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Sequential Monte Carlo Method Toward 
Online RUL Assessment with Applications
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Abstract 

Online assessment of remaining useful life (RUL) of a system or device has been widely studied for performance reli‑
ability, production safety, system conditional maintenance, and decision in remanufacturing engineering. However, 
there is no consistency framework to solve the RUL recursive estimation for the complex degenerate systems/device. 
In this paper, state space model (SSM) with Bayesian online estimation expounded from Markov chain Monte Carlo 
(MCMC) to Sequential Monte Carlo (SMC) algorithm is presented in order to derive the optimal Bayesian estimation. 
In the context of nonlinear & non-Gaussian dynamic systems, SMC (also named particle filter, PF) is quite capable 
of performing filtering and RUL assessment recursively. The underlying deterioration of a system/device is seen as a 
stochastic process with continuous, nonreversible degrading. The state of the deterioration tendency is filtered and 
predicted with updating observations through the SMC procedure. The corresponding remaining useful life of the 
system/device is estimated based on the state degradation and a predefined threshold of the failure with two-sided 
criterion. The paper presents an application on a milling machine for cutter tool RUL assessment by applying the 
above proposed methodology. The example shows the promising results and the effectiveness of SSM and SMC 
online assessment of RUL.

Keywords:  Sequential Monte Carlo method, Remaining useful life, Stochastic processes, State-space model, Bayesian 
estimation, Particle filter, Milling cutter lifetime
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1  Introduction
Serious losses happen often in practice due to accidental 
system failure and the lack of online message of remain-
ing useful life (RUL) and the performance reliability. 
Nowadays, high reliability and complexity of equipment 
make the operational reliability more than ever an out-
standing concern. RUL online estimation, after many 
years of practice in the field of maintenance, is one facet 
in condition-based maintenance (CBM) [1, 2] and Prog-
nostic and Health Management (PHM) engineering [3, 
4]. Furthermore, RUL plays a crucial role in decision 
making on reuse or recycling of an old product in reman-
ufacturing engineering.

The International Standard Organization (ISO) defines 
failure prognostics as “the Estimation of the Time to 

Failure (ETTF) and the risk of existence or later appear-
ance of one or more failure modes.” Note that most of 
the definitions cited in the literature use the terminol-
ogy of RUL instead of ETTF [5]. The methods of resid-
ual (remaining) life prediction has get in-depth research 
for a long time, and there has been a growing interest 
in monitoring the ongoing “health” of products and sys-
tems in order to predict failures [6]. The degradation 
process of an operating device is a process of gradual 
deterioration and the underlying degradation can be 
detected to a certain extent through the measurement 
of covariate variables. The RUL can be expressed as 
Xt = T − t|T > t,Z(t), where T represents the random 
variable of lifetime, t the current time and vector Z(t) the 
observations of the covariate variables available up to the 
current time t. There are a few comments about the RUL 
online assessment: (1) The degradation of the system/
device is assumed to be monotonic and not-reversible, 
which causes the lifetime of the device to be limited to 
the RUL; (2) In practice, most of the time, the underlying 
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degradation of a device is not directly measurable, espe-
cially not measurable directly online; (3) Indirect meas-
urement of system performance by covariate variable 
is used to model the degradation of the system perfor-
mance, which are observable and measurable online [7]. 
There are two stochastic processes: the underlying deg-
radation and the performance observation. To assess the 
non-observable degradation of the device from measur-
able observations of the performance, hidden Markov 
modeling is adopted.

The Hidden Markov model (HMM) with the assumption 
that the system states can be seen as a first order Markov 
process as the state xt ∼ P(xt |x0:t−1) = P(xt |xt−1), 
where x0:t−1 = {x0, x1, · · · , xt−1}, and the observations 
under the given system states are independent from each 
other, i.e., yt ∼ P(yt |xt). State xt presents the inherent 
characteristics of the dynamics at time t. The observation 
vector with model noise is yt and y1:t = { y1, y2, · · · , yt }. 
For a dynamic Bayesian network, HMM is a proved valid 
methodology to model the remaining life assessment [8, 
9]. The explicit expression of HMM is shown in Figure 1 
[10].

The state space model consist of state and observa-
tion equations, presenting a first order HMM, is con-
venient for modeling multivariate data and nonlinear/
non-Gaussian processes, with significant advantages over 
traditional time-series techniques [5, 11, 12]. For online 
predictions based on the state-space model (SSM), the 
recursive assessment of the posteriori distributions of xt, 
which modeling the degradation, is of a great concern. 
With updates of the state estimation and prediction, 
the RUL can be estimated by the system failure through 
a predefined degradation threshold [13]. This paper is 
organized as follows. A brief review based on the Bayes-
ian estimation method from Markov chain Monte Carlo 
(MCMC) to Sequential Monte Carlo (SMC) is summa-
rized in Section 2. The state estimation methodology for 
a given SSM with time invariant parameters and the RUL 
online assessment from the degrading process is detailed 
in Section  3. A case study is introduced and the results 
are discussed in Section  4. The final conclusion is pre-
sented in Section 5.

2 � From MCMC to SMC
2.1 � A Brief Review
MCMC (Markov chain Monte Carlo) implements sam-
pling distribution with dynamic simulation in accordance 
with system dynamics [14, 15]. The basic idea is a Markov 
chain is constructed that makes the stationary distribu-
tion to be a priori distribution of the dynamics; produce 
the samples of the priori distribution through the Markov 
chain, and implement MC (Monte Carlo) integration for 
the samples of the stationary distribution [15–17]. The 
MCMC procedure is shown in the following steps:

(1)	Establish a Markov chain that is converged to a sta-
tionary distribution π(x);

(2)	Generate samples from the initial point x(0). The 
simulation of the sampling was carried out using the 
Markov chain in Step (1), and produce the sequence 
x(1), …, x(n);

(3)	The estimation of expectation of a given function f(x) 
is 1

n−m

n
∑

t=m+1

f (x(t)), from sequence points m to n.

The construction of the MCMC transition kernel, 
1-step transition probability from state i to state j, notated 
as P(i, j) = P(i → j) = P(xt+1 = sj|xt = si ), is important 
in order to iterative algorithm converges speedily. Differ-
ent MCMC methods in applications have been proposed 
by selecting different transition kernels, and two main 
types of commonly used in MCMC methods are Gibbs 
sampler [18] and Metropolis–Hastings algorithm [19]. 
Since MCMC estimation for the state vector is required 
at every sampling time point when the new observa-
tions are available, historical data set could be huge. To 
avoid the problem of storing massive data and repeating 
the process on existing data in every sampling interval, 
a recursive mechanism in filtering, which means pro-
cessing only on received new data sequentially if a new 
observation becomes available, is required to update the 
estimate results. SMC (Sequential Monte Carlo) method 
has been successfully developed and applied in many dif-
ferent fields [20]. SMC method approximates the actual 
posteriori probability density by a group of random sam-
ples with their associated weights. When the number of 
samples is large enough, the estimated probability can be 
close enough to the actual posteriori probability density 
function, reaching the result of the optimal Bayesian esti-
mation [21].

In general, the actual posteriori probability density 
function cannot be sampled, instead using another dis-
tribution q

(

x
(i)
0:t
∣

∣y1:t
)

, the importance distribution, or 
instrumental distribution. Importance sampling tries 
to use the limited number of sampling points covering 
the great contribution to the integral by a similar den-
sity, thus obtaining a higher computational efficiency. 

Observable
y
t–2

x
t–2

P(x
t
|x

t–1
) 

Unobservable

y
t–1

x
t–1

y
t

x
t

P(y
t
|x

t
) 

Figure 1  Illustration of the Markovian dependencies between states 
and observations
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Hammersley, Morton, et  al. developed the sequential 
importance sampling (SIS) method in the 1950s [22]. 
However, SIS algorithm has a serious flaw. The impor-
tance weight variance increases gradually over time, 
which soon causes only a small number of samples 
(particles) that are associated with larger weights. This 
phenomena is called particle degrading in SIS [23]. The 
degradation with iteration process results in that there 
are no enough particles meaningful to present the poste-
riori density distribution eventually. Until 1993, Gordon 
proposed the concept of re-sampling [24], which laid the 
base for the particle filter and its practical applications. 
The resampling method ensures a stable total particle 
number by enlarging the sample numbers with higher 
weight values and reducing the number of particles with 
small weight so as to avoid much computation cost on 
those faded particles. Since then, SIR (Sampling Impor-
tance Resampling filter) technology also called as particle 
filtering has been gradually matured and widely used in 
applications of online state estimation.

2.2 � Particle Filter Algorithm
The schematic of the standard particle filter algorithm 
process with re-sampling function [25] is shown in Fig-
ure 2, modified from Ref. [24].

Figure  3 shows the flow chart of particle filter algo-
rithm. Re-sampling process taken in particle filtering is 
to overcome the degradation of the particle weights with 
iteration processing. In other words, re-sampling can 
improve the degradation to keep a stable total number of 
the particles in filtering.

The concept of effective re-sampling scales is defined as 

where w(i)
t , i = 1, . . . , n, are unnormalized weights of 

particles. This formula is difficult to determine the actual 
calculation instead the approximation is generally used as 

where w̃(i)
t , i = 1, . . . , n, are normalized weights, and

If Neff < Nth, re-sampling should be adopted, and 
Nth = 2n/3 in general. Note that it is not always necessary 
to have resampling in every iteration step. The judgment 
on the need of resampling or not is dependent on parti-
cle degradation in SIS process. The resampling starts only 
in the iteration when the particle degradation is beyond a 
certain predefined limit.

2.3 � State Assessment in SSM
An SSM is built by two equations: the state (translation) 
equation and the observation (transformation) equation. 
The state equation presents the relationship between the 
next state and the current state, while the observation 
equation reflects the intrinsic relationship between the 

Neff = n
n
∑

i=1

(w
(i)
t )2

,

Neff = 1
n
∑

i=1

(w̃
(i)
t )2

,

w̃
(i)
t = w

(i)
t

/

N
∑

i=1

w
(i)
t .

Initial particles       with the weight 

1/N

( ){ }1 1

Nj
t j− =

x

Updated particles      with the weight  ( ){ }
1

Nj
t j=

x ( )j
tw

Re-sampling particles  

with the weight 1/N

( ){ }
1

Nj
t j=
x

SIS process 

Re-sampling 
process 

~

Figure 2  Diagram of resampling process
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Figure 3  Flow chart of the particle filter procedures
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observations and the state of the system. SSM is a dis-
crete-time presentation of an HMM. The state in SSM is 
the hidden stochastic process in HMM.

The SSM of a system (in general a nonlinear and non-
Gaussian system) can be written as

where Eqs.  (1), (2) are the state and observation equa-
tions respectively. xt ∈ RNx is the system state vector, 
yt ∈ RNy is observation vector, ut ∈ RNx is the input vec-
tor of the system, θ is the static parameters of the model. 
ηt (ηt ∈ RNy) and εt(εt ∈ RNx) denote the observation 
noise and states noise respective, which are independent 
with each other. f : RNx × RNε �→ RNx is the state func-
tion and h : RNx × RNη �→ RNy is the observation func-
tion. Assuming these two functions known and depend 
on ut (sometime it is omitted for simplicity). Priori distri-
bution of the initial state x0 is assumed to be p(x0).

The purpose of constructing an SSM is that SSM pro-
vides a convenient way to estimate the state xt recursively 
(Bayesian estimation). To this end, two sequential steps 
are performed. The prediction step estimates the priori 
probability density of next time state vector using both 
the process model and the information of the previous 
state estimate, expressed by the Chapman-Kolmogorov 
equation:

The filtering step, set up the recursive relation for the 
forecast, considers the current observation yt into the 
estimator of the state vector to correct the obtained pri-
ori probability density, and get the posteriori probability 
density of the state vector by the Bayesian formula:

where p(yt |y1:t−1) =
∫

p(yt |xt)p(xt |y1:t−1)dxt is called 
as a normalized factor.

The posteriori probability density can be expressed as

and with all observations are independent with each 

other, p(y1:t |x0:t) =
t
∏

i=1

p(yi|x0:t). Under the assumption 

that the observations are independent with all status of 

other moments p(y1:t |x0:t) =
t
∏

i=1

p(yi|xi), the posteriori 

probability density is gotten as

(1)xt = f (xt−1,ut , εt , θ), t ∈ T ,

(2)yt = h(xt ,ut , ηt , θ), t ∈ T ,

(3)p(xt |y1:t−1) =
∫

p(xt |xt−1)p(xt−1|y1:t−1)dxt−1,

(4)

p(xt |y1:t) =
p(yt , y1:t−1|xt)p(xt)

p(yt , y1:t−1)
= p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
,

(5)p(x0:t
∣

∣y1:t ) =
p(y1:t |x0:t )p(x0:t)

p(x1:t)
,

where p(x0:t) = p(x0)
t
∏

i=1

p(xi|xi−1) because of the sys-

tem following Markov process. So the recursive formula 
of joint probability density is

For the recursive computation of the posteriori state 
probability density function above, it is more conceptual 
than practical, and in most cases, the integrals Eq. (4) do 
not have an analytical solution, so it is hard to describe 
the probability density functions using a closed analyti-
cal form. Numerous researchers want to obtain approxi-
mate methodologies which could minimize the variance 
of these integral estimates in the mid-1960s, such as the 
extended Kalman filter, the Gaussian sum filter, and grid-
based method [20, 26]. Although in certain settings these 
methods have been applied successfully, they are invalid 
if the posteriori distribution cannot be approximated by 
a Gaussian distribution. In particular, that it remains uni-
modal, which is typically not true in many nonlinear state-
space scenarios [24]. Monte Carlo (MC) methods however, 
in which the posteriori distribution is represented by a 
collection of random points, play a central role in the 40 s 
of the 20th century along with advanced development of 
technology and digital computer. MC simulations, not 
only relevant for simulating models of interest, but consti-
tute a valuable tool for approaching statistics [27].

The idea of Monte Carlo simulation is to draw an i.i.d. 
set of samples 

{

x
(i)
0:t

}N

i=1
 from the posteriori distribution 

of the state p(x0:t |y1:t) [28]. Using these N samples to 
approximate the target density with the following empiri-
cal function:

where the δ
(x

(i)
0:t )

(x0:t) denotes the Dirac delta mass 
located at x0:t. So the expectation for any f (x0:t) is 
E(f (x0:t)) =

∫

f (x0:t)p(x0:t |y1:t)dx0:t . The integral opera-
tion can be estimated by E(f (x0:t)) = 1

N

N
∑

i=1

f (xi0:t), where 
E(f (x0:t)) is the estimate of the expectation for f (x0:t).

The convergence of the above MC calculations can be 
obtained by the law of large numbers, and independent 
with the dimension of the state, therefore Monte Carlo 
simulation provides an effective method to find solutions 

(6)p(x0:t |y1:t) = p(x0)

t
∏

i=1

p(yi|xi)p(xi|xi−1)

p(y1:t)
,

(7)p(x0:t |y1:t) = p(x0:t−1|y1:t−1)
p(yt |xt)p(xt |xt−1)

p(yt , y1:t−1)
.

(8)p̂(x0:t |y1:t) =
1

N

N
∑

i=1

δ
(x

(i)
0:t )

(x0:t),
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for applications in high-dimensions. Due to the error of 
MC approximation has nothing to do with dimension 
when increasing, so it is particularly suitable to solve 
high dimensional integral problem [29]. In recent decade, 
this SMC technology has been widely used to estimate 
the posteriori probability of the state of nonlinear, non-
Gaussian dynamic systems.

3 � RUL Online Assessment from Performance 
Degradation

3.1 � Degradation Prediction
As discussed in previous sections, RUL online assessment 
is based on the underlying performance degradation of 
the system and its predefined failure threshold. The deg-
radation process is modeled in a hidden stochastic pro-
cess as the state in SSM with constant parameters. For the 
l-step ahead recursive estimation of the degrading state 
(xt+1:t+l |y1:t), it can be obtained by following steps:

For j = 1, . . . , l,

For i = 1, . . . ,N , sample x(i)t+j ∼ p(xt+j|x(i)t+j−1, θ
(i)
t ) and 

x
(i)
t+1:t+j = (x

(i)
t+1:t+j−1, x

(i)
t+j),

At the end, a sample set {x(i)t+1:t+j}Ni=1 available, and an 
estimation of p(xt+1:t+l |y1:t) can be estimated as

The estimation of the degradation state (the mean value 
of the state) based on the predicted distribution at time 
t + l can be calculated as:

3.2 � RUL Definition and the Prediction
The remaining useful life (RUL), defined as 
Xt = Ti − t|Ti > t,Z(t), i = 1, 2, …, n, is a random vari-
able, the result of RUL estimation is presented in the form 
of a discrete probability distribution. For assessment of the 
RUL, a specified threshold value � for the degradation state 
is pre-defined for failure. In deriving the distribution of the 
remaining lifetime, � is as the failure criterion compared 
with each sample path to obtain T1,…, Tn, total n different 
time points. Ti represents the least time at which the sam-
ple path x(i)t+1:t+k will equal or exceed the threshold value 
�. In this paper, the two-sided criterion for system failure 
is cited as Cf = {Hlow ≤ x ≤ Hup} , where, Hlow and Hup 
are the upper and lower boundaries of the failure interval 
respectively. Figure 4 shows the concept of derivation.

As shown in Figure  4 (modified from Ref. [24]), Hlow 
and Hup are set symmetrically on both sides of �. The 

(9)p(xt+1:t+l |y1:t) =
1

N

N
∑

i=1

δ
(x

(i)
t+1:t+l)

(xt+1:t+l),

(10)x̄t+l =
1

N

N
∑

i=1

x
(i)
t+l ,

sample particle swarms of state estimation from tk to 
tk+p overlap with the hazard zone (the light shaded area). 
The sum of the normalized weights of all sample parti-
cles which locate in the light shaded area at any time step 
between tk and tk+p represents the probability of system 
failure occurring at the corresponding time step. The 
normalizing constant is the sum of weights of total sam-
ple particles which locate in the light shaded area from 
time tk to tk+p. Therefore, an approximation of the prob-
ability distribution (probability density of time to failure, 
PrTTF) can be obtained through a set of an equal interval 
discrete samples with their corresponding probabilities, 
that is

where w̃i
k+j is the normalized weight of each particle at 

each prediction time, P(·) is the probability to failure 
when the particle value is within the range of the defined 
failure band. The mean remaining life is therefore esti-
mated to be

where texp is the system expected failure time estimated 
at time tk.

4 � An Numerical Example of Cutter Lifetime 
Assessment

A cutter is the key component of machine cutting pro-
cess. Its state influences the total manufacturing effec-
tiveness and stability of machining. Cutter life in milling 
machine is studied using this proposed methodology. 
With an accurate estimate of cutter lifetime, worn tools 

PrTTF (tk+j) =
N
∑

i=1

P(Hlow ≤ x
j
k+j ≤ Hup)w̃

i
k+j ,

(11)i = 1, 2, . . . ,N ; j = 1, 2, . . . , p,

(12)ERUL = texp − tk ,
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can be changed in time to reduce nonconforming prod-
ucts and tooling costs. It therefore guarantees surface 
quality in manufacturing. In assessment of the RUL using 
data driven method, observation signal of the cutters 
were obtained from the sensors (acceleration sensors, 
force sensors, acoustic emission sensors, etc.) mounted 
on the high speed milling test rig, and the experimental 
parameters shown in Table 1. Six milling cutters (C1, C2, 
C3, C4, C5 and C6) with three blades were experimented 
in 315 cycles under the same working conditions. The 
cutter wearing of C1, C4 and C6 were measured online 
and the data was download from the web [30] with more 
details. Figure 5 is the experimental data of milling cut-
ters’ wear. 

4.1 � Modeling and the Priori Distribution of the Model 
Parameters

4.1.1 � A Discrete‑time State Space Model
A Wiener process has found application as a degradation 
model in many studies due to its good properties [31]. 
The degradation of cutters wear in the study is assumed 
at a constant rate, which meets Wiener process. Thus the 
state equation, which expresses the underlying degrada-
tion of the milling tools (wearing), can be presented as 
follows:

where β is a constant for drifting, B(t) is a Brownian 
motion; σB is the corresponding diffusion coefficients; 
both β and σB are unknown.

(13)X(t) = βt + σB · B(t),

In general, the degree of tool wear can determine the 
tool failure. Therefore, tool wearing process can be con-
sidered as the underlying tool degradation. The observa-
tion Y(t) contains noise errors, the observation equation 
is expressed by

where σR is the measurement error; ε(t) is assumed as 
white noise with the mean 0 and the variance 1. Because 
the operational precision of the measurement system is 
usually known, the σR in the model is assumed given.

Since digital computer DAQ (data acquisition) system 
is used for signal acquisition, a discrete-time state space 
model, both state and observation equations, is devel-
oped for the process.

where βn and σB,n are the unknown model parameters at 
time n, and Wn, Vn are noise terms in N(0, 1). σB,n is given 
from the DAQ system.

4.1.2 � Determination of the Priori Distribution of the Model 
Parameters

There are two estimates needed toward online RUL 
assessment. They are online state (degradation) esti-
mate and the model parameter estimate (β and σB). In 
the Bayesian inference framework, a reasonable priori 
distribution is first assigned for the unknown param-
eters of the model. The joint distribution π0(β , σ

2
B) of 

β and σ 2
B is considered as the priori distribution of the 

unknown parameters in the model, and there is likely 
some dependency existing between β and σB.

According to the theory of Bayesian parameter esti-
mation, the conjugate priori distribution for these 
two parameters is applied, i.e., a normal inverse-
Gamma distribution as π0(β|σ 2

B) ∼ N (m0, σ
2
B/n0),

(14)Y (t) = X(t)+ σR · ε(t),

(15)Xn+1 = Xn + βn + σB,n ·Wn,

(16)Yn = Xn + σR,n · Vn,

Table 1  Milling machine working conditions

Rotate 
speed (r/
min)

Feed speed 
(mm/min)

Cutting 
depth of Y 
direction 
(mm)

Cutting 
depth of Z 
direction 
(mm)

Sample 
frequency 
(kHz)

10400 1555 0.125 0.2 50

Figure 5  Wear processes of milling tools (a) C1, (b) C4, (c) C6
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π0(σ
2
B) ∼ IG(aB, �B). And the density function of inverse 

Gamma distribution is

where m0 = µ̂β, ν0 = σ̂ 2
β,νB = σ̂ 2

B, n0 = vB/v0, IG(a, �) 
inverse-Gamma distribution, a is the shape parameter, � 
is the scale parameter.

To obtain the hyper-parameters of the priori distribu-
tion, the bootstrap method [32], an important estimate 
method through statistical variance for interval estima-
tion, is applied in this paper.

4.2 � Posteriori Analysis Based on SMC
The SMC algorithm is adopted in the assessment of both 
the state and the model parameters (β and σ 2

B) online. 
After the priori distributions of the parameters β and σ 2

B 
were determined, the parameters and the states should 
be estimated at each iteration step using ‘sufficient sta-
tistic’ to carry out the joint estimation to the parameters 
and the states. Based on the conjugate nature, the updat-
ing process of the corresponding posteriori distribution 
of the parameters β and σ 2

B, with n observations of tool 
wear available, are:

where, δn = 1
n

n
∑

i=1

δi, S2δ,n =
n
∑

i=1

(δi − δn)
2.

Therefore, the parameters and the states in the SSM 
are estimated recursively based on the particle filter and 
using sufficient statistic [33]. The flow chart of the assess-
ment showed in Figure 6.

4.3 � Results
An experiment for model validation was done on one of 
the individual milling tools based on the wearing data. The 
online measurements of the tool’s wear are shown in Fig-
ure 7 with total of 350 data points. It is a non-decreasing 
process. In practice, residual life prediction is considered 
in the middle and later periods of the cutter life. The data 
points from 125 to 315 milling cycle times were used from 
the total 350 data points separated as the validation data.

Using the bootstrap method resampling, 900 groups 
of samples are generated with different forecast origins 

(17)f (x|a, �) = �
a

Γ (a)
x−(a+1)e−�/x, x > 0, a > 0, � > 0,

(18)mn = n

n+ n0
m0 +

n

n+ n0
δn,

(19)σ 2
n = (n+ n0)ν

2
B,

(20)aB,n = aB,0 +
n

2
,

(21)�B,n = �B,0 +
1

2
S2δ,n +

n0n

2(n+ n0)
(δi − δn),

at K1 = 35, K2 = 55, K3 = 75, K4 = 95, K5 = 115 and 
K6 =  135 (in milling cycles) respectively. The results 
obtained from applying the discussed method on the 
model parameter estimation are listed in Table  2, 
where the particle number is 30 and the priori prob-
ability density function is selected as the importance 
function.

Using 900 samples generated in each milling cycle, the 
estimated model parameter are adopted for RUL assess-
ment. The pseudo codes for PF and RUL online assess-
ment in Matlab is shown as follows:

The state and the parameter at time t: (xt, t) 

Update the posteriori distribution of state by PF 
under the known parameter of time t : (xt+1, t) 

Update the posteriori distribution of parameters 
by iteration as Eqs. (18) (21): (xt+1, t+1) 

t = t+1 

t = current N 

Y 

Predicate the state until time t+l

Figure 6  Flow chart of the assessment procedure for both state and 
parameter

Figure 7  The measurements of the C1 tool’s wear
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The multistep prediction results can be obtained based 
on the formula according to the degradation model. 
The critical threshold of the tool wear is defined as 
λ = 0.15 mm, and the Hlow=�− 1.96σ�, Hup=�+1.96σ� , 
respectively, where σ� is standard deviation of the 
threshold which assumed as 1.5 in the paper. The pre-
dicted results under the various time origins are shown 
in Figure  8. The thin solid lines represent the degrada-
tion processes of each particle; the two horizontal lines 
are the threshold band; the heavy lines are the predicted 
values; the real values are also provided by the thick 
dash-and-dot point line. The particles, when total num-
ber is large enough, are assumed following a normal 

distribution, and the 95% confidence interval is given as 
(x̄t+l − 1.96σ/

√
n, x̄t+l + 1.96σ/

√
n). The RUL probabil-

ity density function curves at each time origin of assess-
ment are shown in Figure 8. The vertical lines at the right 
column are expectation failure times based on the esti-
mated failure probability density functions.

Table  3 lists the predicted failure times, the true fail-
ure times, the predicted residual life and actual residual 
life at different forecast origins. Figure 9 shows the prob-
ability distribution functions of RUL at different forecast 
origins. It can be seen in Figure 10 from the comparison 
of the predicted values and the real values of RUL in the 
experiment that proposed model and SMC method for 
online assessment are valid and promising.

5 � Conclusions
RUL assessment and modeling have become increas-
ingly important in system reliability and PHM. System 
health management involves determining the system 
performance status and the RUL of critical systems used 
for the maintenance plan, decision making, and system 
global optimization. RUL assessment becomes a science 
in assessing the degradation based on observations of 
covariate performance variables due to the complexity 
of the system, failure mechanism, and un-observable-
ness of the physical degradation. Naturally, there are 
two stochastic processes in RUL assessment. One is a 
hidden degradation process; the other is observation of 
the measurable process. The state space model, as a first 
order hidden Markov, provides a desired format for SMC 
based on Bayesian estimation of the posteriori distribu-
tion. A nonlinear state space model using online recur-
sive particle filter is the research focus for online RUL 
assessment. In this paper, the online assessment of mill-
ing tool life from the degradation of wearing was used 
to establish a discrete-time SSM. The SMC algorithm 
was applied to estimate the state and model parameters 
simultaneously through sufficient statistic. Predicted 
results of the RUL distribution and its expectation show 
the plausibility and effectiveness of this approach. There 
are a few points worth noting, which might lead to future 
research.

Table 2  Model parameter estimation results

Milling cycles μβ a λ σB σR

K1 = 35 0.3768 45.55 0.421 0.0094 0.5

K2 = 55 0.3629 276.64 0.342 0.0076 0.5

K3 = 75 0.3779 328.23 0.252 0.00072 0.5

K4 = 95 0.3811 423.33 0.194 0.00036 0.5

K5 = 115 0.3456 533.97 0.113 0.00015 0.5

K6 = 135 0.3505 743.83 0.128 0.00024 0.5
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The estimated SSM in the case study was built up based 
on few assumptions without off-line performance analy-
sis for physics mechanism. Model building methods are 
application oriented, varying from case to case.

The sufficient statistic method exhibited good effect on 
sequential parameter learning in the text. However, the 
measurement error was assumed to be of a fixed value to 
simplify the calculation. The topic of how to assess the 

Figure 8  Forecast performance of models (a)‒(f ) and probability distributions of TTF (g)–(l)
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unknown parameters with variable measurement error 
online is still an open to research.

For the RUL prediction in the paper, the two-sided cri-
terion for the failure threshold was cited directly without 
the support from reliability theory and the degradation 
threshold for a defined soft failure has all along been a 
controversial topic.
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Table 3  RUL and TTF results at different assessment origins

Milling cycles The predicted failure time True failure time The predicted residual life The actual residual life

K1 = 35 155 146 120 111

K2 = 55 150 146 95 91

K3 = 75 148 146 73 71

K4 = 95 151 146 56 51

K3 = 115 152 146 37 31

K4 = 135 151 146 16 11

Figure 9  Probability density function of RUL at different forecast 
origins

Figure 10  Contrast of the predicted and the real value of RUL
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