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ORIGINAL ARTICLE

Algebraic Method‑Based Point‑to‑Point 
Trajectory Planning of an Under‑Constrained 
Cable‑Suspended Parallel Robot with Variable 
Angle and Height Cable Mast
Tao Zhao1,2, Bin Zi1*, Sen Qian1 and Jiahao Zhao1

Abstract 

To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible 
working ways for cable-suspended parallel robots (CSPRs), point-to-point trajectory planning demands an under-con-
strained cable-suspended parallel robot (UCPR) with variable angle and height cable mast as described in this paper. 
The end-effector of the UCPR with three cables can achieve three translational degrees of freedom (DOFs). The inverse 
kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed. The 
motion trajectory of the end-effector comprising six segments is given. The connection points of the trajectory seg-
ments (except for point P3 in the X direction) are devised to have zero instantaneous velocities, which ensure that the 
acceleration has continuity and the planned acceleration curve achieves smooth transition. The trajectory is respec-
tively planned using three algebraic methods, including fifth degree polynomial, cycloid trajectory, and double-S 
velocity curve. The results indicate that the trajectory planned by fifth degree polynomial method is much closer 
to the given trajectory of the end-effector. Numerical simulation and experiments are accomplished for the given 
trajectory based on fifth degree polynomial planning. At the points where the velocity suddenly changes, the length 
and tension variation curves of the planned and unplanned three cables are compared and analyzed. The OptiTrack 
motion capture system is adopted to track the end-effector of the UCPR during the experiment. The effectiveness and 
feasibility of fifth degree polynomial planning are validated.

Keywords:  Under-constrained cable-suspended parallel robot, Variable angle and height cable mast, Inverse 
kinematic and dynamic modeling, Algebraic method, Point-to-point trajectory planning
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1  Introduction
Cable-suspended parallel robots (CSPRs) are well-known 
as a particular type of parallel robots, in which flex-
ible cables substitute rigid links to drive its end-effector. 
CSPRs where all cable attachment points are above the 
end-effector, and gravity acts as a cable tension. This is 
achieved by employing the gravity of the end-effector as 
the downward force and reverses all cables of CSPRs taut. 

CSPRs have many attractive merits over common paral-
lel robots, such as large workspace and load capacity, low 
inertia, high accuracy and acceleration, easy assembly 
and disassembly, low cost and power consumption, as 
well as easy transportability and reconfigurability. One 
intrinsic disadvantage of CSPRs is that cables can only 
drag the end-effector but cannot push it [1–3]. In the last 
few decades, CSPRs have been widely applied in vari-
ous fields due to their attractive merits, such as hoisting 
heavy loads [4, 5], large radio telescope [6, 7], high-speed 
manipulation [8], wind tunnel test [9], camera robot [10], 
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3D printer [11–13], rehabilitation robot [14, 15], building 
construction [16, 17], and haptic devices [18].

A trajectory is a path that specifies a rule of time such 
as in the light of accelerations and velocities at each 
point, while planning is to generate a time series of values 
obtained by an interpolation function of the required tra-
jectory. The goal of trajectory planning is to generate ref-
erence inputs for the movement control system to ensure 
that the robot can carry out the planned trajectory. Actu-
ally, the inputs of trajectory planning algorithm are the 
path descriptions, and path constraints are applied by 
the robot’s dynamics. The outputs are the trajectory of 
the end-effector in the light of a time series of the val-
ues obtained by position, velocity, and acceleration. Thus, 
variables with a time series are generated by the trajec-
tory planning algorithm, and these variables depict the 
pose of the end-effector with respect to the imposed con-
straints over time [19].

The trajectory planning of CSPRs has been investigated by 
some researchers. Jiang et al. [20] presented a technology of 
dynamic trajectory planning for CSPRs with six degrees of 
freedom (DOFs). A passive mechanical system equivalent to 
the CSPRs was presented. A trajectory design that extended 
beyond the robot’s static workspace was proposed. The 
angle convention of tilt-and-torsion could not only be uti-
lized to establish the mathematical model, but also impose 
constraints for the rotational component of the trajectory. 
Under some conditions, the dynamic differential equations 
that controlled the translational component of the trajectory 
became linear. Thus, the natural frequency of a linear sys-
tem of an equivalent passive spring with constant stiffness 
was gained, and a general solution for a periodic and natural 
trajectory was produced. This method was adopted to the 
trajectory of pure translation and more sophisticated move-
ments, including pose change. Dion-Gauvin et al. [21] pro-
posed a dynamic trajectory planning technology for CSPRs 
with three DOFs. The idea of the trajectory path originated 
from a hypocycloid curve, which was inserted in the plane 
determined by the acceleration vector at the start and end 
points. The presented movement can guarantee acceleration 
continuity at each endpoint and zero instantaneous velocity. 
A positive cable tension could be ensured by appropriately 
selecting the number of arcs for the hypocycloid. This tra-
jectory could be utilized to sequentially connect continuous 
target points that might be outside the robot’s static work-
space. This technology could produce large ranges of reach-
able target points compared to previous methods. Zhang 
et al. [22] investigated the trajectory planning of an under-
constrained cable-suspended parallel robot (UCPR) with 
three DOFs and proposed a geometric method to plan a tra-
jectory that extended beyond the robot’s static workspace. 
Cable tensions were positive along a straight-line path, and 
these conditions were given from a geometric point of view. 

A point-to-point trajectory satisfying the constraints of 
cable tension was devised in the s−s̈ plane. The trajectory 
parameters were chosen by weighing the safety of cable 
tensions and the trajectory duration. To avoid the inabil-
ity of connecting the designated points, a novel workspace 
was determined so that any target point could be reached 
in order in the workspace. The periodic trajectory was 
designed in a similar way, which included oscillations along 
a straight line and uniform circular movement in a hori-
zontal plane. The scope of periodic trajectory parameters 
could be easily determined based on the constraints of cable 
tensions. The proposed method could produce analytical 
results and ensure that cable tensions were continuous and 
positive. Behzadipour et al. [23] investigated the trajectory 
planning of a cable-based high-speed parallel robot accord-
ing to a specified geometric path. Time-optimized trajec-
tory planning technology was applied to the robot, where 
the cable tensions must be greater than zero. The results of 
this technology were evaluated experimentally on the robot 
developed at the University of Waterloo. The property of the 
time-optimized technology was checked both for the com-
putational time of the trajectory generation and the motion 
time of the robot. Barbazza et al. [24] proposed a new CSPR 
with reconfigurable end-effector, which was imagined for 
the pick and place operations in industrial environments. 
To achieve a pick and place operation with dynamic online 
reconstruction of the end-effector in the operational space, 
an optimized algorithm of trajectory planning was pre-
sented. In a simplified scenario, the results illustrated that 
the system had the ability to reduce motion time and avoid 
obstacles. Zhang et  al. [25] investigated the influences of 
diverse trajectories on stiffness for a CSPR with six DOFs 
based on its kinematics and dynamics models. To analyze 
the stiffness variations during movement, the performance 
indices were chosen from the minimum eigenvalue of the 
dimensionally homogeneous stiffness matrix and the condi-
tion number. Three diverse trajectory planning approaches 
including quintic polynomial, trigonometric function, 
and S-type velocity profile were adopted to investigate the 
robot’s stiffness. After the curved trajectory and point-to-
point straight-line trajectory were respectively planned, the 
accelerations of diverse approaches were analyzed, and the 
stiffness capabilities of these approaches were compared. 
The simulation outcomes showed that the performances 
of quintic polynomial and S-type velocity profile were opti-
mal. They could both maintain the stiffness stability during 
motion control and optimize the travel time of quintic poly-
nomial while maintaining stability. Jiang et al. [26] proposed 
a point-to-point dynamic trajectory planning technology 
for a CSPR with six DOFs to achieve a series of poses. Each 
segment of the trajectory was devised to possess zero rota-
tional and translational velocities at its endpoints, and tran-
sitions between segments had the continuity of rotational 
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and translational accelerations. This expression promoted 
the trajectory synthesis that extended beyond the robot’s 
static workspace. The elementary motion was a mathemati-
cal function, which could be applied to each coordinate 
direction along each trajectory segment. The kinematic 
constraints were met by selecting the coefficients of the 
function. According to the previous endpoint, the dynamic 
constraints were imposed by determining feasible areas. 
The optimally interpolated rotational trajectory segments 
without singularity were produced via spherical linear inter-
polation. Zhang et al. [27] studied the motion planning of 
a continuous path for a CSPR with three DOFs considering 
the dynamic constraints of the robot. The geometric and 
algebraic performances of the constraints for cable tensions 
were analyzed, and the sufficient and necessary conditions 
for the end-effector to cross singularities along straight-
line paths were presented. A piecewise linear interpolation 
approach was introduced. The middle points were appro-
priately chosen to prevent collisions between obstacles and 
cables, and the generated trajectory was revised by quintic 
polynomial planning to improve the capability. The condi-
tions for determining an ordinary plane curve from three 
points were given. A general curve interpolation approach 
was proposed. Three types of cyclical trajectories were 
devised. The presented approach of trajectory planning 
could not only meet the constraints of positive cable ten-
sion, but also ensure the continuity and safety of tension. 
Simulations and experiments validated the effectiveness of 
this approach. Xiang et al. [28] proposed a trajectory plan-
ning technology of dynamic transition for a fully-actuated 
CSPRs with three DOFs. The presented two-step technol-
ogy could be applied to plan transition trajectories in order 
to generate periodic motions that extended beyond the 
static workspace of the robot. The robot dynamics were lin-
earized and partly decoupled by dealing with the less lim-
ited gravity axis trajectory planning issue. The constraints of 
the other axes and corresponding dynamics model became 
linear time-varying. The generation of general transition 
trajectories and general periodic trajectories was completed 
by convex optimization. The presented technology had the 
ability to generate general periodic trajectories and offered a 
universal transition planner.

In summary, the angle and height of cable mast for 
CSPRs are fixed in the published literatures of trajectory 
planning, but the angle and height variations of cable 
mast for the UCPR are considered in this study. Three 
algebraic methods are adopted to plan a point-to-point 
trajectory for the UCPR. The end-effector of the UCPR 
with three cables can achieve three translational DOFs. 
The angle of cable mast can be changed by a gear drive 
along the circular base, which reduces the probability 
of collision between cables and obstacles. The height of 
cable mast can be altered by a hydraulic cylinder, which 

enlarges the reachable workspace of the end-effector. The 
given trajectory consisting of lines and arcs is a closed 
curve, which includes six segments that are connected 
end to end. The connection points of the trajectory seg-
ments (except for point P3 in the X direction) are devised 
to have zero instantaneous velocities, which ensure that 
the acceleration has continuity. The planned acceleration 
curves can achieve smooth transition at the connection 
points, thereby effectively avoiding impacts and vibra-
tions of the robot.

The structure of this paper is organized as follows. Sec-
tion 2 establishes the inverse kinematic modeling of the 
UCPR considering the angle and height of cable mast 
according to the vector closed loop principle. Section  3 
sets up the dynamic modeling of the UCPR considering 
the angle and height of cable mast based on the Lagrange 
method. In Section  4, the trajectory of the end-effector 
for the UCPR is respectively planned using the three 
algebraic methods. Section  5 accomplishes the numeri-
cal simulation and experiments for the given trajectory 
based on fifth degree polynomial planning. Section  6 
summarizes some conclusions.

2 � Inverse Kinematic Modeling
The structural diagram of the UCPR with three cables 
is illustrated in Figure 1. Each cable mast can be rotated 
along the circular base by a gear drive, which reduces the 
probability of collision between cables and obstacles. The 
pulley located at the top of the cable mast can be raised 
or lowered by a hydraulic cylinder, which enlarges the 
reachable workspace of the end-effector. It is assumed 
that all cables are inelastic and massless straight lines. 
The inverse kinematics of the UCPR aims to solve the 
length of cables according to the pose of its end-effector.

Figure 1  Structural diagram of the UCPR with three cables
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Two reference frames are set up in order to depict the 
kinematic relationships of the UCPR. A global reference 
frame OXYZ with origin O is fixed at the center of the cir-
cular base of the robot, and the Z−axis of frame OXYZ 
points upward. A local reference frame PXYZ is fixed 
on the end-effector, with its origin P located at the cen-
troid of the end-effector. Ai (i = 1, 2, 3) denotes cable exit 
point, and Bi (i = 1, 2, 3) represents cable attachment 
point between cable and the end-effector. R stands for 
the radius of the circular base of the robot. Hi (i = 1, 2, 3) 
denotes the height of cable mast. �Hi (i = 1, 2, 3) 
denotes the amount of change in the height of cable 
mast. θi (i = 1, 2, 3) represents the angle between 
OCi (i = 1, 2, 3) and the OX-axis. �θi (i = 1, 2, 3) denotes 
the amount of change in the angle of cable mast. h 
stands for the thickness of the end-effector. The posi-
tion vector of origin P in frame OXYZ is expressed as 
rP = [xP yP zP]

T . The generalized coordinates consider-
ing the pose of the end-effector as well as the angles and 
heights of cable masts in frame OXYZ can be expressed 
as q = [x y z �θ1 �θ2 �θ3 �H1 �H2 �H3]

T.
Since the end-effector of the UCPR has three transla-

tional DOFs, the rotation matrix from frame PXYZ to 
frame OXYZ is written as

The angle θi of cable mast between OCi and the OX-axis 
is defined as

The position vector from origin P to cable attachment 
point Bi is denoted as rBi , namely,

The position vector from origin O to cable exit point Ai 
is denoted as rAi , namely,

The inverse kinematics equation for the UCPR can be 
written as

where li denotes the length vector of the ith cable.
The length scalar of the ith cable can be denoted as

(1)O
PR =





1 0 0
0 1 0
0 0 1



.

(2)θi =
2π(i − 1)

3
, i = 1, 2, 3.

(3)rBi =
[

r cos θi r sin θi h
]T
, i = 1, 2, 3.

(4)rAi =
[

R cos θi R sin θi Hi

]T
, i = 1, 2, 3.

(5)li = rAi −
O
PR rBi − rP , i = 1, 2, 3,

(6)li =

√

lTi li, i = 1, 2, 3.

According to Eq. (5), the relationship between the 
velocity vector of cables and the velocity vector of the 
generated coordinates can be expressed as

where q̇ = [ẋ ẏ ż �θ̇1 �θ̇2 �θ̇3 �Ḣ1 �Ḣ2 �Ḣ3]
T,

denotes the velocity vector of the generated coordinates, 
l̇ =

[

l1 l2 l3
]T is the velocity vector of cables, and J 

stands for the Jacobian matrix, which can be expressed as

3 � Dynamic Modeling
The force analysis diagram of the UCPR is displayed 
in Figure  2. Ti (i = 1, 2, 3) denotes the cable tension. 
Tθi(i = 1, 2, 3) stands for the torque of the cable mast 
around the OZ-axis. It is assumed that cable mast rotates 
counterclockwise along the circular base to be posi-
tive and clockwise to be negative. Fi (i = 1, 2, 3) repre-
sents the force of the cable mast to the pulley upward. 
The dynamics model of the UCPR offers an explicit 
description of the relationship between its motion and 
force, which is established by the Lagrange method. The 
Lagrange equation of the UCPR is the difference between 
its total kinetic energy and total potential energy.

The kinetic energy of the end-effector can be written as

(7)l̇ = J q̇,

(8)

J =







∂l1
∂x

∂l1
∂y

∂l1
∂z

∂l1
∂�θ1

∂l1
∂�θ2

∂l1
∂�θ3

∂l1
∂�H1

∂l1
∂�H2

∂l1
∂�H3

∂l2
∂x

∂l2
∂y

∂l2
∂z

∂l2
∂�θ1

∂l2
∂�θ2

∂l2
∂�θ3

∂l2
∂�H1

∂l2
∂�H2

∂l2
∂�H3

∂l3
∂x

∂l3
∂y

∂l3
∂z

∂l3
∂�θ1

∂l3
∂�θ2

∂l3
∂�θ3

∂l3
∂�H1

∂l3
∂�H2

∂l3
∂�H3






.

Figure 2  Force analysis diagram of the UCPR
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where me denotes the mass of the end-effector, and 
q̇e =

[

ẋ ẏ ż
]T.

The potential energy of the end-effector can be 
expressed by

where g denotes the magnitude of gravity acceleration.
The kinetic energy of cable mast rotating along the cir-

cular base can be depicted as

where Iθ = mcR
2 denotes the inertia moment of cable 

mast along the circular base, mc represents the mass of 
cable mast, and q̇θ =

[

�θ̇1 �θ̇2 �θ̇3
]T.

The potential energy of cable mast rotating along the 
circular base can be described as

The kinetic energy of cable mast driven by the hydrau-
lic cylinder in the Z direction can be represented by

where q̇H =
[

�Ḣ1 �Ḣ2 �Ḣ3

]T.

The potential energy of cable mast driven by the 
hydraulic cylinder in the Z direction can be denoted by

(9)K1=
1

2
meq̇

T
e q̇e =

1

2
me

(

ẋ2 + ẏ2 + ż2
)

,

(10)U1 = megz,

(11)K2 =
1

2
Iθ q̇

T
θ q̇θ=

1

2
Iθ

(

�θ̇21 +�θ̇22 +�θ̇23

)

,

(12)U2 = 0.

(13)
K3 =

1

2
mcq̇

T
H q̇H=

1

2
mc

(

�Ḣ2
1 +�Ḣ2

2 +�Ḣ2
3

)

,

The Lagrange formulation of the UCPR can be 
described by

The motion equation of the UCPR can be established 
using the Lagrange formulation as follows:

where Q = [T1 T2 T3 Tθ1 Tθ2 Tθ3 F1 F2 F3]
T rep-

resents the generalized force of the UCPR.
Substituting Eq. (15) into Eq. (16) leads to

The partial derivative of the Lagrange formulation with 
regard to the generalized coordinates can be derived as

The dynamics model of the UCPR can be obtained by

where T =
[

T1 T1 T3

]T represents the tension vector of 
the three cables.

(14)U3 =

3
∑

i=1

mcg�Hi.

(15)

L = K1 + K2 + K3 − U1 − U2 − U3

=
1

2
meq̇

T

e q̇e +
1

2
Iθ q̇

T

θ q̇θ +
1

2
mcq̇

T

H q̇H

−megz −

3
∑

i=1

mcg�Hi.

(16)
d

dt

(

∂L

∂q̇

)

−
∂L

∂q
= Q,

(17)



















d
dt

�

∂L
∂ ẋ

�

= meẍ,
d
dt

�

∂L
∂ ẏ

�

= meÿ,
d
dt

�

∂L
∂ ż

�

= mez̈,

d
dt

�

∂L
∂�θ̇1

�

= Iθ�θ̈1,
d
dt

�

∂L
∂�θ̇2

�

= Iθ�θ̈2,
d
dt

�

∂L
∂�θ̇3

�

= Iθ�θ̈3,

d
dt

�

∂L
∂�Ḣ1

�

= mc�Ḧ1,
d
dt

�

∂L
∂�Ḣ2

�

= mc�Ḧ2,
d
dt

�

∂L
∂�Ḣ3

�

= mc�Ḧ3.

(18)











∂L
∂x = 0, ∂L

∂y = 0, ∂L
∂z = −meg ,

∂L
∂�θ1

= 0, ∂L
∂�θ2

= 0, ∂L
∂�θ3

= 0,
∂L

∂�H1
= −mcg ,

∂L
∂�H2

= −mcg ,
∂L

∂�H3
= −mcg .

(19)d

dt

�

∂L

∂q̇

�

−
∂L

∂q
=

























me 0 0 0 0 0 0 0 0
0 me 0 0 0 0 0 0 0
0 0 me 0 0 0 0 0 0
0 0 0 Iθ 0 0 0 0 0
0 0 0 0 Iθ 0 0 0 0
0 0 0 0 0 Iθ 0 0 0
0 0 0 0 0 0 mc 0 0
0 0 0 0 0 0 0 mc 0

0 0 0 0 0 0 0 mc



















































ẍ
ÿ
z̈

�θ̈1
�θ̈2
�θ̈3
�Ḧ1

�Ḧ2

�Ḧ3



























+

























0
0

meg
0
0
0

mcg
mcg
mcg

























= Mq̈+G = −JTT ,
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4 � Point‑to‑Point Trajectory Planning
The given trajectory of the end-effector for the UCPR is 
illustrated as Figure  3, which is a closed curve compris-
ing lines and arcs. Assume that the sequence of motion 
for the end-effector is as follows: P0 →P1 →P2 →P3 →

P4 →P5 → P0 . The coordinates from point P0 to point 
P5 respectively are P0 (0, 0, 300) , P1 (100, 0, 300) , 
P2 (100, 0, 200) , P3 (0, −100, 200) , P4 (−100, 0, 200) , 
and P5 (−100, 0, 300) . The equation for the given trajec-
tory of the end-effector consists of six segments, which 
can be denoted as

where t denotes the motion time of the end-effector 
along the given trajectory.

Then, the trajectory is separately planned by three 
algebraic methods, which include fifth degree polyno-
mial, cycloid trajectory, and double-S velocity curve. The 

(20)x =



















10t, (0 ≤ t ≤ 10), P0 → P1,
100, (10 < t ≤ 20), P1 → P2,
100 cos

�

π

40 (t − 20)
�

, (20 < t ≤ 60), P2 → P3 → P4,
−100, (60 < t ≤ 70), P4 → P5,
10t − 800, (70 < t ≤ 80), P5 → P0.

(21)y =



















0, (0 ≤ t ≤ 10), P0 → P1,
0, (10 < t ≤ 20), P1 → P2,
−100 sin

�

π

40 (t − 20)
�

, (20 < t ≤ 60), P2 → P3 → P4,
0, (60 < t ≤ 70), P4 → P5,
0, (70 < t ≤ 80), P5 → P0,

(22)

z =



















300, (0 ≤ t ≤ 10), P0 → P1,
−10t + 400, (10 < t ≤ 20), P1 → P2,
200, (20 < t ≤ 60), P2 → P3 → P4,
10t − 400, (60 < t ≤ 70), P4 → P5,
300, (70 < t ≤ 80), P5 → P0,

planned and unplanned trajectories in the X, Y, Z direc-
tions are compared and analyzed.

4.1 � Fifth Degree Polynomial Method
By planning the motion trajectory of the end-effector 
using fifth degree polynomial method, the formulas of 
position, velocity, and acceleration can be expressed as

Figure 3  Given trajectory of the end-effector

Figure 4  Position, velocity, and acceleration curves of fifth degree 
polynomial planning in the X direction

(23)

p(t) = σ0 + σ1(t − t0)+ σ2(t − t0)
2 + σ3(t − t0)

3

+σ4(t − t0)
4 + σ5(t − t0)

5,

(24)
ṗ(t) = σ1 + 2σ2(t − t0)+ 3σ3(t − t0)

2

+4σ4(t − t0)
3 + 5σ5(t − t0)

4,

(25)
p̈(t) = 2σ2 + 6σ3(t − t0)+ 12σ4(t − t0)

2

+20σ5(t − t0)
3,
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where t0 and t1 denote the initial and final times of 
each trajectory segment, respectively;  p(t0) = p0 and 
p(t1) = p1 represent the initial and final positions of 
each trajectory segment, respectively; ṗ(t0) = v0 and 
ṗ(t1) = v1 denote the initial and final velocities of each 
trajectory segment, respectively; and  p̈(t0) = a0 and 
p̈(t1) = a1 denote the initial and final accelerations of 
each trajectory segment, respectively. In this case, by 
defining �T = t1 − t0 and �p = p1 − p0 , the coefficients 
of the polynomial can be derived by

The trajectories in the X, Y, Z directions after fifth 
degree polynomial planning are shown in Figures  4, 5, 
and 6, respectively. The red, green, and blue solid lines 
denote the planned position, velocity, and acceleration 
curves, respectively. The black dotted lines represent the 
unplanned position, velocity, and acceleration curves.

In the X direction, the planned position curve is basi-
cally consistent with the unplanned position curve. 
The unplanned velocities at points P1 and P5 suddenly 
change, and the accelerations become infinite. After fifth 
degree polynomial planning, the velocities at points P1 
and P5 achieve a parabolic smooth transition, and the 
accelerations realize a sinusoidal smooth transition. 
Thus, impacts and vibrations of the robot caused by sud-
den changes in velocity during motion are effectively 
avoided. In segment P0 → P1 , the maximum velocity 
is vmax = 18.75 mm/s when the time t = 5 s , and the 

(26)



































σ0 = p0,

σ1 = v0,

σ2 =
1

2
a0,

σ3 =
1

2�T 3

�

20�p− (8v1 + 12v0)�T − (3a0 − a1)�T 2
�

,

σ4 = 1

2�T 4

�

−30�p+ (14v1 + 16v0)�T + (3a0 − 2a1)�T 2
�

,

σ5 =
1

2�T 5

�

12�p− 6(v1 + v0)�T + (a1 − a0)�T 2
�

.

velocity curve is a parabola; the maximum acceleration 
is amax = 5.773 mm

/

s2 when the time t = 2.1 s , while 
the minimum acceleration is amin = −5.773 mm

/

s2 
when the time t = 7.9 s , and the acceleration curve 
is a sinusoid with a period of 10 s and a magnitude of 
11.546 mm

/

s2 . In segments P2 → P3 → P4 , the mini-
mum velocity is vmin = −9.398 mm/s when the time 
t = 40 s , and the velocity curve is parabola; the mini-
mum acceleration is amin = −0.7253 mm

/

s2 when 
the time t = 28.5 s , while the maximum acceleration is 
amax = 0.7253 mm

/

s2 when the time t = 51.5 s , and the 
acceleration curve is sinusoid with a period of 40 s and 
a magnitude of 1.4506 mm

/

s2 . In segment P5 → P0 , 
the maximum velocity is vmax = 18.94 mm/s when the 
time t = 75 s , and the velocity curve is a parabola; the 
maximum acceleration is amax = 5.891 mm

/

s2 when 
the time t = 72.2 s , while the minimum acceleration is 
amin = −5.891 mm

/

s2 when the time t = 77.9 s , and the 
acceleration curve is a sinusoid with a period of 10 s and a 
magnitude of 11.782 mm

/

s2.
In the Y direction, the planned position curve is com-

pletely consistent with the unplanned position curve 
in segments P0 → P1 → P2 and P4 → P5 → P0 . The 
planned position curve lags behind the unplanned posi-
tion curve in segment P2 → P3 , while the planned posi-
tion curve is ahead of the unplanned curve in segment 
P3 → P4 . The unplanned velocities at points P2 and P4 
suddenly change, and the accelerations become infinite. 
After fifth degree polynomial planning, the velocities at 
points P2 and P4 achieve a parabolic smooth transition, 
and the accelerations realize a sinusoidal smooth transi-
tion. Thus, impacts and vibrations of the robot caused by 
sudden changes in velocity during motion are effectively 
avoided. In segment P2 → P3 , the minimum velocity 

Figure 5  Position, velocity, and acceleration curves of fifth degree 
polynomial planning in the Y direction

Figure 6  Position, velocity, and acceleration curves of fifth degree 
polynomial planning in the Z direction
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is vmin = −9.348 mm/s when the time t = 30 s , and 
the velocity curve is a parabola; the minimum accelera-
tion is amin = −1.446 mm

/

s2 when the time t = 24.3 s , 
while the maximum acceleration is amax = 1.446 mm

/

s2 
when the time t = 35.8 s , and the acceleration curve 
is a sinusoid with a period of 20 s and a magnitude of 
2.892 mm

/

s2 . In segment P3 → P4 , the maximum veloc-
ity is vmax = 9.421 mm/s when the time t = 50 s , and the 
velocity curve is parabola; the maximum acceleration is 
amax = 1.458 mm

/

s2 when the time t = 44.3 s , while the 
minimum acceleration is amin = −1.458 mm

/

s2 when 
the time t = 55.8 s , and the acceleration curve is sinusoid 
with a period of 20 s and a magnitude of 2.916 mm

/

s2.
In the Z direction, the planned position curve is basi-

cally consistent with the unplanned position curve. The 
unplanned velocities at points P1 , P2 , P4 , and P5 sud-
denly change, and the accelerations become infinite. 
After fifth degree polynomial planning, the velocities 
at points P1 , P2 , P4 , and P5 achieve a parabolic smooth 
transition, and the accelerations realize a sinusoidal 

smooth transition. Thus, impacts and vibrations of 
the robot caused by sudden changes in velocity during 
motion are effectively avoided. In segment P1 → P2 , the 
minimum velocity is vmin = −18.94 mm/s when the 
time t = 15 s , and the velocity curve is a parabola; the 
minimum acceleration is amin = −5.891 mm

/

s2 when 
the time t = 12.2 s , while the maximum acceleration is 
amax = 5.891 mm

/

s2 when the time t = 17.9 s , and the 
acceleration curve is a sinusoid with a period of 10 s and 
a magnitude of 11.782 mm

/

s2 . In segment P4 → P5 , 
the maximum velocity is vmax = 18.94 mm/s when the 
time t = 65 s , and the velocity curve is parabola; the 
maximum acceleration is amax = 5.891 mm

/

s2 when 
the time t = 62.2 s , while the minimum acceleration is 
amin = −5.891 mm

/

s2 when the time t = 67.9 s , and the 
acceleration curve is sinusoid with a period of 10 s and a 
magnitude of 11.782 mm

/

s2.
The planned and unplanned trajectories for fifth degree 

polynomial are illustrated in Figure  7, in which the 
planned trajectories are completely consistent with the 
unplanned trajectories in segments P0 → P1 , P1 → P2 , 
P4 → P5 , and P5 → P0 , as well as the planned trajecto-
ries are basically consistent with the unplanned trajecto-
ries in segments P2 → P3 → P4.

4.2 � Cycloid Trajectory Method
A continuous acceleration curve can be obtained by using 
a cycloid trajectory method, which the equations of posi-
tion, velocity, and acceleration can be expressed by

(27)

f (t) =
(

f1 − f0
)

(

t − t0

t1 − t0
−

1

2π
sin

2π(t − t0)

t1 − t0

)

+ f0

= �f

(

t − t0

�T
−

1

2π
sin

2π(t − t0)

�T

)

+ f0,

Figure 7  Planned and unplanned trajectories for fifth degree 
polynomial

Figure 8  Position, velocity, and acceleration curves of cycloid 
trajectory planning in the X direction
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where t0 and t1 denote the initial and final times of each 
trajectory segment, respectively; f (t0) = f0 and f (t1) = f1 
represent the initial and final positions of each trajec-
tory segment, respectively. By defining �T = t1 − t0 and 
�f = f1 − f0.

The trajectories in the X, Y, Z directions after cycloid 
trajectory planning are shown in Figures  8, 9, and 10, 
respectively. The red, green, and blue solid lines denote 
the planned position, velocity, and acceleration curves, 

(28)ḟ (t) =
�f

�T

(

1− cos
2π(t − t0)

�T

)

,

(29)f̈ (t) =
2π�f

�T 2
sin

2π(t − t0)

�T
,

respectively. The black dotted lines represent the 
unplanned position, velocity, and acceleration curves.

In the X direction, the planned position curve is basi-
cally consistent with the unplanned position curve. 
The unplanned velocities at points P1 and P5 suddenly 
change, and the accelerations become infinite. After 
cycloid trajectory planning, the velocities at points P1 
and P5 achieve a parabolic smooth transition, and the 
accelerations realize a sinusoidal smooth transition. 
Thus, impacts and vibrations of the robot caused by sud-
den changes in velocity during motion are effectively 
avoided. In segment P0 → P1 , the maximum velocity is 
vmax = 20 mm/s when the time t = 5 s , and the veloc-
ity curve is a parabola; the maximum acceleration is 
amax = 6.283 mm/s2 when the time t = 2.5 s , while the 
minimum acceleration is amin = −6.283 mm

/

s2 when 
the time t = 7.5 s , and the acceleration curve is a sinusoid 
with a period of 10 s and a magnitude of 12.566 mm

/

s2 . 
In segments P2 → P3 → P4 , the minimum velocity is 
vmin = −10.02 mm/s when the time t = 40 s , and the 
velocity curve is parabola; the minimum acceleration is 
amin = −0.7893 mm

/

s2 when the time t = 30 s , while 
the maximum acceleration is amax = 0.7893 mm

/

s2 
when the time t = 50 s , and the acceleration curve 
is sinusoid with a period of 40 s and a magnitude of 
1.5786 mm

/

s2 . In segment P5 → P0 , the maximum 
velocity is vmax = 20.2 mm/s when the time t = 75 s , and 
the velocity curve is parabola; the maximum acceleration 
is amax = 6.41 mm

/

s2 when the time t = 72.6 s , while 
the minimum acceleration is amin = −6.41 mm

/

s2 when 
the time t = 77.5 s , and the acceleration curve is sinusoid 
with a period of 10 s and a magnitude of 12.82 mm

/

s2.
In the Y direction, the planned position curve is com-

pletely consistent with the unplanned position curve 
in segments P0 → P1 → P2 and P4 → P5 → P0 . The 
planned position curve lags behind the unplanned posi-
tion curve in segment P2 → P3 , while the planned posi-
tion curve is ahead of the unplanned curve in segment 
P3 → P4 . The unplanned velocities at points P2 and P4 
suddenly change, and the accelerations become infi-
nite. After cycloid trajectory planning, the velocities at 
points P2 and P4 achieve a parabolic smooth transition, 
and the accelerations realize a sinusoidal smooth transi-
tion. Thus, impacts and vibrations of the robot caused by 
sudden changes in velocity during motion are effectively 
avoided. In segment P2 → P3 , the minimum velocity is 
vmin = −9.971 mm/s when the time t = 30 s , and the 
velocity curve is a parabola; the minimum acceleration 
is amin = −1.574 mm

/

s2 when the time t = 25 s , while 
the maximum acceleration is amax = 1.574 mm

/

s2 when 
the time t = 35 s , and the acceleration curve is a sinusoid 
with a period of 20 s and a magnitude of 3.148 mm

/

s2 . 
In segment P3 → P4 , the maximum velocity is 

Figure 9  Position, velocity, and acceleration curves of cycloid 
trajectory planning in the Y direction

Figure 10  Position, velocity, and acceleration curves of cycloid 
trajectory planning in the Z direction
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vmax = 10.05 mm/s when the time t = 50 s , and the 
velocity curve is parabola; the maximum acceleration is 
amax = 1.587 mm

/

s2 when the time t = 45.1 s , while the 
minimum acceleration is amin = −1.587 mm

/

s2 when 
the time t = 55 s , and the acceleration curve is sinusoid 
with a period of 20 s and a magnitude of 3.174 mm

/

s2.
In the Z direction, the planned position curve is basi-

cally consistent with the unplanned position curve. The 
unplanned velocities at points P1 , P2 , P4 , and P5 sud-
denly change, and the accelerations become infinite. 
After cycloid trajectory planning, the velocities at points 
P1 , P2 , P4 , and P5 achieve a parabolic smooth transition, 
and the accelerations realize a sinusoidal smooth transi-
tion. Thus, impacts and vibrations of the robot caused 
by sudden changes in velocity during motion are effec-
tively avoided. In segment P1 → P2 , the minimum veloc-
ity is vmin = −20.2 mm/s when the time t = 15 s , and 
the velocity curve is a parabola; the minimum accelera-
tion is amin = −6.41 mm

/

s2 when the time t = 12.6 s , 

while the maximum acceleration is amax = 6.41 mm
/

s2 
when the time t = 17.5 s , and the acceleration curve 
is a sinusoid with a period of 10 s and a magnitude of 
12.82 mm

/

s2 . In segment P4 → P5 , the maximum veloc-
ity is vmax = 20.2 mm/s when the time t = 65 s , and the 
velocity curve is parabola; the maximum acceleration is 
amax = 6.41 mm

/

s2 when the time t = 62.6 s , while the 
minimum acceleration is amin = −6.41 mm

/

s2 when the 
time t = 67.5 s , and the acceleration curve is sinusoid 
with a period of 10 s and a magnitude of 12.82 mm

/

s2.
The planned and unplanned trajectories for cycloid tra-

jectory are illustrated in Figure 11, in which the planned 
trajectories are completely consistent with the unplanned 
trajectories in segments P0 → P1,  P1 → P2,  P4 → P5 , 
and P5 → P0 , as well as the planned trajectories are basi-
cally consistent with the unplanned trajectories in seg-
ments P2 → P3 → P4.

4.3 � Double‑S Velocity Curve Method
For the velocity motion curve to exhibit a continuous 
acceleration and avoid potentially harmful or unde-
sired vibration effects, a smoother motion curve should 
be defined, such as by using a successive acceleration 
curve of linear segmentation, as illustrated in Figure 12. 

Figure 11  Planned and unplanned trajectories for cycloid trajectory
Figure 12  Typical curves of position, velocity, acceleration, and jerk 
for double-S trajectory
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The velocity obtained in this way is composed of linear 
segments joined by parabolic blends. The shape of the 
velocity curve is the reason for naming the trajectory as 
double-S shape, also known as seven-segment trajectory 
or bell shape, because it consists of seven diverse regions 
with constant jerk. Since the jerk is characterized by a 
step curve, the stress and vibration effects generated by 
the motion curve on the transmission chain and load are 
reduced relative to the trapezoidal velocity trajectory, 
and the characteristic is a jerk curve of the pulse.

Assume that

where vmax and vmin denote the maximum and minimum 
velocity values, respectively; amax and amin represent the 
maximum and minimum acceleration values, respec-
tively; and jmax and jmin stand for the maximum and mini-
mum jerk values, respectively. The boundary conditions 
of the double-S trajectory can be expressed as follows: 
(1) initial velocity value v0 and final velocity value v7; (2) 
initial acceleration a0 and final acceleration v7 are set to 
zero.

The trajectory can be divided into three stages:

(1)	 Acceleration stage, t ∈ [0, Tb] , in which the accel-
eration has a linear curve from the initial value to 
the maximum value and then back to zero.

(2)	 Maximum velocity stage, t ∈ [Tb, Tb + Td] , with a 
constant velocity.

(3)	 Deceleration stage, t ∈ [Tb + Td , �T ] , being 
�T = Tb + Td + Tb , with curves opposite with 
regard to the acceleration stage.

Given the desired position �g = g7 − g0 and the con-
straints on the maximum values of velocity, acceleration, 
and jerk, the double-S trajectory can be calculated by 
using Eqs. (31)–(47) as follows.

(1)	Calculation of the trajectory for g7 > g0

Variable description: t0 denotes the initial moment 
for each trajectory segment, ti (i = 1, 2, . . . , 7) denotes 
the final moment of the first i segment motion for 
each trajectory segment, �T = t7 − t0 represents 
the total motion time of each trajectory segment, 
τi = ti − ti−1 (i = 1, 2, . . . , 7) denotes the time period 
of the ith segment motion for each trajectory segment, 
gi (i = 0, 1, . . . , 7) represents the position at the moment 

(30)







vmin = −vmax,
amin = −amax,
jmin = −jmax.

of ti (i = 0, 1, . . . , 7) , and �g = g7 − g0 denotes the differ-
ence between the final and initial positions. In addition, b 
and c are two coefficients defined as b = 1

3 and c = 1
4 , and 

Tb = b�T .
Maximum velocity:

Maximum acceleration:

Maximum jerk:

1)	 when t = t1,

	

2)	 when t = t2,
	

3)	 when t = t3,
	

4)	 when t = t4,
	

5)	 when t = t5,
	

6)	 when t = t6,
	

7)	 when t = t7,
	

(31)vmax =
�g

(1− b)�T
.

(32)amax =
�g

b(1− b)(1− c)�T 2
.

(33)jmax =
�g

b2c(1− b)(1− c)�T 3
,

(34)
{

g1 = v0τ1 +
1
6 jmaxτ

3
1 ,

v1 = v0 +
1
2 jmaxτ

2
1 ,

(35)
{

g2 = g1 + v1τ2 +
1
2 jmaxτ1τ

2
2 ,

v2 = v1 + amaxτ2,

(36)
{

g3 = g2 + v2τ3 +
1
3 jmaxτ

3
3 ,

v3 = v2 +
1
2 jmaxτ

2
3 ,

(37)
{

g4 = g3 + v3τ4,
v4 = v3,

(38)
{

g5 = g4 + v4τ5 −
1
6 jmaxτ

3
5 ,

v5 = v4 −
1
2 jmaxτ

2
5 ,

(39)
{

g6 = g5 + v5τ6 −
1
2 jmaxτ5τ

2
6 ,

v6 = v5 − amaxτ6,

(40)
{

g7 = g6 + v6τ7 −
1
3 jmaxτ

3
7 ,

v7 = v6 −
1
2 jmaxτ

2
7 .
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Thus, the formulas of position, velocity, acceleration, 
and jerk for the double-S trajectory can be expressed 
respectively as

(41)g(t) =







































v0(t − t0)+
1
6 jmax(t − t0)

3, 0 ≤ t ≤ t1,

g1 + v1(t − t1)+
1
2 jmaxτ1(t − t1)

2, t1 < t ≤ t2,

g2 + v2(t − t2)+
1
2 jmaxτ3(t − t2)

2 − 1
6 jmax(t − t2)

3, t2 < t ≤ t3,
g3 + v3(t − t3), t3 < t ≤ t4,

g4 + v4(t − t4)−
1
6 jmax(t − t4)

3, t4 < t ≤ t5,

g5 + v5(t − t5)−
1
2 jmaxτ5(t − t5)

2, t5 < t ≤ t6,

g6 + v6(t − t6)−
1
2 jmaxτ7(t − t6)

2 + 1
6 jmax(t − t6)

3, t6 < t ≤ t7.

(42)

ġ(t) =







































v0 +
1
2 jmax(t − t0)

2, t0 ≤ t ≤ t1,
v1 + amax(t − t1), t1 < t ≤ t2,

v2 + amax(t − t2)−
1
2 jmax(t − t2)

2, t2 < t ≤ t3,
v3, t3 < t ≤ t4,

v4 −
1
2 jmax(t − t4)

2, t4 < t ≤ t5,
v5 − amax(t − t5), t5 < t ≤ t6,

v6 − amax(t − t6)+
1
2 jmax(t − t6)

2, t6 < t ≤ t7,

(43)g̈(t) =



































jmax(t − t0), t0 ≤ t ≤ t1,
amax, t1 < t ≤ t2,
amax − jmax(t − t2), t2 < t ≤ t3,
0, t3 < t ≤ t4,
−jmax(t − t4), t4 < t ≤ t5,
−amax, t5 < t ≤ t6,
−amax + jmax(t − t6), t6 < t ≤ t7,

(44)
...
g (t) =



































jmax, t0 ≤ t ≤ t1,
0, t1 < t ≤ t2,
−jmax, t2 < t ≤ t3,
0, t3 < t ≤ t4,
−jmax, t4 < t ≤ t5,
0, t5 < t ≤ t6,
jmax, t6 < t ≤ t7.

(2) Calculation of the trajectory for g7 < g0
When g7 < g0 , the trajectory parameters can be cal-

culated according to the above steps. It is essential to 

consider the initial and final positions/velocities with 
opposite signs and reverse the synthesis curves of posi-
tion, velocity, acceleration, and jerk after the calculation. 
In general, given any initial and final values for position 
and velocity, that is, ĝ0 , ĝ7 , v̂0 , and v̂7 , in order to calculate 
the trajectory it is necessary to convert these values as

where ε = sign
(

ĝ0 − ĝ7
)

.
Similarly, the maximum and minimum values of veloc-

ity, acceleration, and jerk, that is, v̂max , v̂min , âmax , âmin , 
ĵmax , and ĵmin , should also be converted as

(45)











g0 = εĝ0,
g7 = εĝ7,
v0 = εv̂0,
v7 = εv̂7,

Figure 13  Position, velocity, and acceleration curves of double-S 
velocity curve planning in the X direction

Figure 14  Position, velocity, and acceleration curves of double-S 
velocity curve planning in the Y direction
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Finally, the calculated curves, that is, g(t) , ġ(t) , g̈(t) , 
and 

...
g (t) , should be converted again as

The trajectories in the X, Y, Z directions after double-
S velocity curve planning are shown in Figures  13, 14, 
and 15, respectively. The red, green, and blue solid lines 
denote the planned position, velocity, and acceleration 
curves, respectively. The black dotted lines represent the 
unplanned position, velocity, and acceleration curves.

In the X direction, the planned position curve is basi-
cally consistent with the unplanned position curve. 
The unplanned velocities at points P1 and P5 sud-
denly change, and the accelerations become infinite. 
After double-S velocity curve planning, the velocities 
at points P1 and P5 achieve a double-S curve smooth 
transition, and the accelerations realize a trapezoi-
dal smooth transition. Thus, impacts and vibrations of 
the robot caused by sudden changes in velocity during 
motion are effectively avoided. In segment P0 → P1 , the 
maximum velocity is vmax = 15 mm/s when the time 
t ∈ [3.3 s, 6.7 s] , and the velocity curve is a double-S 
curve; the maximum acceleration is amax = 6 mm

/

s2

(46)



































vmax =
(ε+1)

2 v̂max +
(ε−1)

2 v̂min,

vmin = (ε+1)
2 v̂min +

(ε−1)
2 v̂max,

amax =
(ε+1)

2 âmax +
(ε−1)

2 âmin,

amin = (ε+1)
2 âmin +

(ε−1)
2 âmax,

jmax =
(ε+1)

2 ĵmax +
(ε−1)

2 ĵmin,

jmin = (ε+1)
2 ĵmin +

(ε−1)
2 ĵmax.

(47)















ĝ(t) = εg(t),
˙̂g(t) = εġ(t),
¨̂g(t) = εg̈(t),...
ĝ (t) = ε

...
g (t).

when the time t ∈ [0.9 s, 2.5 s] , while the minimum 
acceleration is amin = −6 mm

/

s2 when the time 
t ∈ [7.5 s, 9.1 s] , and the acceleration curve is a trapezoid. 
In segments P2 → P3 → P4 , the minimum velocity is 
vmin = −7.519 mm/s when the time t ∈ [33.4 s, 46.7 s] , 
and the velocity curve is a double-S curve; the mini-
mum acceleration is amin = −0.7538 mm

/

s2 when 
the time t ∈ [23.5 s, 30 s] , while the maximum accel-
eration is amax = 0.7538 mm

/

s2 when the time 
t ∈ [50.1 s, 56.6 s] , and the acceleration curve is trap-
ezoid. In segment P5 → P0 , the maximum velocity is 
vmax = 15.15 mm/s when the time t ∈ [73.4 s, 76.7 s] , 
and the velocity curve is a double-S curve; the maxi-
mum acceleration is amax = 6.122 mm

/

s2 when the time 
t ∈ [71 s, 72.5 s] , while the minimum acceleration is 
amin = −6.122 mm

/

s2 when the time t ∈ [77.6 s, 79.1 s] , 
and the acceleration curve is a trapezoid.

In the Y direction, the planned position curve is com-
pletely consistent with the unplanned position curve 
in segments P0 → P1 → P2 and P4 → P5 → P0 . The 
planned position curve lags behind the unplanned posi-
tion curve in segment P2 → P3 , while the planned 
position curve is ahead of the unplanned curve in seg-
ment P3 → P4 . The unplanned velocities at points P2 
and P4 suddenly change, and the accelerations become 
infinite. After double-S velocity curve planning, the 
velocities at points P2 and P4 achieve a double-S curve 
smooth transition, and the accelerations realize a trap-
ezoidal smooth transition. Thus, impacts and vibrations 
of the robot caused by sudden changes in velocity dur-
ing motion are effectively avoided. In segment P2 → P3 , 
the minimum velocity is vmin = −7.478 mm/s when 
the time t ∈ [26.7 s, 33.4 s] , and the velocity curve 
is a double-S curve; the minimum acceleration is 
amin = −1.503 mm

/

s2 when the time t ∈ [21.8 s, 25 s] , 
while the maximum acceleration is amax = 1.503 mm

/

s2 
when the time t ∈ [35.1 s, 38.3 s] , and the acceleration 
curve is a trapezoid. In segment P3 → P4 , the maxi-
mum velocity is vmax = 7.537 mm/s when the time 
t ∈ [46.7 s, 53.4 s] , and the velocity curve is a double-S 
curve; the maximum acceleration is amax = 1.515 mm

/

s2 
when the time t ∈ [41.8 s, 45 s] , while the mini-
mum acceleration is amin = −1.515 mm

/

s2 when the 
time t ∈ [55.1 s, 58.3 s] , and the acceleration curve is 
trapezoid.

In the Z direction, the planned position curve is basi-
cally consistent with the unplanned position curve. The 
unplanned velocities at points P1 , P2 , P4 , and P5 sud-
denly change, and the accelerations become infinite. 
After double-S velocity curve planning, the velocities 
at points P1 , P2 , P4 , and P5 achieve a double-S curve 
smooth transition, and the accelerations realize a trap-
ezoidal smooth transition. Thus, impacts and vibrations 

Figure 15  Position, velocity, and acceleration curves of double-S 
velocity curve planning in the Z direction
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of the robot caused by sudden changes in velocity dur-
ing motion are effectively avoided. In segment P1 → P2 , 
the minimum velocity is vmin = −15.15 mm/s when 
the time t ∈ [13.4 s, 16.7 s] , and the velocity curve 
is a double-S curve; the minimum acceleration is 
amin = −6.122 mm

/

s2 when the time t ∈ [11 s, 12.5 s] , 
while the maximum acceleration is amax = 6.122 mm

/

s2 
when the time t ∈ [17.6 s, 19.1 s] , and the acceleration 
curve is a trapezoid. In segment P4 → P5 , the maxi-
mum velocity is vmax = 15.15 mm/s when the time 
t ∈ [63.4 s, 66.7 s] , and the velocity curve is a double-S 
curve; the maximum acceleration is amax = 6.122 mm

/

s2 
when the time t ∈ [61 s, 62.5 s] , while the mini-
mum acceleration is amin = −6.122 mm

/

s2 when the 
time t ∈ [67.6 s, 69.1 s] , and the acceleration curve is 
trapezoid.

The planned and unplanned trajectories for double-S 
velocity curve are illustrated in Figure  16, in which the 
planned trajectories are completely consistent with the 

unplanned trajectories in segments P0 → P1 , P1 → P2 , 
P4 → P5 , and P5 → P0 . Compared with fifth-degree 
polynomial planning and cycloid trajectory planning, 
the trajectory error in segments P2 → P3 → P4 is larger 
after double-S velocity curve planning.

After comparison and analysis, the velocity curves after 
fifth degree polynomial planning and cycloid trajectory 
planning in the X, Y, Z directions are parabolic smooth 
transitions, and the acceleration curves are sinusoidal 
smooth transitions. The velocity curves after double-
S velocity curve planning in the X, Y, Z directions are 
double-S curve smooth transitions, and the acceleration 
curves are trapezoidal smooth transitions. In the same 
segment of trajectory, the maximum and minimum 
values of velocity curves after fifth degree polynomial 
planning are smaller than that after cycloid trajectory 
planning, and the maximum and minimum values of 
acceleration curves after fifth degree polynomial plan-
ning are less than that after cycloid trajectory plan-
ning. Thus, the trajectory after fifth degree polynomial 
planning is closer to the given trajectory than that after 
cycloid trajectory planning. This means that fifth degree 
polynomial planning is superior to cycloid trajectory 
planning. Although the maximum and minimum values 
of the velocity curves after double-S velocity curve plan-
ning are smaller than that after fifth degree polynomial 
planning, the parabolic curve is smoother than that of 
the double-S curve. The maximum and minimum values 
of the acceleration curves after double-S velocity curve 
planning are greater than that after fifth degree poly-
nomial planning. The acceleration curve after double-
S velocity curve planning is trapezoidal. The robot may 
produce a certain vibration in the acceleration and decel-
eration phases, and the sinusoidal curve is smoother than 
the trapezoidal curve. Therefore, fifth degree polynomial 

Figure 16  Planned and unplanned trajectories for double-S velocity 
curve

Figure 17  Experiment prototype of the UCPR
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planning is better than double-S velocity curve planning 
[29].

5 � Numerical Simulation and Experiments
The experiments are performed based on fifth degree 
polynomial planning. The experiment prototype of the 
UCPR is illustrated in Figure  17. Three cable masts are 
evenly distributed on the circular base and are fixed, i.e., 
θ1 = 0 , θ2 = 2π

3  , θ3 = 4π
3  , and �θ1 = �θ2 = �θ3 = 0 . 

The three cable masts have the same height and 
are locked, that is, H1 = H2 = H3 = 660 mm and 
�H1 = �H2 = �H3 = 0 . The end-effector is considered 
as a point-mass, where the mass is me = 3 kg . The mass 
of cable mast is mc = 20 kg.

The variation curves of the lengths of cable 1, cable 
2, and cable 3 are demonstrated in Figures  18(a), 19(a), 
and 20(a), respectively. The variation curves of the ten-
sions of cable 1, cable 2, and cable 3 are illustrated in 

Figures 18(b), 19(b), and 20(b), respectively. The red solid 
line denotes the experiment curve, the blue solid line 
represents the planned curve after fifth degree polyno-
mial planning, and the black dotted line stands for the 
unplanned curve.  

It can be observed from the figures that at the points 
where the velocity suddenly changes, the variation curves 
of the lengths and tensions of the unplanned three cables 
are sharp corner transitions, which will cause impacts 
and vibrations of the robot during the processes of 
acceleration and deceleration. In contrast, the variation 
curves of the lengths and tensions of the planned three 
cables are rounded transitions, which can effectively 
avoid impacts and vibrations of the robot. During the 
entire movement, the planned curves of the lengths and 
tensions of the three cables are continuous and smooth. 
The experiment curves of the lengths and tensions of the 
three cables are basically consistent with the planned 

Figure 18  Variation curves of lengths and tensions of cable 1 Figure 19  Variation curves of lengths and tensions of cable 2
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curves of the lengths and tensions, which fully validate 
the effectiveness and feasibility of fifth degree polynomial 
planning.

The experimental length curves of the three cables have 
less fluctuations, while the experimental tension curves 
have large fluctuations. This is because during the experi-
ments, the motor needs to continuously perform accel-
eration/deceleration and forward/reverse rotation, which 
drives the bevel gear to continuously carry out accelera-
tion/deceleration and forward/reverse rotation meshing. 
The vibration caused by forward/reverse rotation mesh-
ing of bevel gears is transferred to cable, which causes 
the cable to vibrate during the experiment. Since the ten-
sion sensor is connected in series between the cable and 
the end-effector, the collected tension data will fluctu-
ate greatly. This problem can be effectively overcome by 

improving the machining accuracy and assembly accu-
racy of bevel gears in the future process of updating the 
UCPR.

The OptiTrack motion capture system is adopted to 
track the end-effector of the UCPR in real-time during 
the experiment. The camera tracking trajectory and fifth 
degree polynomial planning trajectory of the end-effector 
are illustrated in Figure 21. The black solid line denotes 
the camera tracking trajectory, and the blue solid line 
represents fifth degree polynomial planning trajectory. 
After comparison, the camera tracking trajectory is basi-
cally the same as fifth degree polynomial planning tra-
jectory. Meanwhile, it is also verified that the OptiTrack 
motion capture system has a high capture accuracy.

6 � Conclusions

(1)	 This paper completed the point-to-point trajec-
tory planning of the UCPR with variable angle and 
height cable mast by using three algebraic meth-
ods. The inverse kinematic modeling of the UCPR 
considering the angle and height of cable mast was 
derived by the vector closed principle. The dynamic 
modeling of the UCPR considering the angle and 
height of cable mast was established according to 
the Lagrange method.

(2)	 The given trajectory consisting of lines and arcs 
was a closed curve, which comprised six segments 
that were connected end to end. The trajectory 
was respectively planned using the three algebraic 
methods, including fifth degree polynomial, cycloid 
trajectory, and double-S velocity curve. The con-
nection points of the trajectory segments (except 
for point P3 in the X direction) were devised to 
have zero instantaneous velocities, which ensured 

Figure 20  Variation curves of lengths and tensions of cable 3

Figure 21  Camera tracking trajectory and fifth degree polynomial 
planning trajectory
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that the acceleration had continuity. The planned 
acceleration curves could achieve smooth transition 
at the connection points, thereby effectively avoid-
ing impacts and vibrations of the robot.

(3)	 Numerical simulation and experiments were 
accomplished for the given trajectory based on 
fifth degree polynomial planning. At the points 
where the velocity suddenly changed, the variation 
curves of the lengths and tensions of the unplanned 
three cables were sharp corner transitions, while 
the variation curves of the lengths and tensions of 
the planned three cables were rounded transitions, 
which could effectively avoid impacts and vibra-
tions of the robot. During the entire movement, 
the planned curves of the lengths and tensions of 
the three cables were continuous and smooth. The 
experiment curves of the lengths and tensions of 
the three cables were basically consistent with the 
planned curves of the lengths and tensions, which 
fully validated the effectiveness and feasibility of 
fifth degree polynomial planning. The camera 
tracking trajectory of the end-effector for the UCPR 
was basically the same as fifth degree polynomial 
planning trajectory.
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