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Abstract

Background: Establishing reliable predictive and diganostic biomarkers of autism would enhance early
identification and facilitate targeted intervention during periods of greatest plasticity in early brain development.
High impact research on biomarkers is currently limited by relatively small sample sizes and the complexity of the
autism phenotype.

Methods: EEG-IP is an International Infant EEG Data Integration Platform developed to advance biomarker
discovery by enhancing the large scale integration of multi-site data. Currently, this is the largest multi-site
standardized dataset of infant EEG data.

Results: First, multi-site data from longitudinal cohort studies of infants at risk for autism was pooled in a common
repository with 1382 EEG longitudinal recordings, linked behavioral data, from 432 infants between 3- to 36-months
of age. Second, to address challenges of limited comparability across independent recordings, EEG-IP applied the
Brain Imaging Data Structure (BIDS)-EEG standard, resulting in a harmonized, extendable, and integrated data state.
Finally, the pooled and harmonized raw data was preprocessed using a common signal processing pipeline that
maximizes signal isolation and minimizes data reduction. With EEG-IP, we produced a fully standardized data set, of
the pooled, harmonized, and pre-processed EEG data from multiple sites.

Conclusions: Implementing these integrated solutions for the first time with infant data has demonstrated success
and challenges in generating a standardized multi-site data state. The challenges relate to annotation of signal
sources, time, and ICA analysis during pre-processing. A number of future opportunities also emerge, including
validation of analytic pipelines that can replicate existing findings and/or test novel hypotheses.
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Introduction

Biomarkers for autism would substantially advance early
identification and intervention, improving oucomes for in-
dividuals with the disorder, and thus reducing the burden
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of autism to these individuals and their communities.
Neuroimaging cohort studies of infants at risk for autism
are illuminating altered early brain development that un-
derlies autism prior to the onset of behavioral symptoms,
providing opportunities to identify periods of greatest
plasticity and responsiveness to treatment. Infants are typ-
ically considered at elevated risk because they have an
older sibling who has been diagnosed with ASD. To date,
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infant sibling neuroimaging studies have revealed indica-
tors of risk that relate to later diagnosis, emerging atypi-
cality in brain development, and concurrent and/or
longitudinal functional outcomes.

For example, several studies have revealed that early in-
fant autism risk is associated with mechanisms of visual
attention and that at-risk infants have distinct neural re-
sponses to social stimuli, including faces and dynamic
gaze patterns (Elsabbagh et al. 2009; Lloyd-Fox et al. 2013;
Orekhova et al. 2014), attentional disengagement (Elsab-
bagh et al. 2013), and auditory language processing (Riva
et al. 2018), which relate to autism diagnosis in later life
(Elsabbagh et al. 2012). These differences occur in mul-
tiple modalities, suggesting that ASD is characterized, in
part, by alterations in functional integration across neural
networks. Other research has shown atypical brain devel-
opment trajectories in infants who are at risk for autism
with or without a diagnosis. Such risk indicators have
been documented in relation to resting EEG power (Tier-
ney et al. 2012), functional connectivity (Orekhova et al.
2014; Righi et al. 2014), and measures of EEG time series
complexity (Bosl et al. 2018; Bosl et al. 2011). In addition
to indicators of risk and emerging atypicality, some evi-
dence suggests that EEG measures also relate to functional
outcomes, such as quality of parent-infant interactions
(Elsabbagh et al. 2014) and language development (Levin
et al. 2017).

Despite the rapid progress and value of the findings in
illuminating neural mechanisms of risk, research progress
on infant EEG markers of autism is hampered by several
factors. First, there is considerable cost, both in time and
financial investment, to acquiring infant EEG data from
populations at risk for neurodevelopmental disorders,
which limits the opportunities for independent replication
of discovered biomarkers. Further, no study has yet tested
the value of a putative marker in a large, population-
representative sample. Second, independent samples col-
lected from different laboratories only offer modest statis-
tical power to detect effects, especially in the group that
goes on to develop autism later in life (typically 20% of at-
risk infants; Ozonoff et al. 2011). Third, variation in a
number of methodological factors relating to samples,
paradigms, and signal processing has also contributed to
inconclusive results in EEG studies, both with infants at
risk as well as older diagnosed children and adults
(O'Reilly et al. 2017).

Some sources of variation relate to the intrinsic hetero-
geneity of ASD, which is increasingly becoming the focus
of recent theoretical models of etiology and development
of the condition (Elsabbagh & Johnson 2016). Other fac-
tors, namely methodological ones, are possible to address.
A recent systematic review of EEG findings in autism
across the lifespan has demonstrated that in spite of sub-
stantial variation in results across studies, there was strong
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support for a pattern of long range underconnectivity
(O'Reilly et al. 2017). The review also synthesized the fac-
tors currently limiting comparability across studies with
respect to identifying other patterns of brain connectivity.
These factors include differences in sample characteristics
(e.g., age, symptom severity, 1Q), experimental paradigms
(e.g., tasks parameters, stimuli, control conditions), data
acquisition parameters (e.g., hardware, testing environ-
ment), and EEG signal extraction (pre-processing pipe-
lines, quality control, statistical models).

Some of these challenges have been recognized for a
long time, with complementary efforts to address them. In
recent years, consensus has been developed around EEG
data acquisition and signal processing in autism, in an ef-
fort to increase validity and reliability of findings from in-
dependent studies (Webb et al. 2015). Further, new signal
processing pipelines are being developed to enhance
signal-to-noise ratios, especially for data from infants and
atypical populations where data is relatively more influ-
enced by artifacts (Gabard-Durnam et al. 2018; Levin et al.
2018; Zima et al. 2012). Finally, a major push towards an
Open Science framework in neuroscience in general (Ali-
Khan et al. 2019; Das et al. 2016, 2017; Poupon et al.
2017) has led to increased interest in data pooling across
independent samples but to date, no such effort has been
developed for EEG data in autism. Success in development
of data repositories for other neuroimaging data of ASD,
namely (f) MRI, has demonstrated feasibility and value of
pooled research samples from independent studies (Di
Martino et al. 2014). However, these efforts have also
raised debate around the importance of going beyond data
pooling, towards data standardization to facilitate aggre-
gated data sets that also share methodology in terms of
pre-processing and quality control.

To simultaneously address challenges in data pool-
ing and standardization in cohort studies with infant
siblings, we established the International Infant EEG
Data Integration Platform (EEG-IP). The EEG-IP ap-
proach is not limited to infant data and is fully ex-
tendable for use with other multi-site EEG datasets.
EEG-IP integrates three complementary components
for advancing research on infant autism EEG biomarkers:
(1) A data repository structure allowing for a centrally
pooled data set of independently collected cohorts of in-
fant sibling EEG data; (2) The adoption of the Brain Im-
aging Data Structure (BIDS; Gorgolewski et al. 2016)
extension for EEG (BIDS-EEG; Pernet et al. 2018) that
harmonizes the storage of EEG acquisition parameters, as
well as experimental and individual difference variables in
a common framework across pooled projects; (3) Imple-
mentation of the Lossless signal processing pipeline
(https://github.com/BUCANL/bids_lossless_eeg) that pro-
duces a common EEG data state that both maximizes sig-
nal isolation and minimizes data loss by applying quality
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control measures on each recording session in the data
set. The Lossless pipeline performs several data quality as-
sessment procedures, Adaptive Mixture Independent
Component Analysis (AMICA), and signal property
annotation.

Use of these complementary technical solutions gives
rise to a fully standardized data state, with all experi-
mentally relevant information about each of the pooled
cohorts is retrievable within a common framework.
Further, it provides a unified and standardized output
data state in which cortical signal is maximally isolated
from the various sources of noise in the EEG data and
data loss is minimized. In turn the standardized data
state offers maximal data exploration possibilities
at large scales on cortical EEG data, substantially accel-
erating hypothesis testing in biomarker discovery
research.

Methods and materials
Three independent sites (Boston Children’s Hospital,
Boston MA; Birkbeck University, London England;
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University of Washington, Washington WA) contributed
data to the EEG-IP platform. Together, this pooled data
set consists of 1455 EEG recording sessions (Boston:
972; London: 188; Seattle: 223) from 446 unique partici-
pants (Boston: 250; London: 106; Seattle: 90), spanning
multiple age ranges (Boston: 3, 6, 9,12, 18, 24, 36
months; London: 7, 14 months; Seattle: 6, 12, 18
months). Many acquisition parameters were common
across sites, including use the EGI system with saline
nets for EEG data acquisition (EGL Inc.). A number of
recording parameters varied both across and within sites,
including electrode montage (129 and 65 channel con-
figurations), task procedures during recording sessions
(both event-related response tasks and non-event related
data), data annotation (e.g., events contained in the data
file describing the experimental context), recording
length, file formatting, and signal contamination.

The strategy by which the EEG data from the various
sites are processed into a single compatible state is illus-
trated in Fig. 1, and described below. This diagram illus-
trates how data move from the acquisition site into a

acquired data EEG Repository
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source:
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Fig. 1 EEG-IP Architecture and Data Flow. Schematic of how “acquired data” flows from the acquisition site through the platform, and ultimately
to “publications” output. White boxes represent data states and colored boxes represent coded procedures. Orange boxes represent procedures
that may vary from project to project often handling the harmonization of unique data set features. The green box represents the maximally
standardized process that is designed to run similarly across projects and is optimized for execution on HPC resources. The red box is the manual
process in which each file is inspected and annotated by a reviewer. “Acquired data” enters the platform as unmodified raw data files in the
“BIDS-EEG set” as “Source data”. The “source data” is then processed with the “initiation” to become “BIDS-compliant raw data” (open file format
and containing the appropriate annotation files, etc.). Once the data are BIDS-compliant they are processed into the “BIDS-derivative Lossless”
state beginning with a “staging” procedure designed to harmonize properties of the data (e.g., coregister channel locations to a standard head
surface) then run through the “Lossless” pipeline. Each recording session file in the resulting “preprocessed data in Lossless state” is then
examined by a reviewer in an optimized QC procedure that results in “reviewed data quality annotation”. From this pre-processed state the
annotations are used to guide the post processing “feature extraction & hypothesis testing” procedures that result in the output “publications”
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BIDS-EEG compliant format. The BIDS-EEG compliant
data files are then processed for signal isolation via the
Lossless pipeline and interactive quality control, produ-
cing the final Lossless data state that is ready for post-
processing and hypothesis testing.

In Fig. 1, the orange boxes indicate procedures that
may be unique to each of the pooled projects. For ex-
ample, preceding the execution of the Lossless pipeline,
each acquisition project may require a unique process to
standardize the raw data into a BIDS-EEG compliant
format (e.g., this is often the case for task event codes
that require Hierarchical Event Descriptor [HED] trans-
lations) Within the Lossless pipeline, data staging may
be required (e.g., transforming the channel coordinate
montage to conform to a common head surface, notch
filtering of different line noise frequencies, etc.). Follow-
ing the execution of the Lossless pipeline, unique post-
processing scripts may be applied. Although each of
these procedures may be unique to the specific acquisi-
tion or post-processing project, once the process is
established for that project it may be executed in a fully
automated manner. The red box, “code: QC”, indicates a
process that requires manual interaction on each file.

The goal of the Lossless pipeline within EEG-IP is
not to fully automate the signal processing, but rather
to isolate manual interaction to a single step that is
optimized, with flexible figure interactions, and pro-
vides sufficient data classification information for the
reviewer to make informed decisions about what data
portions should remain for hypothesis testing. The
green boxes represent procedures that are fully auto-
mated and executed in an unsupervised manner com-
patible with high performance computer scheduling.
Although the fully automated procedures are configur-
able by several parameters, the optimal parameter set-
tings are designed to be highly transferable across data
sets. For a detailed description of the methods applied
in the staging procedure of the EEG-IP set see Supple-
mentary Materials.

Results

In what follows, we compare performance of EEG-IP in
standardization across key parameters where there was
variation, namely time, channels, and IC analysis.

Time annotation

In EEG recording, there are typically periods of time that
are not recoverable for use in hypothesis testing. Various
types of artifacts could be addressed by data removal or
transformation (see Bigdely-Shamlo et al. 2015; Gabard-
Durnam et al. 2018). The Lossless pipeline maintained as
much spatially stationary (scalp signals made up of field
projections emanating from spatially fixed sources) time
as possible with the goal that the stationary artifacts (e.g.,
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eye blinks, EMG, etc) can be isolated by ICs. The pie
charts in Fig. 2a depict the average proportion of time
points remaining (dark blue) and flagged for removal
(grey) following the Lossless pipeline. The blue histograms
depict the number of seconds remaining for each of the
files from the sites and the grey histograms represent the
percentage of removed time for each of the recordings
from the site. Although each of the sites have a different
distribution of the recording times (Boston is the shortest
followed by London and Washington) the distributions of
time point proportions removed is similar across sites. Re-
gardless of these task recording differences, the relative
distribution of time flagged is similar across sites. This
similarity is also reflected in the distribution of flagging
based on different data properties.

Beyond the global retained versus removed time periods,
the plots in Fig. 2b describe the specific measures that re-
sulted in the removal of time periods. The pie graphs rep-
resent the percentages of total times removed for specific
data properties: study-level staging voltage variance (“c/i_
s_sd’, dark red), subject-level relative voltage variance
(“ch_sd”, blue), low neighbor correlations (“low_r”, red),
initial IC projection voltage variance (“ic_sd1”, magenta)
and second IC projection voltage variance (“ic_sd2”, pur-
ple). In these figures, the three sites are handled similarly
by the pipeline, such that a large majority of the time re-
moved is classified by the staging activation determination
based on the pool level parameter estimate (i.e., “ch_s_
sd”). This is an important property of the pipeline because
it indicates that the processing is able to handle large per-
centages of data in a recording being contaminated with
large artifacts, but still progressively be sensitive to fine
grained distinctions of non-stationarity artifacts. In the
histograms, we see that 80-90% of some of the files are
flagged during the staging criteria. We also note that the
Boston site has the least staging criteria rejection (as well
as the least total rejected time-periods) which may relate
to the selection of shorter recording periods and the inclu-
sion of only resting state data. Following the staging cri-
teria, the subsequent measures are extremely similar
across each site, having averages within 1-2% in terms of
relative percentage of time flagged with “ch_sd” and “ic_
sd1l” accounting for the majority of the within recording
criteria and “low_r” and “ic_sd2” capturing properties of
the data that constitute sublte artifacts and spatial non-
stationarity, which are distinct from large voltage
fluctions.

Channel annotation

In regards to channel selection the three sites also have
very similar outcomes such that the average channel re-
tention for the three sites is between 77 and 82%. The
histograms in Fig. 3 show that the distribution of per-
centage of channels retained (dark blue) is clustered
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Fig. 2 Time annotation. a. Pie charts show average proportion of
time points (seconds) remaining (dark blue) and flagged (grey) for
removal following the Lossless pipeline. Histograms show
distribution of total (black), flagged (grey), and remaining (blue) time
points across the three sites. b. Pie charts show average proportion
of time points flagged for removal due to study-level staging
voltage variance (dark red), individual subject-level voltage variance
(blue), low correlation between neighboring channels (red),
component activation variance from first ICA (magenta), and
component activation variance from second ICA (purple). The other
slices reflect non-task time marked due to gaps between events
(e.g., task lead up, task breaks, etc). Histograms show distribution of
proportion of time points in the various categories across three sites

around the group mean (whether 65 or 129 channel
montage). Further, the relative distributions of the chan-
nels classifications in “ch_s_sd”, “ch_sd”, “bridge” and
“low_r” are similar across sites, with differences of the
averages at only 1-2%.

IC annotation

Once the time points and channels have been flagged for
various reasons, it is by design in the Lossless pipeline that
stationary artifacts remain in the unflagged channels and
time periods. The spatially stationary artifacts are isolated
by ICs and flagged for removal. The IC pie charts in Fig. 4
depict the average spatial variance (standard deviation
across scalp channels at each time point) for the
remaining ICs (non-flagged ICs projected back to the
scalp) and the average spatial variance of the ICs flagged
for rejection. Again, the three sites show similar patterns
indicating that more than 50% of the spatial variance in
the remaining channels and time points are classified as
consisting of non-artifactual ICs. The remaining IC pro
jections show similar amplitude characteristics as the dis-
tribution of spatial variance across subjects centers around
10 pV for each site. These diagnostic properties clearly
show that, despite different sources of variance that may
contribute to non-stationary artifacts (e.g., acquisition
parameters, paradigms, individual differences across sub-
jects), the Lossless pipeline is capable of isolating similar
signal properties across cohorts which correspond to
cortical activation properties.

Power spectrum profile

The raw power spectrum profile from central channel
Cz is shown for each site in Fig. 5. This summary shows
that the pipeline and quality control review process re-
sult in a similar power spectrum profile of the data
across cohorts that are retained for post-processing and
hypothesis testing.

Discussion
Identifying early biomarkers of autism is critical given
that the first years of life represent greatest plasticity,
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Fig. 3 Channel annotation. Pie charts show average proportion of channels retained (dark blue) and those flagged for removal due to study-level
staging voltage variance (dark red), individual subject-level voltage variance (blue), low correlation between neighbouring channels (red), and
bridging between neighbouring channels (green). Histograms show distribution of proportion of channels in the various categories across three

sites
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when infants may be most responsive to treatment that
can mitigate the long-term severity of the disorder. Rela-
tive to other neuroimaging methods such as MRI and
MEG, EEG is less invasive, more cost effective, and su-
perior in its temporal resolution, making it a feasible
technology that can be implemented, on a large scale, in
research labs across the globe. EEG methodology has
sparked major progress in developmental neuroscience
(Jeste et al. 2015) and is the best-established method for
investigating neural processes in infants, making it well
suited for detecting early biomarkers of autism before
the emergence of behavioral symptoms.

However, this valuable line of research is currently lim-
ited by the fact that EEG collection in infants and popula-
tions with neurodevelopmental disorders introduces issues
related to recording duration and signal quality. Independ-
ent studies with EEG have been limited by relatively small
samples (O'Reilly et al. 2017), which have reduced power to
detect statistical differences in the subgroup of infants who

go on to develop autism, introducing risks of both Type I
(false positive) and Type II (false negative) errors. Large
sample sizes that are combined across studies are needed
to provide enhanced analytic and statistical power sufficient
to identify and validate early biomarkers. However, previous
attempts to pool independent samples in neuroimaging
data, namely MRI, has resulted in mixed findings (Traut
et al. 2018), highlighting the need to establish standardized
data states of pooled data that are of high quality. Another
challenge for infant research is the reduced signal-to-noise
ratio due to more artifacts in infants those with neurodeve-
lopmental disorders. Further, to date, there have been lim-
ited application of high performance computing methods
in order to standardize large scale pooled data across inde-
pendent samples.

EEG-IP was developed to simultaneously address the
need for data pooling as well as comparability across in-
dependent samples, by generating an integrated stan-
dardized data state, using a combination of High
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Performance Computing (HPC) solutions. This included
use of EEGLAB data structure file format within the
BIDS-EEG standard, which together maintain all of the
uniqueness of each project’s acquisition parameters
within their defined metadata files (Pernet et al. 2018).
Specifically, critical acquisition parameters such as sam-
pling rate, channel locations, experimental control event
marking, filtering, etc., are stored in a manner that is
universal regardless of the employed acquisition docu-
mentation practices.

EEG-IP also used an open source signal processing tool,
the Lossless pipeline to standardize signal properties. EEG
pre-processing pipelines are generally sensitive to various
aspects of the data acquisition parameters, such as the
number of scalp sites, recording duration, environmental
noise sources, participant behaviour, and reduced signal-
to-noise ratio in data from infants and/or populations with
neurodevelopmental disorders (Levin et al. 2018; Zima
et al. 2012). The performance of pre-processing proce-
dures are further impacted by the increased artifact con-
tamination in infant EEG. We selected the Lossless
pipeline because it offers comprehensive quality control
assessment, alongside expandable tools to isolate reliable

cortical signal from noise in the EEG, maintain maximal
information from raw recordings, generalizable parame-
ters, replicable procedures across sites and projects, and
batch processing to scale up analyses to efficiently handle
hundreds or thousands of datasets using HPC clusters.

While equating important aspects of measurement in
the EEG, such as the re-referencing to an average com-
mon standard head montage, the Lossless strategy
adopted in this platform also has an emphasis on being
robust to variations across acquisition projects. By pro-
gressing from coarse grained measures of scalp voltage
outliers to find grained measures of spatial stationarity,
this process is able to both remove large non-stationary
artifacts (e.g., substantial movement artifacts, sweat arti-
facts, etc.) in the data prior to the ICA decomposition
and maintain in the data periods of time where spatially
stationary artifacts (e.g., heart artifacts, eye movements,
blinks, muscle activation, etc.) can be accounted for by
isolated ICs.

The application of the Lossless pipeline has
highlighted a number of challenges. The first challenge
in achieving a reliable ICA decomposition in infant data
has to do with the duration of data that is provided to
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the modeling. By focusing on the classification of non-
stationary channels and time points, this strategy maxi-
mizes the quantity of useful signal that is available to
ICA modelling. This being said, recording duration is
still an important factor affecting the quality of the pre-
processed data state that can potentially be addressed by
modified data acquisition procedures. Moving forward,
we recommend that acquisition procedures include as
much time as possible in the recording while the subject
is relatively motionless, even if there is no experimental
task or state in progress at the time. This extra recording
time of stationary signal (e.g., a minimum of a few mi-
nutes to up to an hour when feasible) could increase the
pipeline’s ability to recover cortical signal from periods
of time that are otherwise saturated with artifacts.

Another challenge relates to the variation in number
of recording channels. Although dense array montages
are readily available, this challenge may remain when
integrating more diverse samples and those collected
from clinical settings into the platform. Although the
process is flexible to the locations in the recording
montage, the ICA modelling needs to be provided with
enough channels to account for the number of unique
field potentials that are recorded from the scalp surface.
In this case either increasing the number of stationary
recording channels (e.g., greater than 32 channels), or
reducing the number of field potentials being picked up
at the recording sites, either by external sources (e.g.,
nearby unshielded power cords, and other electrical
equipment, etc.) or internal sources (e.g., various
muscle groups around the neck and face). The best way
to decrease the number of internal field sources is by
minimizing muscle activity in the forehead and neck
areas, a goal that may or may not be achievable in fu-
ture studies.

Notwithstanding the challenges highlighted by the
process of translation from raw to standardized data, our
diagnostic analysis shows that equivalent EEG signal can
be extracted from independent sites with variable acquisi-
tion parameters. Although the sites currently contained in
the EEG-IP have various acquisition parameters (e.g.,
channel montage, sampling rate, experimental environ-
ment, and recording times, etc.), the outcome state from
each of the sites after time and channel rejection, and then
IC artifact removal, were comparable in terms of state
measures such as voltage range and spectral power. Im-
portantly the similar states of the signal qualities were
achieved in a way that was both independent of recording
parameters (e.g., various recording montages were all co-
registered and re-referenced to a common head surface)
and robust to various levels of signal contamination.

The relatively high degree of success in data retention
demonstrates that it is possible to optimize data quality by
achieving signal and noise isolation while minimizing both
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data reduction (e.g., rejecting channels and time points,
etc.) and data manipulation (e.g., restrictive filtering and
various forms of artifact correction). Minimizing the data
removal and manipulation during the pre-processing also
minimized the constraints on post-processing analyses.
Very little information is lost relative to the original raw
recording file because signal quality classification is imple-
mented through data annotation rather than through data
rejection. In fact, the data annotations regarding the vari-
ous aspects of signal quality obtained during the process-
ing of the pipeline can be applied to the original raw
recording files in order to maintain all of the original in-
formation while gaining important and fine grained signal
classification information. This minimal manipulation
strategy not only enables for diverse post-processing strat-
egies, but it is also an ideal long-term state of EEG that is
optimally compatible with future analytic methods. There-
fore, relative to conventional approaches used with rela-
tively small independent samples, the standardized state in
EEG-IP is can be seen as a “translated” state of the raw
state (containing signal quality annotations) rather than a
fully pre-processed state. Furthermore, this data state also
makes an ideal starting point for future advancements in
pre-processing strategies and post-processing analytics.

Conclusions

By favoring annotation of the data over its manipulating or
pruning, not only is the standardized state of EEG-IP
unique for its data retention but, perhaps more notably, it
is also novel for the degree of quality control inspection
that was applied to each file. Although pre-processing
pipelines are becoming very powerful and capable of so-
phisticated unsupervised and fully automated decision
making, this platform focuses on an efficient yet exhaustive
interactive quality control review process. In this way the
signal classification annotation not only allow for the full
retention of data but also allows the quality control re-
viewer to consider augmented signal quality visualizations
when making final decision about the recording channels,
time points and ICs. The minimization of the data manipu-
lation and reduction in exchange for data annotation, to-
gether with the pipeline’s maximization of the isolation
between signal and noise, make this platform uniquely
suited for long term and evolving discovery. Further expan-
sion and technical improvements to EEG-IP will expand
data access to multiple users for collectively or independ-
ently testing targeted hypotheses. Linked curated data is
also accessible for future data mining and new analytic
tools, such as assessing the robustness of single subject ef-
fects to unpack phenotypical heterogeneity (Campopiano
et al. 2018). Future research with EEG-IP can begin to sys-
tematically test new methods and validated processes
across multiple samples. EEG-IP also fosters the potential
for expanded and novel analytic techniques to infant data,



Noordt et al. Molecular Medicine (2020) 26:40

such as connectivity, network, cluster, machine learning
and harmonics analyses. Applying such techniques to in-
fant data has traditionally been limited because signal-to-
noise ratios are less well established than for older children.
We expect EEG-IP to facilitate innovative solutions to
these challenges, yielding new analytic tools and pipelines.
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