the flexure 
mechanism, since it is used for micro-motion or small 
deformation generally.

(3) Derive the actuation space orthogonal to the con-
straint space. The actuation space and the constraint 
space satisfy the relationship of orthogonal complement. 
Therefore, by calculating the null space of the constraint 
space, actuation spaces orthogonal to the constraint 
space can be obtained: 

On the basis of linear algebra, the reciprocal product 
of two screws can be converted into their dot product. 
Therefore, the linearly independent vectors from the 
actuation space are obtained by swapping the rotational 
vector and the translational vector of these twists $Di and 
multiplying the coefficient εi : 

where $′Di = εi$Di�,  �=
[

0 E3×3

E3×3 0

]

,  E3×3 is a unit 

matrix. εi is a coefficient for ensuring that the screw $′Di is 
a unit screw.

(4) Derive the general formula of the actuation 
wrenches. According to the criterion of comprehensive 
actuation space proposed in Section  2.2, the actuation 
space is always linearly independent of its constraint 
space for the lower-mobility PMs without redundant 
actuation when the mechanisms have definite motion. 
From linear algebra, the constraint wrenches and the 
actuation wrenches could constitute a set of 6-dimen-
sional vector space. From this the general formula of 
actuation wrenches is obtained in terms of the linear 
combination of n wrenches $′Di and 6−n constraint 
wrenches $rj  : 

where µk =
(

µ1k µ2k · · ·µnk

)

�= 0 , µk(k = 1, 2, · · · , n) 
is the non-zero row vector which make sure that the 

(8)SD ◦ SC=0,

(9)SD =
[

$
T
D1 . . . $

T
Di . . . $

T
Dn

]T
, i = 1, 2, · · · , n.

(10)SA · SC = 0.

(11)
SA = $

′
D =

[

$
′T
D1 · · · $

′T
Di · · · $

′T
Dn

]T
, i = 1, 2, · · · , n,

(12)

$Ak =
n

∑

i=1

µik$
′
Di+

6−n
∑

j=1

�jk$
r
j = µk$

′
D+

6−n
∑

j=1

�jk$
r
j ,

constraint wrenches are linearly independent of the actu-
ation wrenches.

(5) Derive the actuation spaces. An actuation wrench is 
selected arbitrarily on each branch, and these wrenches 
can be combined. According to the matrix transforma-
tion and the calculation of the ranks of matrix in linear 
algebra, the combination of actuation wrenches can be 
deduced to be linearly independent, and can constitute 
a reasonable actuation combination if the correspond-
ing vector group µ : µ1, µ2, · · · , µn  is always linearly 
independent in the whole workspace after the combina-
tion. Thereby the actuation spaces of the mechanism can 
be obtained. It is necessary to calculate the actuation 
wrenches corresponding to the motion pairs, since the 
driving forces of the rigid parallel mechanism are actu-
ated by motion pairs.

The whole synthesis process of the actuation spaces 
can be uniformly described with a flowchart as shown in 
Figure 1.

By synthesizing the actuation spaces of the lower-
mobility parallel mechanism, several groups of reason-
able combinations of input can be obtained, and then the 
input optimization of the mechanisms can be achieved 
by further selecting the appropriate performance index 
and analyzing the performance of the mechanism with 
different combinations of inputs.

4 � Case Analysis
In this section, one typical 3-RPS rigid PM and one flex-
ure PM are used as examples to demonstrate the pro-
posed synthesis approach.

4.1 � Actuation Spaces Synthesis of the 3‑RPS Rigid Parallel 
Mechanism

A typical 3-RPS PM [15], which has two rotational and 
one translational DOFs, is adopted in this section. As 
shown in Figure 2, the 3-RPS parallel mechanism is com-
posed of a moving platform, a fixed platform and three 
identical RPS branches. The moving platform and the 
fixed platform are two similar equilateral triangles. Each 
RPS branch is made up of one revolute pair (R pair), one 
prismatic pair (P pair), and one spherical pair (S pair). 
Each spherical joint is kinematically equivalent to three 
revolute joints with intersecting axes. Ai is the center of 
the R pair connected to the fixed platform, Bi is the center 
of the spherical joint connected to the moving platform.

(1) Compute the constraint space of the mechanism
As shown in Figure  2, a branch coordinate system 

Oi − XiYiZi is established, whose origin is coincided with 
point Ai, the Yi-axis is parallel to the axis of the branch 
revolute joint, the Zi-axis is perpendicular to the fixed 
platform, and the Xi-axis is determined by the right-hand 
rule.
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The kinematic screw system of each branch can be 
expressed as: 

where qi2 is the X-coordinate value of the center of the 
spherical joint Bi  in the branch coordinate system; ri2 is 
the Y-coordinate value of the center of the spherical joint 
Bi in the branch coordinate system.

According to the screw theory, the constraint wrench 
is a constraint force that passes through the center of the 
spherical Bi and is parallel to the Yi-axis. The constraint 

(13)































$i1 =
�

0 1 0; 0 0 0
�

,

$i2 =
�

0 0 0; qi2 0 ri2
�

,

$i3 =
�

0 1 0; ri2 0 0
�

,

$i4 =
�

1 0 0; 0 −ri2 qi2
�

,

$i5 =
�

0 0 1; −qi2 0 0
�

,

wrench of the branch can be obtained by calculating the 
reciprocal screw as follows: 

Therefore, the constraint forces of the moving platform 
are located in the plane S passing through Bi and inter-
laced with each other. The distribution of the constraint 
forces under initial position is represented in Figure 3.

As shown in Figure 2, the coordinate system O − XYZ is 
established, whose origin is located at the fixed platform 
center O, and the Y-axis is parallel to the axis of the 
branch revolute joint, the Z-axis is perpendicular to the 
fixed platform, and the X-axis is determined by the right-
hand rule. According to the distribution of the constraint 
wrenches of each branch, the constraint space of the 
moving platform is 

(14)$
r
i =

(

0 1 0; ri2 0 0
)

.

Fig. 1  Flow chart of synthesizing the actuation spaces of both rigid and flexure parallel mechanism
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where 
(

Xbi Ybi Zbi
)

  are the coordinate values of bi in 
the coordinate system O − XYZ , i=1,2,3.

(2) Compute the freedom space of the mechanism. By 
substituting Eq. (15) into Eq. (8), the motion twists within 
its freedom space are derived as: 

(15)SC =



















$
r
1 =

�

0 1 0; −Zb1 0 Xb1

�

,

$
r
2 =

� √
3
2

1
2 0; − 1

2Zb2

√
3
2 Zb2

1
2Xb2 −

√
3
2 Yb2

�

,

$
r
3 =

�

−
√
3
2

1
2 0; − 1

2Zb3 −
√
3
2 Zb3

1
2Xb3 +

√
3
2 Yb3

�

,

It is known from Ref. [15] that the freedom space is not 
purely local and it holds in the whole workspace.

(3) Derive the actuation space orthogonal to the con-
straint space. According to Eq. (11) and Eq. (16), an actu-
ation space orthogonal to the constraint space can be 
obtained by swapping the rotational vector and transla-
tional vector of all the twists $Di : 

(4) Derive the general formula of the actuation 
wrenches. This can be obtained in terms of the linear 
combination of three twists $′Dj and three constraint 
wrenches $rk according to Eq. (12), where n=3. 

(5) Derive the actuation spaces. Calculate the cor-
responding actuation wrenches when different motion 
pairs of the mechanism are selected as actuated pairs. 
By substituting the actuation wrenches into Eq. (18), the 
vector could be obtained, and the results are represented 
in Table 1. There are 4 actuation combinations when any 
of or is selected as the actuated pair of each branch, the 
reasonable actuation combinations constitute the actua-
tion spaces of the mechanism.

Assuming that the radius of the circumscribed circle 
of the fixed platform is 92.38 mm, and the circumscribed 

(16)SD =











$D1 =
�

0 0 0; 0 0 1
�

,

$D2 =
�

l2 m2 0; p2 q2 0
�

,

$D3 =
�

l3 m3 n3; p3 0 0
�

.

(17)SA=











$
′
D1 =

�

1 0 0; 0 0 0
�

,

$
′
D2 =

�

p2 q2 0; l2 m2 0
�

,

$
′
D3 =

�

p3 0 0; l3 m3 n3
�

.

(18)

$Ak =
3

∑

i=1

µik$
′
Di+

3
∑

j=1

�jk$
r
j = µk$

′
D+

3
∑

j=1

�jk$
r
j .

X Y
Xi

Zi

Yi

Z

A1
A2

A3

ox y

z

B1
B2

B3

O

$i1

$i2

$i4

$i3

$i5

Fig. 2  Typical 3-RPS parallel mechanism

$1
r

$2
r$3

r

Plane S
Fig. 3  Distribution of the constraint forces of the moving platform

Table 1  Corresponding actuation wrenches and vector µk

Actuated pairs Actuation wrench Vector µk

Ri , i=1,2,3 $Ai1 =
(

li1 mi1 ni1; pi1 qi1 ri1
) (

ni1 µ2k µ3k

)

Pi , i=1,2,3 $Ai2 =
(

li2 mi2 ni2; pi2 qi2 ri2
) (

ni2 µ2k µ3k

)
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circle of the movable platform is 57.74 mm, the move-
ment range of the prismatic pair is 120‒195 mm.

Taking an actuation combination of 3Ri pairs as an 
example, substitute the actuation wrenches of the Ri pair 
into Eq. (18), the following equations can be obtained as: 

The characters of the actuation wrenches, the motion 
twists, and the constraint wrenches would not change 
in the whole workspace, i.e., the linearly independent of 
the vector groups µ : µ1, µ2, µ3 would not change, so 
the reasonability of the actuation combinations could 
be verified in a workspace arbitrarily selected. The vec-
tor µk is calculated, and the ranks of the vector groups 
µ : µ1, µ2, µ3 is computed in MATLAB, as shown in 
Figure  4. When the posture of the mechanism changes, 
the rank of the vector group is always 3, that is, when 
3Ri pairs are selected as the actuation combinations, 
the branch actuation screws always linearly independ-
ent, which is a reasonable actuation combination. The 
movement of the mechanism does not affect the orienta-
tion of the actuation screw, so the figure does not show 
the posture change of the mechanism in the movement 
orientation.

When 2Ri and 1Pi pairs, 1Pi and 2Pi pairs, and 3Pi pairs 
are selected as the actuation combinations, the rank 
of the vector group is the same with 3Ri pairs, that is, 
these three combinations are also reasonable actuation 
pair combinations. Therefore, there are four actuation 
combinations of 3-RPS parallel mechanism, and all of 

(19)



































p2µ2k + p3µ3k +
√
3
2 �2k −

√
3
2 �3k − li1 = 0,

q2µ2k + �1k + 1
2�2k +

1
2�3k −mi1 = 0,

l2µ2k + l3µ3k − Zb1�1k − 1
2Zb2�2k − 1

2Zb3�3k − pi1 = 0,

m2µ2k +m3µ3k +
√
3
2 Zb2�2k −

√
3
2 Zb3�3k − qi1 = 0,

Xb1�1k + 1
2Xb2�2k −

√
3
2 Yb2�2k + 1

2Xb3�3k +
√
3
2 Yb3�3k + n3µ3k − ri1 = 0,

µ1k = ni1.

them constitute reasonable actuation space, as shown in 
Table 2.

All possible combinations of inputs were obtained by 
the synthesis of actuation spaces, and the subsequent 
optimization of inputs could be carried on based on the 

performance requirement of the mechanism.

4.2 � Actuation Space Synthesis of 3R‑DOFs Constraint 
Flexure Parallel Mechanism

A kind of simple flexible parallel mechanism [24] is 
adopted in this section, which consists of a moving plat-
form connected with a fixed platform by three identi-
cal basic units of flexible links, as shown in Figure  5. 
The length of flexible links l = 82 mm, the radius of 

Ra
nk

of
ve
ct
or

gr
ou
p

-30 -20 -10 0 10 20 30

-40
-200

20
40
2

2.5

3

3.5

4

Fig. 4  Rank of each input combination vector group

Table 2  Actuation spaces of 3-RPS parallel mechanism

Underlined letters show the actuated pairs

Type Reasonable 
actuation 
combination

2R1P RPS-RPS-RPS

3P RPS-RPS-RPS

2P1R RPS-RPS-RPS

3R RPS-RPS-RPS

X Y

Z

O

oi

xi

yi

zi

A1

A2

A3

O1

B1 B2

B3

O2

Fig. 5  Schematic diagram of 3R-DOFs constrained flexible parallel 
mechanism
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cross-section r = 1.5 mm , elastic modulus E = 70 GPa , 
Poisson’s ratio µ = 0.346 , the radius of the circumcir-
cle of the equilateral triangle formed by the connection 
points of the moving platform and each flexible unit 
R = 102 mm, the tilt angle of each flexible unit θ= 45◦, Ai 
and Bi are the connection points of each flexible unit and 
the fixed platform/the moving platform respectively.

Compute the constraint space of the mechanism.
As shown in Figure  5, a branch coordinate system 

oi − xiyizi is established, whose origin oi is located at the 
center of the flexible unit, the zi-axis coincides with the 
axisAiBi , and the yi-axis is parallel to the fixed platform 
and perpendicular to the axis O1Ai , the xi-axis is deter-
mined by the right-hand rule. The flexibility matrix of the 
flexible link in this coordinate system is written as: 

As shown in Figure  5, a base coordinate system is 
established, whose origin O is the intersection of the axes 
A1B1 , A2B2 and A3B3 , the X-axis is parallel to the vec-
tor O1Ai , the Z-axis is vertical upward, and the Y-axis is 
determined by the right-hand rule. The overall flexibility 
matrix of the mechanism is formulated as: 

where Adi=
[

Ri 0
TiRi Ri

]

 is the adjoint matrix of coordinate 

transformation,  Ri  is the rotation transformation 
matrix:R1 = R(Y , 90◦ − θ) , R2 = R1R(Z, 240

◦) , 
R3 = R1R(Z, 120

◦) . Ti is the oblique symmetric matrix 
determined by the motion vector: 
T1 = T

(

l
2 cos θ − R, 0,R− l

2 sin θ
)

,

T2 = T
(

R
2 − l

4 cos θ ,
√
3l
4 cos θ −

√
3R
2 ,R− l

2 sin θ
)

,

T3 = T
(

R
2 − l

4 cos θ ,
√
3R
2 −

√
3l
4 cos θ ,R− l

2 sin θ
)

.

If the translation vector is (L,M,N ) , then the corre-
sponding oblique symmetric matrix is

The eigenvalue matrix and eigenvector matrix of matrix 
�C� can be obtained as: 

(20)

Ci = diag

(

l3

3Eπr2
,

l3

3Eπr2
,

l

Eπr2
,

4l

Eπr2
,

4l

Eπr2
,

2l

Gπr2

)

.

(21)C =

(

3
∑

i=1

(AdiCiAdi)
−1

)−1

,

(22)T (L,M,N ) =





0 −N M
N 0 −L
−M L 0



.

(23)
� = diag(0.0982, 0, 0.0001, 0.0001, 0.1322, 0.0982),

The dimensionless feature matrix is written as: 

The eigenvectors corresponding to the zero eigenvalue 
are composed of the constraint space of the mechanism 
(the column vector represents the constraint wrench). 

(2) Compute the freedom space of the mechanism. Cal-
culate the reciprocal screws of Eq. (26), then the motion 
screws from the freedom space are obtained: 

(3) Derive the actuation space orthogonal to the con-
straint space. An actuation space orthogonal to the con-
straint space can be obtained by swapping the rotational 
vector and translational vector of all the screws in Eq. 
(27). 

(4) A general formula of a reasonable actuation 
wrench is derived, which is represented in Eq. (12), 
where n = 3.

(5) Derive the actuation spaces. Because linear actua-
tors which can generate large pushing or pulling forces 
are more likely to be used for an ultra-precision system, 
only the linear actuation spaces constituted of the actu-
ation force are taken into consideration here.

It can be obtained from the general expression that 
any force vector that does not pass through the ori-
gin of the global coordinate system can be selected as 
a reasonable actuation wrench. Meanwhile, it can be 
concluded from Eqs. (12) and (24)–(26) that it is only 

(24)

V =















0 0.7071 0.7071 0 0 0
0 0 0 1 0 0.0001
0 0.7071 −0.7071 0 0 0
0 0 0 0.0001 0.7071 −0.7071
−1 0 −0.0001 0 0 0
0 0 0 0 0.7071 0.7071















.

(25)

� = diag
(

1.41, 0, 1.51× 10−5, 1.51× 10−5, 1.90, 1.41
)

× 10−2

≈ diag(1.41, 0, 0, 0, 1.90, 1.41)× 10−2.

(26)SC=















0.7071 0.7071 0
0 0 1

0.7071 −0.7071 0
0 0 0
0 0 0
0 0 0















.

(27)SD =











$D1 =
�

1 0 0; 0 0 0
�

,

$D2 =
�

0 1 0; 0 0 0
�

,

$D3 =
�

0 0 1; 0 0 0
�

.

(28)SA =











$
′
D1 =

�

0 0 0; 1 0 0
�

,

$
′
D2 =

�

0 0 0; 0 1 0
�

,

$
′
D3 =

�

0 0 0; 0 0 1
�

.
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necessary to ensure that the rotational vectors corre-
sponding to the three actuation wrenches are linearly 
independent, then the vector groups corresponding to 
the three actuation wrenches are linearly independent. 
Therefore, any three actuation wrenches can constitute 
a reasonable actuation space if their rotational vectors 
are linearly independent. By linearly combining the 
force wrenches without passing through the origin, the 
actuation spaces can be obtained.

(1) Three spatial force wrenches intersect at one point
A set of special force wrenches which intersect at 

point (x, y, z) can be expressed as follows: 

Obviously, the rotational vectors of the three 
wrenches are linearly dependent when z = y = 0,

z = x = 0 or x = y = 0 . Therefore, any three wrenches 
that do not intersect on the coordinate axis can consti-
tute a reasonable actuation space, and the line graph of 
the actuation space is illustrated as (a) of Table 3.

(2) Three wrenches are coplanar but not intersecting: 

(29)











$A1 =
�

1 0 0; 0 z −y
�

,

$A2 =
�

0 1 0; −z 0 x
�

,

$A3 =
�

0 0 1; y −x 0
�

.

Table 3  Actuation space line maps

 
(a) Three force wrench lines intersecting at a 

point in space 

 
(b) Three force wrench lines in a plane, but non-

intersecting 

 
(c) Three force wrench lines in a plane, but non-

intersecting  

 
(d) Three force wrench lines belong to common 

vertical line  

 

 

 

(e) Three force wrench lines belong to common 

vertical line  

 

(f) Three force wrench lines belong to common 

vertical line  

 
 

(g) Three force wrench lines belong to common 

vertical line  

 
 

(h) Three force wrench lines belong to common 

vertical line  

 
 

(i) One wrench oblique belongs to the plane that the 

other two wrench lines lie on  

    

(j) Belong to a                (k) Belong to a 

 single-leaf hyperboloid       elliptic hyperboloid 

a
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Obviously, the rotational vectors corresponding to 
the three wrenches are linearly independent when 
z  = 0 . Therefore, any three coplanar but not intersect-
ing wrenches that are not located on the XOY, YOZ, 
and XOZ planes can constitute a reasonable actuation 
space. The line graphs of the actuation space are illus-
trated in (b) and (c) of Table 3.

(3) Three wrenches are not coplanar but belong to a 
common vertical line.

Two sets of wrenches can be derived from the general 
expression of the mechanism’s actuation wrench: 

It can be deduced from Eq. (31) that any three actua-
tion wrenches parallel to each other cannot constitute a 
reasonable actuation space.

Equation (32) shows that the rotational vectors cor-
responding to the three wrenches are linearly inde-
pendent when z1y2  = z2y1 and z3  = 0 . Therefore, for 
the three wrenches including two parallel wrenches 
belonging to a common vertical line, only when the 
planes of the two parallel wrenches do not pass through 
the origin can they constitute a reasonable actuation 
space. The line graph of the actuation space is illus-
trated in (d), (e), and (f ) of Table 3.

It is easy to know that the three wrenches that belong 
to a common vertical line, whose line graphs are illus-
trated in (g) and (h) of Table  3, can also constitute a 
reasonable actuation space from the above analysis and 
the base vector.

(4) Three wrenches in which one wrench intersects the 
plane of the other two wrenches: 

(30)











$A1 =
�

1 0 0; 0 z −y1
�

,

$A2 =
�

1 0 0; 0 z −y2
�

,

$A3 =
�

0 1 0; −z 0 x3
�

.

(31)











$A1 =
�

1 0 0; 0 z1 −y1
�

,

$A2 =
�

1 0 0; 0 z2 −y2
�

,

$A3 =
�

1 0 0; 0 z3 −y3
�

,

(32)











$A1 =
�

1 0 0; 0 z1 −y1
�

,

$A2 =
�

1 0 0; 0 z2 −y2
�

,

$A3 =
�

0 1 0; −z3 0 x3
�

.

(33)











$A1 =
�

1 0 0; 0 z1 −y1
�

,

$A1 =
�

1 0 0; 0 z1 −y2
�

,

$A1 =
�

0 0 1; y3 −x3 0
�

,

The rotational vectors corresponding to the two 
wrenches are linearly independent when z1  = 0 and 
y3  = 0 in Eq. (33); the rotational vectors of the three 
wrenches are linearly independent when z1  = 0 , x1 and 
y1 are not zero in Eq. (34). Therefore, the three wrenches 
can also constitute a reasonable actuation space as illus-
trated in (i) of Table 3.

(5) Three force wrenches in which any two wrenches 
are in different planes: 

Equation (35) shows that the three wrenches can con-
stitute a reasonable actuation space when z2 and y3,z1 and 
x3 or y1 and x2 are equal to 0 not simultaneously. There-
fore, the three wrenches in which any two wrenches are 
in different planes can also constitute a reasonable actua-
tion space. Any three wrenches distributed on the single-
leaf hyperboloids or elliptical hyperboloids can constitute 
a reasonable actuation space as illustrated in (j) and (k) of 
Table 3.

All the analysis shows that 11 reasonable actuation 
combinations can be obtained to constitute the actuation 
spaces of the mechanism.

Comparing the synthesizing process and the results 
of the actuation spaces of the flexure and rigid parallel 
mechanisms, we find that reasonable actuation wrenches 
could be constituted by swapping the rotational vector 
and translational vector, and by the linear combination 
of the constraint spaces and the freedom spaces based 
on the important synthesis criteria. But the actuators can 
only be arranged on the motion pairs for the rigid PMs, 
while the actuators could be arranged more flexibly for 
the flexure PMs. This result not only demonstrates the 
consistency and the feasibility of the synthesizing process 
for actuation spaces of both rigid and flexure PMs with 
lower-mobility, but also indicates that the rigid mecha-
nism is a special case of the flexible mechanism.

5 � Conclusions and Future Work
(1) A unified approach has been presented for synthesiz-
ing the actuation spaces of both rigid and flexure parallel 
mechanisms, and all the rational actuation spaces of PMs 
could be obtained.

(34)











$A1 =
�

1 0 0; 0 z1 −y1
�

,

$A1 =
�

0 1 0; −z1 0 x1
�

,

$A1 =
�

0 0 1; y3 −x3 0
�

.

(35)











$A1 =
�

1 0 0; 0 z1 −y1
�

,

$A1 =
�

0 1 0; −z2 0 x2
�

,

$A1 =
�

0 0 1; y3 −x3 0
�

.
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(2) On the basis of the synthesis criterion, a general 
expression of the actuation space in the format of screw 
systems has been derived, and the synthesis process of all 
the actuation spaces generating a specified motion pat-
tern has been deduced.

(3) The typical 3-RPS rigid parallel mechanism and the 
3R-DOFs flexible mechanism has been selected as exam-
ples to synthesize the actuation spaces, and all reasonable 
actuator placements has been obtained, which verify the 
feasibility of the united approach for synthesizing actua-
tion spaces of both rigid and flexure parallel mechanisms.

The selection and placement of the actuators would be 
carried out according to experiences or principles gener-
ally, but it could not consider all the rational input com-
binations, and it may result in that the selected input 
combination is not the best-chosen. This research pro-
vides all the rational schemes for input selection, input 
optimization could be proceeded next according to a 
realistic engineering application.

How to express the actuation spaces more intuitively 
and figure out the problem of input optimization to find 
an optimal way to place actuators for both rigid and flex-
ure parallel mechanisms will be very challenging tasks in 
the future.
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