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An Optimal Feed Interpolator Based on G2 
Continuous Bézier Curves for High‑Speed 
Machining of Linear Tool Path
Yongqiao Jin1,2*, Sheng Zhao2 and Yuhan Wang2

Abstract 

A numerical control (NC) tool path of digital CAD model is widely generated as a set of short line segments in machin-
ing. However, there are three shortcomings in the linear tool path, such as discontinuities of tangency and curvature, 
huge number of line segments, and short lengths of line segments. These disadvantages hinder the development of 
high speed machining. To smooth the linear tool path and improve machining efficiency of short line segments, this 
paper presents an optimal feed interpolator based on G2 continuous Bézier curves for the linear tool path. First, the 
areas suitable for fitting are screened out based on the geometric characteristics of continuous short segments (CSSs). 
CSSs in every area are compressed and fitted into a G2 Continuous Bézier curve by using the least square method. 
Then a series of cubic Bézier curves are generated. However, the junction between adjacent Bézier curves is only G0 
continuous. By adjusting the control points and inserting Bézier transition curves between adjacent Bézier curves, 
the G2 continuous tool path is constructed. The fitting error is estimated by the second-order Taylor formula. Without 
iteration, the fitting algorithm can be implemented in real-time environment. Second, the optimal feed interpolator 
considering the comprehensive constraints (such as the chord error constraint, the maximum normal acceleration, 
servo capacity of each axis, etc.) is proposed. Simulation and experiment are conducted. The results shows that the 
proposed method can generate smooth path, decrease the amount of segments and reduce machining time for 
machining of linear tool path. The proposed research provides an effective method for high-speed machining of 
complex 2-D/3-D profiles described by short line segments.

Keywords:  G2 continuous path, Least square method, High-speed machining, Continuous short segments, Optimal 
feed interpolator, Data compression
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1  Introduction
Linear tool path is the most widespread tool path repre-
sentation form to approximate the complicated surface in 
machining; however, it introduces both the tangent and 
curvature discontinuities at the segment junctions. The 
inherent shortcomings are the most important sources 
of feed fluctuation. With the development of machin-
ing technology in modern industry, CNC machine tools 
ask for high interpolation technology, but linear tool 
path cannot satisfy the requirements of high-speed and 

high-accuracy machining. Though look-ahead scheme 
has been integrated in current CNC systems to allevi-
ate the frequent start and stop, the discontinuous still 
cause the fluctuations of feed speed and acceleration [1, 
2]. Smoothing the linear tool path with parametric curves 
is an important way to reduce the feed fluctuation and 
improve the machining efficiency.

To achieve the smoothness of the linear tool path, two 
major approaches, i.e., curve fitting ones and transition 
ones, have been proposed in the previous studies to con-
vert the linear segments to parametric splines. The fit-
ting methods, including approximation algorithms and 
interpolation algorithms, are adopted by some advanced 
CNC systems. Local transition is mainly through the use 
of other curves to replace the original linear trajectory in 
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the corner to achieve the purpose of smoothness [3–11]. 
Zhang et al. [3], proposed a transition algorithm for two 
continuous linear segments based on the cubic Hermite 
curve fitting approach. This algorithm guaranteed the 
tangent continuity of the new tool path. Bi et  al. [4, 5], 
applied a cubic Bézier curve, whose middle two con-
trol points are identical, to realize continuous-curvature 
path-smoothing. An optimization problem needs to be 
solved to estimate the proper transition lengths. Zhao 
et  al. [6] proposed a method for smoothing the linear 
tool path by using two transition cubic Bézier curves. 
One cubic Bézier curve smoothes the tool tip position 
path, and the other smoothes the orientation vector of 
tool axis. Zhao et al. [7], Sneha et al. [8] and Sun et al. [9] 
used a B-spline to round the corner. The approximation 
error at the rounded corner can be exactly controlled by 
the distribution of the control points. Shi et al. [10, 11], 
proposed a corner smoothing method for linear tool 
path based on quintic PH curve, which can restrict the 
approximation error exactly. Although the above transi-
tion methods can smooth the linear path, they increased 
the amount of data, shortened the lengths of the seg-
ments, and aggravated the computation burden of the 
system. Another solution is the global smoothing, which 
can fit a series of given points into a smooth parametric 
curve and can compress the data of the linear tool path. 
B-spline and NURBS, which have good smoothness char-
acteristic and compression ratio, have received the wide-
spread attention [12–19]. Yau and Kuo [12] proposed an 
offline NURBS fitting algorithm based on least square 
method. Wang and Yau [13] proposed a real-time look-
ahead NURBS interpolation method. This method can fit 
consecutive short segments into NURBS online and can 
guarantee the C2 continuity. Yeh and Su [14] designed an 
optimization search method to determine the NURBS 
order and the number of basis functions. Zhang et  al. 
[15] adopts adaptive method to look for geometric fea-
ture points, and group a series of given points according 
to the feature points. This method improves the fitting 
efficiency. However, NURBS fitting methods have the 
following deficiencies: 1) heavy computational complex-
ity of recursive algorithm, which is difficult to meet the 
real-time requirements of system; 2) inevitable errors 
introduced by employing a truncated Taylor series. In 
addition, some researchers have proposed the other 
parametric curves. Yau and Wang [16] proposed a real-
time fast Bézier interpolation method. Its compression 
ratio is low, and tangency and curvature of the junction 
between adjacent curves are discontinuous. Wang et  al. 
[17] presented an Akima curve fitting method, but it had 
large amount of calculation to obtain the slope vector 
of Akima curve. Tasi et  al. [18] proposed a C2 continu-
ous Bézier fitting method, but this method increased the 

amount of data. Zhang et al. [19] presented a five-order 
polynomial to ensure machining path of C2 continuity, 
but it had large amount of calculation and poor real-time 
performance.

In this paper, an optimal feed interpolator based on G2 
Bézier transition algorithm is proposed to fit the linear 
tool path, which can satisfy the following requirements: 
1) G2 continuity; 2) data compression; 3) approximation 
control; 4) real-time performance. The remainder of this 
paper is organized as follows: Section 2 presents the G2 
continuous Bézier fitting algorithm based on least square 
method. Section  3 describes the proposed interpolator. 
Section  4 provides the simulation and experiment. Sec-
tion 5 concludes the paper.

2 � G2 Continuity Bézier Fitting Method
In this section, a G2 continuous Bézier fitting algorithm 
based on least square method is deduced. Firstly, sev-
eral basic concepts, such as geometric continuity, cubic 
Bézier, consecutive short segment and breakpoint, are 
described. Then, a cubic Bézier curve is used to approxi-
mate the consecutive short segments based on Least 
Squares method, and the approximation error is calcu-
lated and restricted within a given tolerance. At last, the 
linear tool path is transformed to a G2 continuous path.

2.1 � Definitions of G2 Continuity and Cubic Bézier
Continuity is basically a measure of the smoothness of a 
piecewise curve at its joining points. DeRose and Barsky 
[20] defined the order of smoothness by parametric and 
geometric continuity. Here geometric continuity is used 
to smooth the piecewise linear tool path. G1 continuity 
is the first-order geometric continuity, which refers to 
continuity of the unit tangent, and G2 continuity is the 
second-order geometric continuity, which refers to con-
tinuity of the curvature vectors at the joint.

In this research, a cubic Bézier curve, which is G2 con-
tinuous, is adopted to fit consecutive short segments 
(CSSs) together. The cubic Bézier is given by Farin [21] 
as:

where t is the curve parameter and {Bi} are the control 
points.

Assuming that the two middle control points are the 
same, B1 = B2 = B12, the cubic Bézier is simplified as:

The first and second derivatives of the Bézier curve at 
t = 0 and t = 1 are calculated as follows:

(1)C(t) =

3
∑

0

(

3
i

)

Bit
i(1− t)3−i, 0 ≤ t ≤ 1,

(2)
C(t) = (1− t)3B0 + 3t(1− t)B12 + t3B3, (0 ≤ t ≤ 1),
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Then, the curvatures of the Bézier curve at t = 0 and 
t = 1 are obtained:

Substituting Eqs. (3) and (4) into Eq. (5), 
κ(0) = κ(1) = 0 . The curvature is continuous and there 
is only one curvature extremum in the Bézier curve.

2.2 � Definitions of Consecutive Short Segment 
and Breakpoint

In order to obtain good accuracy, the corner constraint 
and the bi-chord error constraint must be taken into 
consideration before least square curve approximation is 
used to fit linear segments. Yau and Wang [16] proposed 
an isosceles triangle method to compute the bi-chord 
errors, which are illustrated in Figure 1.

The corner of the two adjacent line segments Qk−1Qk 
and QkQk+1 is calculated as:

The bi-chord errors δ1 and δ2 are calculated as follows:

where, lk =
∥

∥Qk−1Qk

∥

∥ , lk+1 =
∥

∥QkQk+1

∥

∥ , φ1 + φ2 = θk , 
R =

lk
2 sin φ1

 , φ1 = arctan
(

lk sin θk
lk+1+lk cos θk

)

.

The criterions of the corner constraint and the bi-chord 
error constraint are set to θmax and εmax . If θk ≤ θmax , 

(3)C ′(0) = 3(B12 − B0), C ′(1) = 3(B3 − B12),

(4)C ′′(0) = 6(B0 − B12), C ′′(1) = 6(B3 − B12).

(5)κ(t) =

∥

∥C ′(t)× C ′′(t)
∥

∥

�C ′(t)�3
.

(6)θk = arccos





−−−−−→
Qk−1Qk ·

−−−−−→
QkQk+1

�

�

�

−−−−−→
Qk−1Qk

�

�

� ·

�

�

�

−−−−−→
QkQk+1

�

�

�



.

(7)δ1 = R(1− cosφ1),

(8)δ2 = R(1− cosφ2) = R(1− cos (θk − φ1)),

and δ1 ≤ εmax , and δ2 ≤ εmax , the adjacent line segments 
Qk−1Qk and QkQk+1 are CSSs and can be fitted into Bézier; 
otherwise, the given point Qk is set to be a breakpoint.

2.3 � Bézier Curve Fitting Based on Least Squares (LS) 
Method

To achieve the smoothness of the linear tool path, there are 
two major approaches, i.e., interpolation and approxima-
tion. In interpolation a curve which satisfies the given data 
precisely is constructed. The curve passes through all the 
given points. In approximation a curve which does not nec-
essarily satisfy the given data precisely is constructed.

In this section, the LS fitting method is used to approxi-
mate the consecutive short segments. Compared with the 
interpolation curve, the curvature changes of the approxi-
mation curve are less. Moreover, it has a higher compres-
sion ratio.

As shown in Figure 2, {Qi}(i = 0, 1, . . . ,m) are the given 
points generated by CAM software and meet the criteri-
ons of the corner constraint and the bi-chord error con-
straint. These points can be fitted into a cubic Bézier curve 
C(t) by using LS method. {Bi}(i = 0, 1, 2, 3) are the four 
corresponding control points. Assuming that B0 = Q0 , 
B3 = Qm , B1 = B2 = B12 , only the point B12 needs to be 
determined.

Supposing that:

where C(ti)(i = 0, 1, . . . ,m) are the points on the curve 
corresponding to Qi . Parameters {ti} are computed by 
chord length parameterization method [22]:

F(B12) =

m
∑

i=0

(C(ti)− Qi)
2,

(9)







































t0 = 0,

tm = 1,

ti = ti−1 +
�Qi − Qi−1�

L
,

L =

m
�

i=1

�Qi − Qi−1�,

i = 1, 2, . . . ,m.

kQ

1kQ −

2kQ −

1kQ +

2kQ +

kθ

1δ 2δ

kl 1kl +

R
R

1φ 2φ

O

Figure 1  An isosceles triangle method to compute the bi-chord 
errors

B0=Q0

B1=B2=B12

Q1

Q2

Qm-2... Qm-1 B3=Qm

Figure 2  Get Bézier curve by the least square fitting method
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According to the extreme conditions of continu-
ous function, when dF/dB12 = 0, F(B12) achieves the 
minimum:

Thus, B12 can be formulated as follows:

2.4 � Approximation Error Control
Restricting the approximation error within a given toler-
ance is a key problem in tool path fitting process. Thus, it 
is of great importance to analyze and restrict the devia-
tions between the original and fitted tool path. When 
ε(Qi) denotes the approximation error of C(t) with 
respect to Qi , the common computation methods are as 
follows.

(1)	 ε(Qi) denotes the distance between Qi and C(t) . 
ε(Qi) is calculated by iterative algorithm as there 
is no analytical solution. It is difficult to satisfy the 
real-time computing in the CNC system.

(2)	 Define that �Qi − C(ti)� = ε(Qi) , but C(ti) may not 
the nearest point on C(t) with respect to Qi . This 
definition cannot meet the accurate requirement of 
CNC system.

In this paper, the method developed by Zhu et al. [23] is 
adopted to calculate ε(Qi).

As shown in Figure  3, Qi is the given point, and C(ti) 
is the point on the curve corresponding to Qi . ti is cal-
culated by Eq. (9). D = Qi − C(ti) . T is the unit tangent 
vector at position C(ti) . C is the projection on the main 
plan of D at C(ti) . C(t ′i) is the nearest point on C(t) with 
respect to Qi . ε(Qi) =

∥

∥Qi − C
(

t ′i
)∥

∥.
According to Ref. [24], ε(Qi) is formulated as:

where κ is the curvature at C(ti) , DT and DC are the pro-
jection lengths of D on T and C respectively:

C(t) , κ, T, N and C can be computed by analytical for-
mulations. The equations are all established with respect 

(10)
dF

dB12

=

m
∑

i=0

[6ti(1− ti)(C(ti)− Qi)] = 0.

(11)

B12 =

m
∑

i=0

(

ti(1− ti)Qi − ti(1− ti)
4B0 − t4i (1− ti)B3

)

3
m
∑

i=0

t2i (1− ti)
2

.

(12)ε(Qi) = DC −
κ(DT )

2
C · N

2(1− κDCC · N )
+ o3(DT ),

(13)DT = D · T ,

(14)DC =
D · C

�C�
.

to parameter t ∈ [0, 1] . κ is calculated by Eq. (5), and T is 
calculated by:

Based on Frenet moving frame and Gramm–Schmidt 
orthogonalization, N and C are formulated:

where C ′(t) and C ′′(t) are the first and second order 
derivatives of C(t).

Substituting Eqs. (13)‒(17) into Eq. (12), the approxi-
mation errors {ε(Qi)} can be obtained. If {ε(Qi)} are all 
smaller than the given tolerance εmax , the fitting curve is 
obtained; otherwise, if ε(Qi) > εmax , the given point Qi is 
set to be a breakpoint, and the points between two adja-
cent breakpoints are fitted into a new Bézier curve again.

2.5 � G2 Continuous Path Construction
Through the above method, a series of cubic Bézier 
curves are generated. However, the junction between 
adjacent Bézier curves is only G0 continuous. In order to 
construct a whole G2 continuous tool path, the junction 
between adjacent Bézier curves should be smoothed.

As shown in Figure 4(a), assuming that C1(t) and C2(t) 
are two neighboring Bézier curves, and their control 
points are 

{

P1
i

}

 and 
{

P2
i

}

 respectively, P1
3 is consistent 

(15)T =
C

′(t)
∥

∥C
′(t)

∥

∥

.

(16)N =
C

′′(t)− (C ′′(t) · T )T
∣

∣C
′′(t)− (C ′′(t) · T )T

∣

∣

,

(17)C =
D − DTT

DC
,

Figure 3  Control of the fitting error
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with P2
0 at the point Qk . C1(t) and C2(t) just touch at the 

join point.
As shown in Figure  4(b), P1

3 is inconsistent with 
P2
0 , P1

3 = Qk , P2
0 = Qk+1 . A cubic Bézier transition 

curve C12(t) is constructed between the Qk and Qk+1 . 
Its control points are 

{

P12
i

}

 , P12
0 = Qk , P12

3 = Qk+1 , 
P12
1 = P12

2 = P12
12 . P12

12 is the intersection of line P1
12P

1
3 

extension and line P2
12P

2
0 extension. The proof for G2 con-

tinuity between C1(t) and C12(t) is shown as follows.
(1) G0 continuity:

(2) G1 continuity:

(3) G2 continuity:

Thus, C1(t) touches C12(t) with G2 continuity. In the 
same way, C2(t) touches C12(t) with G2 continuity. The 
whole tool path is G2 continuous.

At the same time, the approximation of the transition 
curve C12(t) should be checked. According to Ref. [4], 
C12(0.5) is the farthest point from curve C12(t) to line 

C1(1) = C12(0) = Qk .

C ′
1(1) = 3(P1

3 − P1
12)

C ′
12(0) = 3(P12

12 − P12
0 )

}

⇒ C ′
1(1)//C

′
12(0).

C ′′
1 (1) = 6(P1

3 − P1
12)

C ′′
12(0) = 6(P12

0 − P12
12)

}

⇒ κ1(1) = κ12(0) = 0.

QkQk+1 . The distance from C12(0.5) to QkQk+1 is the 
maximum deviation from C12(t) to QkQk+1 . If the devia-
tion error is bigger than εmax , the transition curve C12(t) 
is cancelled and the line QkQk+1 is used to connect Qk 
and Qk+1.

3 � Optimal Feed Interpolation Algorithm
For interpolating the smoothed tool path, a real-time 
adaptive feedrate scheduling method considering the 
comprehensive constraints is proposed. Firstly, the com-
prehensive constraints (such as the chord error con-
straint, the maximum normal acceleration, servo capacity 
of each axis) are deduced to obtain the maximum feed 
and feasible acceleration range. On this basis, the optimal 
feed interpolator is introduced.

3.1 � Comprehensive Constrains
3.1.1 � Constraint of Chord Error
As shown in Figure 5, when a cutting tool moves linearly 
between contiguous interpolated points of the ith Bézier 
curve Ci(t) , contour error may occur. The chord error is 
the maximum distance between the curve segment and 
the chord. To confine the chord error within a given tol-
erance value εmax, the feedrate is determined with an arc 
approximation method [25].

where Ts is the interpolation period of CNC system, and 
ρi(t) is called the radius of curvature.

3.1.2 � Constraint of Maximum Normal Acceleration
The feedrate is also limited by the maximum normal 
acceleration Amax of the machine tool:

(18)fi(t) ≤ fch(t) =
2

Ts

√

ρ2
i (t)− (ρi(t)− εmax)

2,

(19)fi(t) ≤ fAn(t) =
√

ρi(t)Amax.

1 2
3 0 kP P Q= =

1
0P

1 1 1
1 2 12P P P= =

2 2 2
1 2 12P P P= =

2
3P

( )1C t 2C t

(a)

1
0P

1 1 1
1 2 12P P P= =

1 12
3 0 kP P Q= =

2 2 2
1 2 12P P P= =

2
3P

1C t 2C t
12C t

2 12
0 3 1kP P Q += =

12
12P

(b)

( )

( ) ( ) ( )

Figure 4  Continuity of connected Bézier curves

( )iC t

chδ

(
)

k
R

t
ρ

=

( )i kC t

( )1i kC t +

arc

Figure 5  Chord error on the Bézier curve
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3.1.3 � Constraint of Servo Capacity of Each Axis
One important error source in high-speed contouring is 
the error that results when the command input for each 
axis exceeds the acceleration/deceleration capacity of the 
servo system. To decrease this kind of error, the machine 
dynamics [26], including the constraints of velocity and 
acceleration represented by upper bounds for each axis, 
are taken into account.

Now suppose the feedrate of the tool tip is denoted as fi(t) 
and the displacement of the axis Λ (Λ=X, Y, Z) is denoted 
as θΛ,i(t). The feed of the axis Λ can be expressed as:

where kvΛi = θ ′Λ,i(t)/σi(t) . σi(t) is the arc-length of tool 
tip point curve Ci(t) at parameter t, σi(t) = s′i =

∣

∣C ′
i (t)

∣

∣.
The velocity limit of the axis Λ is denoted as VΛm. The 

velocity of the axis Λ should be restricted by:

Then, the feedrate of the tool tip is restricted by:

Next, the acceleration of the axis Λ along the curve 
can be calculated by taking the derivative with respect to 
time of Eq. (20):

where kaaΛi =
θ ′Λ,i(t)

σi(t)
 , kavΛi =

σi(t)θ
′′
Λ,i(t)−σ ′

i (t)θ
′
Λ,i(t)

σi(t)
3 .

If the acceleration limit for axis Λ is specified as − aΛm 
and aΛm, the feed rate fi(t) and tangent acceleration ati(u) 
can be constrained as:

where

(20)vΛ,i(t) = θ̇Λ,i(t) =
1

σi(t)
θ ′Λ,i(t)fi(t) = kvΛifi(t),

(21)
∣

∣vΛ,i(t)
∣

∣ =
∣

∣kvΛifi(t)
∣

∣ =
∣

∣kvΛi

∣

∣fi(t) ≤ VΛm.

(22)fi(t) ≤ fvm(t) = min
Λ=X ,Y ,Z

{

VΛm
∣

∣kvΛi

∣

∣

}

.

(23)aΛ,i(t) = v̇Λ,i(t) = kaaΛiati(t)+ kavΛifi(t)
2,

(24)
fi(t) ≤ fam(t)

=
i,j,k∈{X ,Y ,Z}

max
i �=j �=k

{

f
(

i, j
)

∣

∣

∣−akm ≤ kaakaf
(

i, j
)

+ kavk f
2
(

i, j
)

≤ akm

}

,

(25)afmin

(

t, f
)

≤ af ≤ afmax

(

t, f
)

,

(26)

afmax

�

t, f
�

= min



















min
Λ=X ,Y ,Z

�

aΛm − kavΛf
2

kaaΛ(t)

�

�kavΛ > 0

�

,

min
Λ=X ,Y ,Z

�

−aΛm − kavΛf
2

kaaΛ(t)

�

�kavΛ < 0

�



















,

(27)

afmin

�

t, f
�

= min



















max
Λ=X ,Y ,Z

�

−aΛm − kavΛf
2

kaaΛ(t)

�

�kavΛ > 0

�

max
Λ=X ,Y ,Z

�

aΛm − kavΛf
2

kaaΛ(t)

�

�kavΛ < 0

�



















.

3.1.4 � The Maximum Feed Restricted by Comprehensive 
Constraints

Considering the command feed rate Fcmd at the same time, 
the maximum feasible feed flim(t) is obtained as follows:

3.2 � Optimal Feed Interpolator
The proposed interpolator respects both tool path con-
tour constraints and machine dynamics constraints. A 
look-ahead scheme is utilized to improve the calculation 
performance for real-time application [27]. The proposed 
interpolator includes four tasks: fitting the linear tool 
path with a series of cubic Bézier curves, obtaining limit 
feed profile, generating optimal feedrate profile using 
jerk-limited acceleration method [28], and generating the 
interpolating point. The detailed procedures for the pro-
posed interpolator are shown in Figure 6. 

(28)fi(t) ≤ flim(t) = min
{

fch, fAn, fvm, fam, Fcmd

}

.

Start

End

Fit the points between two
adjacent breakpoints

Interpolate the current curve and
update the motion command

Judge consecutive short segment,
pick out breakpoints. {QB1...QBm}

Generate an optimal feed profile

Look-ahead
new blocks ?

Buffer empty?

Fill new blocks
in buffer

Look-ahead N segments into
FIFO buffer. {Qi}(0≤i≤N)

Yes

No
No

Yes

Out of tolerance

Set the point to be
breakpoint

Check apaa proximation errorCheck approximation error
( )iQε

Construct G2 continuous path

Obtain limit feed profile

Figure 6  Flow chart for the proposed interpolator
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Task 1: The first task of the proposed interpolator is 
to look-ahead N segments into FIFO (First-In First-
Out) buffer, and fit the linear tool path with a series 
of G2 cubic Bézier curves.
Task 2: The second task of the proposed interpo-
lator is to comprehensive constraints and obtain 
limit feed profile. 

Task 3: The third task of the proposed interpolator 
is to generate optimal feedrate profile using jerk-
limited acceleration method. While the ith curve is 
being interpolated, the parameter, the feed and the 
acceleration of the jth sampling period are denoted 
as (tij, fij, aij). Task 3 includes the following three 
steps. 

Step 1. A fixed jerk limit Jm is predefined by CNC 
system. Jerk-limited acceleration method is utilized 
to evaluate the feed of the (j+1)th sampling period.

	 At the accelerating stage, the acceleration of the 
(j+1)th sampling period is evaluated as: 

	 At the decelerating stage, the acceleration of the 
(j+1)th sampling period is evaluated as: 

	 Then, the feed of the (j+1)th sampling period is 
evaluated as: 

Step 2. The parameter tij+1 is calculated with the 
first-order Taylor’s expansion. 

Step 3. The feed limit flim(tij+1) is calculated with Eq. 
(28). If fij+1 ≤ flim(tij+1), the optimal feed is obtained, 
otherwise, let fij+1 = flim(tij+1) and go to Step 2.

Task 4: The fourth task of the proposed interpolator 
is to interpolate the current curve Ci(t). Substituting 
Eq. (32) into Eq. (2), the interpolating point Ci(tij+1) is 
obtained. Then the motion command for each axis is 
updated finally.

flim(t) = min
{

fch, fAn, fvm, fam, Fcmd

}

.

(29)
a
j+1

i = min
{

afmax

(

t, f
j
i

)

, a
j
i + JmTs,Amax

}

.

(30)
a
j+1

i = max
{

afmin

(

t, f
j
i

)

, a
j
i − JmTs,−Amax

}

.

(31)f
j+1

i = f
j
i + a

j+1

i Ts.

(32)t
j+1

i = t
j
i +

f
j+1

i Ts

σ

(

t
j
i

) .

4 � Simulation and Experiment
In this section, two examples are adopted to demon-
strate the advantages of the proposed algorithm. The first 
example mainly validates the compression effect and the 
approximation error control effect of the proposed fitting 
method, while the second example verifies validity of the 
proposed interpolator to reduce the feed fluctuation and 
improve the machining efficiency.

4.1 � Example 1
A 2-D butterfly shape linear profile is taken for exam-
ple to the compression effect of proposed algorithm. Its 
original linear tool path consists of 8799 linear segments. 
The corner constraint is set to be 20°, and the chord error 
constraint is set to be 0.01 mm. The verification results 
are shown in Figure 7. After fitting, 158 Bézier curves are 
generated and the average compression ratio is 55.6:1.

Three different curvature areas are selected and 
enlarged respectively. As shown in Figure  7(b), when 
the curvature is 0.52‒0.68 mm−1, the compression 
ratio is 14:1. As shown in Figure  7(c), when the curva-
ture is 0.05‒0.8 mm−1, the compression ratio can reach 
30.5:1. As shown in Figure  7(d), when the curvature is 
0.01‒0.018 mm−1, the compression ratio can reach 84:1. 
Accordingly, the compression ratio of the Bézier curve is 
associated with curvature. The profile with smaller cur-
vature has higher compression ratio.

As shown in Figure 8, the approximation errors of 158 
Bézier curves are all within the given tolerance 0.01 mm.

4.2 � Example 2
Simulation and experiment are performed on a three-
axis XK714 CNC milling machine tool. The in-house-
developed research CNC, which is PC-based, has an 
open architecture, and allows rapid implementation of 
the proposed interpolation algorithm. The CNC utilizes 
windows XP operating system embedding Venturecom’s 
RTX 6.1 which provides the real-time computation and 
multitasking.

This experiment demonstrates the advantages of the 
proposed interpolator by machining a scoop, shown in 
Figure 9. In the experiment, a cuboid stock made of alu-
minum is used. The command feedrate is set to 3000 mm/
min, the maximum acceleration is set to 1.8×106  mm/
min2, the maximum jerk is set to 1.35×109  mm/min3, 
and the sampling period Ts is 0.004  s. The corner con-
straint is set to be 20°, and the chord error constraint is 
set to be 0.01 mm. A flat end milling tool of diameter 10 
mm is first used for rough machining. Then a 6-mm car-
bide ball-end cutter is used for finish machining.

There are 158665 segments for finish machining a 
scoop. A tool path consisted of 1308 linear segments is 
taken for example, as shown in Figure 10.
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Two interpolation methods are integrated into the 
open CNC system of the machine tool. Both two meth-
ods utilize jerk-limited acceleration method for speed 
planning. The first method adopts the direct linear inter-
polation with the look-ahead scheme. In the second 
method, the linear tool path is first fitted by the proposed 
algorithm, and then the feedrate is planned with the pro-
posed interpolator.

As shown in Figure 11(a), two feedrate profiles are gen-
erated with respect to displacement. When the linear 
interpolator is used for machining, the feedrate fluctu-
ates severely and the values are far from 3000 mm/min. 
When the proposed interpolator is used for machining, 
the feedrate profile is much smoother and closer to 3000 
mm/min. The reason is that the proposed algorithm 
compresses and smooths the linear path effectively. As 
marked in the Figure  11(a), a mount of segments are 
compressed and smoothed.

As shown in Figure 11(b), when the linear interpolator 
is used for machining, it needs 13610 interpolation peri-
ods, 54.44 s. When the proposed interpolator is used for 
machining, it needs 3337 interpolation periods, 13.348 s. 
Machining efficiency with the proposed interpolator is 
four times as it with the method.

The acceleration profiles corresponding to the two 
interpolation methods are shown in Figure  12. The 
noise for the first interpolation method is the biggest. 
The noise is mainly caused by the frequent impact effect 
because the acceleration and declaration occur in every 
segment junction. The proposed algorithm is helpful to 
smooth the normal acceleration. Jerk-limited acceleration 
method can guarantee the continuity of the tangential 
acceleration. The acceleration is then finally smoothed 
by combining the two methods. Figure 12 shows that the 
acceleration curve of the proposed method is smoother 
than that of the first method.

4.3 � Discussion
The results of simulation and experiment are similar, 
which shows that the proposed method can smooth the 
linear tool path with G2 continuity path and decrease 
the amount of segments. What’s more, the results of 
experiment demonstrate that the proposed method can 
reduce the fluctuations of feedrate and acceleration and 
improve machining efficiency for CNC machining of 
short line segments.

5 � Summary and Conclusions

(1)	 A G2 continuous Bézier fitting algorithm based on 
Least Squares method is proposed to smooth the 
consecutive short segments, and the approximation 

(a) The whole profile

(b) Enlarge figure at point A

(c) Enlarge figure at point B

(d) Enlarge figure at point C
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error is calculated and restricted within a given tol-
erance.

(2)	 Cubic Bézier curve is used to smooth the junction 
between adjacent Bézier curves. And the linear tool 
path is transformed a new G2 continuous tool path.
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Figure 9  Machining a scoop mold on three-axis machine tool
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(3)	 A real-time adaptive feedrate scheduling method 
considering the comprehensive constraints is pro-
posed to interpolate the new tool path.

(4)	 Simulation and experiment are conducted. With 
the proposed methodology, the linear tool path can 
be compressed and fitted into the G2 continuous 
tool path. And, the feedrate and acceleration with 
the optimal feed interpolator are both smoothed, 
and the machining time is reduced.

(5)	 In the future work, the real-time curvature-conti-
nuity transition algorithm for five-axis linear tool 
path will be studied. Besides the constraints of 
curvature-continuity and approximation error, the 
parametric synchronization of the position curve 
and the orientation curve must also be considered 
in five-axis NC machining.
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