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Abstract

Background: Drug repurposing is a swift, safe, and cheap drug discovery method. Melanoma disorders present low
survival and high mortality rates and are challenging to diagnose and treat. Moreover, there is a high volume of
worldwide investigations that are attempting to find melanoma-related genes of influence, which can be identified
as responsive targets for reliable treatment.

Method: In this study, we used a wide range of data analyses to analyze over 1100 genes and proteins of influence
with respect to cutaneous malignant melanoma. Our analysis included various investigational results from genome-
and phenome-wide association studies (GWAS and PheWAS, respectively), biomedical, transcriptomic, and
metabolomic datasets. We then researched the DrugBank for potential melanoma targets from the selected list. We
excluded known melanoma targets to obtain a list of druggable proteins. We performed a precise analysis of the
drugs’ pathogenesis and checked the expression profiles of the selected drugs having high associations with
known anti-melanoma drugs.

Result: We found 35 drugs that interacted with 20 unique targets. These drugs appear to have high melanoma treatment
potentials. We confirmed our results with previous studies and found supporting references for 30 of these drugs.
In conclusion, this investigation can be applied to various diseases for the efficient and economical repurposing of various
drug compounds. For further validation, the results may be applicable for in vivo tests and clinical trials.

Keywords: Drug repurposing, Melanoma, GWAS, PheWAS, Transcriptomic, Metabolomics, Medical dermatology, Oncology,
Drug response

Background
Cutaneous malignant melanoma is one of the most perilous
diseases in the world, affecting more than millions of
people globally. According to world health organization,
there are over 2 to 3 million cutaneous malignant melan-
oma diagnoses every year. Recent reports from the Ameri-
can Cancer Society revealed that the five-year survival rate
for patients with early stage detection of skin cancer is ap-
proximately 99% in the U.S. Cutaneous malignant melan-
oma has excessive morbidity and mortality rates (Cummins
et al. 2006). The survival time can drop to 63% when the
disease affects lymph nodes, and it can lower to 20% in re-
gard to metastasize other organs (Balch et al. 2009).

Disease etiology is the most important step towards
finding a feasible treatment for any disease. According
to reports that were published earlier, melanoma is
mainly due to the influence of the UV-damage response
to genomic content in humans. Genomic instability
caused by UV-radiation and other factors have various
resources (Parkin et al. 2011), including the influence of
the tumor suppressor gene, cell cycle inhibitors, onco-
gene activities, molecular and cytogenetic changes and
telomere dysfunction, and others (Elder 1999). Although
these resources are mainly induced by internal genomic
content, according to the genetic interpretation of the
population, environmental factors are key operating
agents for such diseases (Han et al. 2005).
Understanding the disease etiology can highlight the

inducing genes, which are directly or indirectly affected
by the progress of cancer. In this study, we collected
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influencing gene from multiple sources, with strong bio-
logical evidence. Genome-wide association studies (GWAS)
(MacArthur et al. 2017), phenome-wide association studies
(PheWAS) (Denny et al. 2013), transcriptome analysis
(Berger et al. 2010), metabolomics analysis (Wishart et al.
2018a) and disease-gene association studies (Babbi et al.
2017) are used to reveal these associated genes.
Apart from finding the genes that are associated with

melanoma, it is highly important to find a therapeutic
solution to reduce the number of patients who are suf-
fering. Drug repurposing (or drug repositioning), which
has become a conventional drug development proced-
ure, can reuse already available, well-studied, marketed
drugs for new indications (Li et al. 2016). Drug repur-
posing can reduce the time for identification of the lead-
ing compound for 3–12 years; it can also reduce the risk
and lower the cost of drug development (Ashburn and
Thor 2004). In this study, we used the “Disease Based
Approach” as one of multiple drug-repurposing ap-
proaches (Sun et al. 2017; Zhang et al. 2015; Li et al.
2016). Hence, the leading compound will be identified
by an analysis of target-based interactions with the asso-
ciated genes corresponding to a well-known disease.
In this study, systematic approaches are involved in

finding drug compounds for melanoma treatment. We
have approached advanced biological technology, such
as GWAS, PheWAS, expression profiles, and biomedical
and metabolomics data, to obtain the highest operational
druggable biomarker and their corresponding leading
molecule from already available drugs. We finally used
the text-mining approach to validate our candidate drug
compound from previous studies.

Materials and methods
Dataset collection
To obtain the dataset for skin cancer-related genes, pro-
teins and metabolites, we used several databases and cat-
alogs. In this study, we used genomics, transcriptomics
and metabolomics, and biomedical data from various
sources, which is described as follows.

Genome wide association studies
We have revealed all associated genes for melanoma dis-
orders from the GWAS catalog (MacArthur et al. 2017).
We have collected information on 1) associated genes;
the nearest gene associated with an allele; 2) SNPs, the
unique SNP number; 3) patient ethnicity, the ethnicity
of population study; 4) publication information, PubMed
ID; 5) P-value, the p-value of the allelic association to
the disorder; and 6) the phenotypic trait from the cata-
log; associated disorder. The selection of the disease/trait
attribute as “melanoma” and “cutaneous malignant mel-
anoma” has been done in this process.

Phenome wide association studies
Utilization of phenome-wide association studies (Phe-
WAS) for drug repurposing has been done successfully
during past years (Rastegar-Mojarad et al. 2015; Yin et
al. 2018; Khosravi et al. 2019). In this study, we have
used the PheWAS catalog to discover all associated
genes corresponding to variant alleles for different eth-
nicities around the world (Denny et al. 2013). The co-
morbidity of different phenotypic traits has been traced
by variation in allelic content due to a shared biological
mechanism and/or environmental effect, such as UV ra-
diations (Bush et al. 2016). We have retrieved the infor-
mation from the catalog by setting the phenotype as
“melanoma” and “skin cancer” and extracted the following
data: 1) SNPs, SNP accession number; 2) PheWAS pheno-
type, the associated disorder; 3) p-value, the p-value corre-
sponding to the association of SNPs and disorders; and 4)
gene name; nearest gene associated with an allele.

Metabolomics data
Metabolomics analysis is used significantly as a drug dis-
covery methodology. The analysis highlights preclinical
research and biomarker detection. Cancer-related me-
tabolites are associated with enzymes and transporters
as the melanoma biomarkers are leading targets for a
drug-repurposing methodology (Robertson and Frevert
2013). It can be used as patient stratification and help
translational medicine discovery (Srivastava and Creek
2018). In this study, we have used the Human Metabo-
lome Database (HMDB) (Wishart et al. 2018a) for mining
melanoma-related proteins. We retrieved the information
by exploring all the metabolites that are associated with
melanoma disorder by searching “melanoma” and “malig-
nant melanoma” from the database. In next step, we
manually collected the proteins that are associated with
the respected metabolites.

Transcriptome data
RNA-Seq and transcriptomics analysis can improve the
productivity of biomedical research to obtain more pre-
cise compounds in the drug discovery process (Zhao et
al. 2014). As genomic mutation and their corresponding
epigenetic changes can alter gene expression and func-
tions, the study of DNA microarrays has great import-
ance (Atak et al. 2013). Misplacement in the DNA copy
number can be dignified by the DNA microarray and can
also alter gene expression profiles (Kumar-Sinha et al.
2015). The collected dataset was in terms of differentially
co-expressed genes that are affected by melanoma dis-
order (Berger et al. 2010). The study provided differen-
tially co-expressed gene names as leading targets for the
identification of anti-melanoma drug compounds.
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Biomedical data
A modern biomedical technique has enhanced genetic re-
search by discovering different genetic component of
phenotypic traits. We have used eDGAR database (Babbi
et al. 2017) to reveal skin cancer-associated genes with an-
notated relationships among them. eDGAR collected
disease-based associated genes deposited in OMIM
(Amberger et al. 2015), UniProt (UniProt Consortium
2015) and CLINVAR (Landrum et al. 2016) databases.
These genes were revealed from the phenotype OMIM ID
155600 corresponding to cutaneous malignant melanoma.

Metabolites protein network reconstruction
We reconstructed the metabolites enzymes/transporters
networks by mapping their interconnections derived
from metabolomics data. We prepared a flat-file, which
states metabolites and their associated protein and the
type to reconstruct the network. As you can see in the
result section 3.2, we visualized the network with the
help of Cytoscape tools (Shannon et al. 2003).

Drug mapping
We collected all melanoma-associated genes and pro-
teins from GWAS, PheWAS, transcriptomics, metabolo-
mics and biomedical studies as described above. The
method has been shown in Fig. 1. This set contains
more than 1100 associated genes and proteins having
the maximum influence on the disorder. You can find
the dataset in supplementary file 1 (https://github.com/
LBBSoft/Melanoma). We tracked different drug-related
databases and found DrugBank 5.0 (Wishart et al.
2018b) to be one of the best updated databases contain-
ing approximately 17,000 drug-target associations and
information on over 10,000 drug compounds. We have
mapped the drug-target information with our set of
genes and proteins in the DrugBank database. We have
revealed the drug name, mode of action, target name,

current indications and drug groups from the DrugBank.
We also excluded all experimental, illicit, withdrawn and
investigational molecules from our data and only consid-
ered the approved drug-target information in this ana-
lysis. We have excluded 638 unique drugs interacting
with 165 target genes, which are available in supplemen-
tary file 2 (https://github.com/LBBSoft/Melanoma).

Pathogenesis information validation
We have analyzed the pathogenic nature of the revealed
drug molecules to comprehend drug antagonists or
agonists (Wang and Zhang 2013). We revealed anti-
melanoma pathogenesis information through biomedical
records and literature reviews from PubMed central. We
analyzed the dataset for pathogenetic information of
genes, such as the gain of function (GOF) and loss of
function (LOF) roles in humans for anti-melanoma effi-
cacy. We used the OMIM (Amberger et al. 2015) data-
base mainly to obtain this information. As you can see
in the results section 3.5, we removed the genes/proteins
with suitable pathogenetic information with respect to
the transporter action of the drug and maintained
genes/proteins with reliable scientific reports.

Connectivity map analysis
The connectivity map (CMap) is a drug-response ex-
pression profile analysis on various human-cultured
cell lines. This approach shows a transcriptional ex-
pression profile on the treatment of drugs on human-
cultured cell lines (Lamb et al. 2006). CMap qualifies
the drug target associations that are correlated to
melanoma through gene expression profiles. We have
analyzed all drug candidates from the above states in
CMap to comprehend their mechanisms of action and
anti-cancer effects.

Fig. 1 Drug repurposing approach to identify novel anti-melanoma drugs; in this approach we have collected melanoma responsive genes/proteins
and identified target genes by drug target mapping with the help of drugbank. We have removed all known anti-melanoma drugs and analyzed the
unknown anti-melanoma drugs by pathogenesis information and CMap analysis. We have found 35 drugs interacting with 20 targets
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Results
Systematic collection of melanoma-related biomarkers
As described above, the melanoma-related GWAS data-
set consists of 55 unique genes mapped by different
SNP-risk alleles. The minimum and maximum p-value
of collected data are 4E-37 and 8E-06, which are used
for high demand and an accurate analysis. The P-value
in GWAS and PheWAS studies is a probability of the
type I error that is made in hypothesis testing. The P-
value signifies the possibility of randomness in finding
any disease associated to a specific variant. These data
have been compiled from 9 different studies. Similarly,
we have revealed 765 alleles by looking for “melanoma
and skin cancer” keywords in the PheWAS catalog.
These SNPs correspond to 260 unique associated genes
in our analysis. The p-value of the revealed genes is in
the range of 0.05 to 1.106E-16.
We exposed 23 metabolites that are associated with 616

unique proteins in the metabolomics dataset with signifi-
cant actions in the form of enzymes, transporters and
unknowns in melanoma. In addition, we included 27 vali-
dated differentially expressed genes from the melanoma
transcriptome. Finally, we incorporated 11 unique genes
that are associated with cutaneous malignant melanoma

from biomedical databases. The set of genes and proteins
has 1178 unique members. These members have been iden-
tified and were discovered from different approaches, and
some of them have been confirmed from more than one ap-
proach. The distribution of genes is available in Fig. 2.

Metabolites protein network analysis
We found approximately 800 metabolite-protein associa-
tions related to melanoma disorders in the dataset. The
proteins in the dataset were in the form of enzymes, trans-
porters or sometimes unknown. To rely on the dependabil-
ity of our finding, we reconstructed a protein-metabolite
network consisting of proteins/metabolites as nodes and
their associations as edges. This highly connected graph,
which is shown in Fig. 3, was visualized by Cytoscape
(Shannon et al. 2003). There are 23 unique metabolites
connecting to 617 associated enzymes or transporters.

Drug-target mapping
All melanoma risk biomarkers, which consist of a set of
genes and proteins corresponding to melanoma disorder,
are gathered here. We have four types of targets in the
form of protein (215 drugs associated with 127 targets),
enzyme (604 drugs associated with 56 targets), transporter

Fig. 2 Venn diagram showing the logical distribution of melanoma associated genes and proteins from revealed from various approaches. Here
we have five different datasets for melanoma responsive genes or proteins. There are 50 melanoma associated genes or proteins discovered from
more than one approach showing high accuracy in disease related target identification
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(362 drugs associated with 33 targets) and carrier (6 drugs
associated with 4 targets). We have mapped all types of
targets with the melanoma risk biomarkers to find drug-
gable targets. Hence, by analyzing over 1170 genes, we left
with 193 mapping targets. We found 731 potential drug
molecules in this step, which are available in supplemen-
tary file 3 (https://github.com/LBBSoft/Melanoma). We
retrieved the drug name, transporter action, target name,
indication, FDA label and DrugBank ID.

Unknown melanoma potential drug
We eliminated the drug molecules with melanoma indica-
tions from our proposed drugs. There are 215 melanoma-
related drug compounds in phase 0 to 4 with different sta-
tuses, such as completed, recruited, suspended, withdrawn,

not yet recruited and terminated. We found 75 common
drug compounds in both melanoma-related drugs and in
potential drug compounds. By eliminating common drug
lists from our potential drug compound, we left with 658
drug molecules associated with 184 targets.

Melanoma drug pathogenesis analysis
We used OMIM (Amberger et al. 2015) and other scien-
tific reports to find pathogenic information on various
targets. As the pathogenesis is mainly correlated to gen-
etic disorders, we have looked to find pathogenic infor-
mation on the melanoma disorder. We considered the
pathogenic information of 74 targets associated with 361
drug compounds.

Fig. 3 Metabolites-protein network reconstruction for cutaneous malignant melanoma; red node represent metabolites and green nodes signify
proteins in the form of enzymes and transporters and the edges shows their common association which has been revealed from HMDB. There
are 23 unique metabolites connecting to 617 associated enzymes or transporters
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We have analyzed the effect of the pathogenic gene
function (loss and gain of function) to drug-targets look-
ing at the transporter actions (agonist and antagonist)
retrieved for each candidate drugs from the DrugBank.
By removing nonmatching genes, whose activities do not
suit their pathogenetic information, we obtained 277 po-
tential drugs interacting with 74 targets. The related data
in this step is available in supplementary file 4 (https://
github.com/LBBSoft/Melanoma).

Connectivity map analysis
We evaluated the negative association of the “selegiline”
drug, which inhibits the apoptosis in M-1 human melan-
oma cells and the positive association of anti-melanoma-
related drugs such as “paclitaxel” and “vinblastine” to
obtain a suitable expressional effect on the treatment of
the melanoma disorder. We revealed the drug expres-
sion profile by looking for different drugs based on a sig-
nature query in CMap. As CMap covers the multiple
drug expression in human cell lines, it will pick the most
expressed drug in the available human cell line. Hence, we
have achieved our final anti-melanoma potential drugs by
utilizing the correlation of known anti-melanoma and
proposed drugs with the help of the mean and enrichment
score. Many of the drug compounds did not have a posi-
tive correlation with known anti-melanoma drugs, and
some were not found in the CMap database. We left with
35 drug compounds that are associated with melanoma
therapy. These drug compounds correspond to 20 targets
of the protein, enzyme and transporter types. The final
repurposed drug candidates are shown in Table 1.
These drugs have an enrichment score in the range of

− 0.167 to − 0.755. The p-value and specificity of most of
the repurposed drug were not available. The CMap de-
tail of the repurposed drug is available in supplementary
file 5 (https://github.com/LBBSoft/Melanoma).

Discussion
In this study, we used a wide range of data analyses to
find the responsive genetic content to reveal potential
melanoma-related targets. These targeting genes and
proteins have associated drug compounds that are ap-
proved but have not been reported as melanoma-
treating drugs. We found 35 drug candidates interacting
with our analyzed set of targeted genes and proteins.
These drugs are of different human pathogeneses and
action modes, which have a treatment efficacy over mel-
anoma patients. Apart from that, based on the analysis
of the connectivity map we found, our candidate drugs
have a positive association of melanoma known drugs
expression profile over human cell lines.
As is shown in Table 1, we found supporting biological

evidence for the applicability of 30 drug compounds as
potential drug candidates for the treatment of melanoma

in previous scientific reports. These reports concentrated
on finding a feasible effect of drug candidates in melan-
oma or skin cancer cell lines or various other animal tests.
There are only 5 drug candidates, which have no related
previous studies showing their anti-melanoma effects.
The repurposed drug candidates are highly effective in

the inhibition of cell proliferation in melanoma cells.
The induction of apoptosis in melanoma cells is also one
of major results of the drug’s effects on the disease.
There are other reports stating the effect of various
drugs in the alteration of the melanoma cellular func-
tion, which can include various metabolic functions that
alter the energy level of metabolites in melanoma cells
and their effect on mitochondrial and other pathways.
We used the most precise target identification ap-

proaches to select melanoma-related genes and proteins.
These approaches include all types of genetic analyses,
including genetic variation, expression profiling, bio-
medical associations and metabolomics pathways. Target
level analyses of given genes and proteins show that the
resulting candidate drug targets are from 20 unique
genes and proteins. These genes have been selected from
a various wide range of data analyses. The revealed genes
and protein distributions are as follows: 6 targets from
PheWAS data, 3 targets from GWAS data, 14 targets
from metabolomics data and 2 targets from biomedical
data and no selected targets from transcriptomics data.
The list of gene/protein names followed by the method
of analysis is given in supplementary file 6 (https://
github.com/LBBSoft/Melanoma).
We have seen the TYR, TERT, CYP1B1, CYP19A1 and

CYP1A1 genes/proteins, which are the candidate drug
targets fetched by more than one method of analysis.
TYR is revealed in PheWAS, GWAS and biomedical
datasets. TERT is revealed in GWAS and biomedical
datasets. CYP1B1 is found in the metabolomics and
GWAS dataset. Finally, CYP19A1 and CYP1A1 are
found in both the metabolomic and PheWAS datasets.
The connectivity map (CMap) analysis includes repur-

posed drugs with high positive (paclitaxel and vinblast-
ine) or negative (selegiline) correlations of mean and
enrichment scores; hence, only drugs with a similar
mechanism of action will be included in this approach.
However, this method may bypass some anti-melanoma
potential drugs with a novel mechanism of action, which
can be noted as the limitation of this approach.
This in silico approach can be used for various disor-

ders and has a high potential for nominating sets of
novel repurposed drugs with higher performance. This
approach used a wide range of data analyses with the
help of various datasets to invoke responsive genes and
proteins. As databases do not cover only curated data
and contains predictive and putative data, databases may
contain several false-positive or false-negative data.
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Apart from that, an analysis of CMap did not consider
the expression of drugs on melanoma-specific cell lines
and may have few errors. Therefore, in vitro or in vivo
experiments and, later, animal and clinical trials are re-
quired to repurpose these candidate drugs.

Conclusions
Cutaneous malignant melanoma is a highly dangerous dis-
order that has high mortality and less survival time. Due
to the non-availability of treatment drugs, treating the dis-
ease is costly and painful. We have used a wide range of
analyses to reveal the melanoma-related influencing genes
and found corresponding druggable proteins. In this
methodology, we excluded known melanoma drugs and
their respected targets from the dataset. The pathogenesis
information of selected targets has been analyzed based
on the disorder and pharmaceutical actions. Furthermore,
the resulting drug targets have been analyzed based on the
expression profile of drugs to the human cell line with the
help of the CMap Tool. We found 35 potential drugs
interacting with 20 targets, which can treat melanoma dis-
order. This approach can be used to find potential treat-
ment drugs for other disorders.
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