
Boiger et al.﻿Swiss Journal of Geosciences           (2024) 117:8  
https://doi.org/10.1186/s00015-024-00458-3

ORIGINAL PAPER Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Swiss Journal of Geosciences

Direct mineral content prediction from drill 
core images via transfer learning
Romana Boiger1*   , Sergey V. Churakov1,2, Ignacio Ballester Llagaria1,3, Georg Kosakowski1, Raphael Wüst4,5 and 
Nikolaos I. Prasianakis1 

Abstract 

Deep subsurface exploration is important for mining, oil and gas industries, as well as in the assessment of geological 
units for the disposal of chemical or nuclear waste, or the viability of geothermal energy systems. Typically, detailed 
examinations of subsurface formations or units are performed on cuttings or core materials extracted during drilling 
campaigns, as well as on geophysical borehole data, which provide detailed information about the petrophysical 
properties of the rocks. Depending on the volume of rock samples and the analytical program, the laboratory analysis 
and diagnostics can be very time-consuming. This study investigates the potential of utilizing machine learning, spe-
cifically convolutional neural networks (CNN), to assess the lithology and mineral content solely from analysis of drill 
core images, aiming to support and expedite the subsurface geological exploration. The paper outlines a comprehen-
sive methodology, encompassing data preprocessing, machine learning methods, and transfer learning techniques. 
The outcome reveals a remarkable 96.7% accuracy in the classification of drill core segments into distinct forma-
tion classes. Furthermore, a CNN model was trained for the evaluation of mineral content using a learning data set 
from multidimensional log analysis data (silicate, total clay, carbonate). When benchmarked against laboratory XRD 
measurements on samples from the cores, both the advanced multidimensional log analysis model and the neural 
network approach developed here provide equally good performance. This work demonstrates that deep learning 
and particularly transfer learning can support extracting petrophysical properties, including mineral content and for-
mation classification, from drill core images, thus offering a road map for enhancing model performance and data set 
quality in image-based analysis of drill cores.
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1 � Motivation and background
Geological exploration of the underground is important 
for the mining, mineral, oil, and gas industries. In Swit-
zerland, geological exploration of the underground for 
the deep geological disposal of radioactive waste is cur-
rently in progress and includes remote sensing (seismic 
data analysis), geophysical surveys (log analysis) and drill 
core laboratory analysis. Although the combination of 
these techniques provides precise and reliable results, 
laboratory investigations are often labor-intensive, time-
consuming, and costly when large sample numbers and 
volumes are present. Combining conventional field and 
laboratory analytical techniques with machine learning 
may help enhance data analysis and provide a deeper 
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insight into data (Jooshaki et  al., 2021; Jung and Choi, 
2021; Woodhead and Landry, 2021).

In this paper, we demonstrate the capacity of machine 
learning respectively, deep learning, particularly empha-
sizing transfer learning to extract selected petrophysi-
cal properties, like mineral content or sample formation 
from drill core images.

Machine learning has been successfully used in the past 
to classify the lithology based on drill core images: Many 
of these studies applied convolutional neural networks 
(CNN), a special type of neural network that has proved 
to be successful for handling images. Particularly pre-
trained CNN architectures such as VGG16, DenseNet, 
ResNet, ResNest, or ResNext applied to drill core sam-
ples from Norway, South Australia, Gulf of Mexico & 
North Sea, China and Switzerland achieved good results 
for lithology classification with accuracies for the test 
data sets ranging from 60% up to 99.6% (Alguliyev et al., 
2023; Alzubaidi et al., 2021; Falivene et al., 2022; Fu et al., 
2022; Lauper et  al., 2021). Furthermore, in this context, 
autoencoders (Park and Jeong, 2023; Solum et al., 2022) 
and vision transformer architectures (Koeshidayatullah 
et  al., 2022) have also been applied for this task. These 
techniques were utilized for several thousand image slices 
from drill cores from Western Australia, Gulf of Mexico 
& North Sea and Russia. The testing accuracy varied 
from 70% up to 96.4%, and showed a strong dependency 
on the heterogeneity of the images and the number of 
classes that the samples were categorized.

The analysis of the model performances reveals that 
the sample preparation and data preprocessing are para-
mount steps when applying machine learning methods. 
The necessary steps include the automatic detection of 
trays and cores (Baraboshkin et al., 2022; Gunther et al., 
2021), the assessment of rock quality, the classification of 
intact and non-intact cores, as well as the recognition of 
empty tray areas and non-rock objects (Alzubaidi et al., 
2022; Li et  al., 2023). Depending on the application, for 
preprocessing the automated crack detection (Alzubaidi 
et  al., 2022) can also be important. Moreover, the clas-
sification of lithology is done based on a narrow core 
interval and not all cores have the same length, thus the 
preprocessing step includes slicing the available data 
set into smaller images, ranging from 0.5x0.5cm up to 
10x10cm, as used in the aforementioned works. Besides 
full drill core images, thin section images (Faria et  al., 
2022; Zhou et  al., 2023), rock sample images (Shi et  al., 
2023), or rock debris (Xu et al., 2022) images were used 
to perform rock type classification. Some approaches to 
predict lithology from drill core images involve additional 
data to increase accuracy, like elemental information (Xu 
et  al. 2021, 2022), petrophysical and geochemical data 

(Houshmand et al. 2022), or pXRF measurements (Trott 
et  al. 2022), and the use of machine learning models 
designed for data fusion.

Assessing the mineral content has so far only been done 
with different types of data, not drill core images alone. In 
Tuşa et  al. (2020), mineral abundance predictions relied 
on a combination of hyperspectral short-wave infrared 
data and, for small areas, additional Scanning Electron 
Microscopy-based images with different machine learn-
ing approaches: Random Forest (RF), Support Vector 
Machine (SVM), and Neural Networks (NN). A model 
based on RF was developed in Barker et  al. (2021) that 
estimated the mineral proportion from Long-wave infra-
red spectra. For labeling the training data, micro-X-ray 
fluorescence measurements were used. Spectral and 
geochemical data were utilized to train a CNN model 
that predicts the Cu concentration in Guerra Prado 
et  al. (2023). In Krupnik and Khan (2020); Kupssinskü 
et al. (2022), hyperspectral data combined with different 
machine learning approaches like SVM, NN, and Spec-
tral Angle Mapper were investigated for mineral mapping 
and porosity estimation. Also, spectral data, in terms of 
multi-sensor spectral imaging, together with SVM, were 
used to distinguish between six mineralogically meaning-
ful classes, and the corresponding probability estimates 
of each class were derived in Lorenz et al. (2019). In the 
study discussed in Mishra et al. (2022), core plug samples 
were combined with continuous Kimeleon colorlith logs, 
which use information from the apparent matrix density, 
neutron porosity, and gamma-ray logs. K-means clus-
tering was then used to classify the different rock types. 
From these continuous rock types, rock properties like 
permeability were calculated and up-scaled.

The goal of this work is to train neural networks that 
take only drill core images as input and can assess the 
lithological classes and the mineral content, respectively. 
We first perform a simplified lithological classification of 
drill core images from Northern Switzerland into distinct 
geological formations using pretrained CNNs designed 
for image classification. Inspired by the recent progress in 
automated image processing, we analyze the core images 
stemming from deep drilling exploration of the Mesozoic 
underground conducted by Nagra, the Swiss National 
Cooperative for the Disposal of Radioactive Waste 
(https://​nagra.​ch), in the context of the national program 
on site selection for Swiss deep geological repository for 
radioactive waste (Nagra, 2023).

The second step and principle objective of this research 
is to assess the performance of neural networks in pre-
dicting the mineral content (amount of carbonate, silicate 
and total clay) from solely the drill core images. Because 
none of those studies mentioned above considers the 
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drill core images alone to predict the mineral content. 
For this purpose, parts of the classification model are 
used via transfer learning. Thereby, even with a relatively 
limited dataset (in our case 361 data points) the mineral 
content regression from drill core images is possible. For 
training the CNN, the images are labeled with mineral 
content data retrieved from a multidimensional log anal-
ysis of the petrophysical logs from one borehole. The so 
trained model is then applied to previously unseen drill 
core images of the same borehole and the predictions 
are compared to bulk XRD measurements of the mineral 
content.

The paper is structured in the following way: First, the 
available data set, consisting of the drill core images and 
additional measurements for labeling, is described in 
detail (Sect.  2). Section  3 introduces the methodology, 
covering data preprocessing, machine learning methods, 
and transfer learning. Results for the formation clas-
sification and mineral content regression are presented 
in Sect.  4 as well as details on the comparison of the 
regression model predictions to measured mineral con-
tents. This is followed by final remarks and outlook for 
further research investigations in Sect. 5. This study not 
only advances geological analysis but also underscores 
the potential of machine learning to enhance subsurface 
exploration and characterization.

2 � Data set
The samples and data used in this study are from the 
borehole Trüllikon 1–1 in the siting region of Zürich 
Nordost (left Fig.  1) in Switzerland, (https://​nagra.​ch). 
The borehole is part of Nagra’s national program on site 
selection for Swiss deep geological repository for radio-
active waste, (Nagra, 2023). The total drilling depth was 
1310  m. The section between 498–1029  m was cored 
with wireline coring. At the time of the study, only a 
fraction of the cored section was measured, validated, 
and released, comprising non-continuous segments of 
in total 55 m of core between 770.35m and 939 m depth 
of sedimentary rocks. The available data segments are 
visualized by the blue bars next to the lithological profile 
shown in Fig. 1, right. Detailed information on all drilling 
procedures and data can be found at Nagra Arbeitsber-
icht NAB 20-09 (2021); Ammen and Palten (2021).

The extracted drill cores were washed, dried and pho-
tographed using a standardized procedure together with 
a ruler and reference cards (X-Rite ColorChecker Classic 
Mini color chart and BST14 gray scale chart) for samples 
referencing and colour calibration. For the high-reso-
lution (10px/mm) core photographs, a DMT CoreScan 
system from avaluar GmbH with a CCD-Colour camera 
CSc3b1.26 was used. Note that only single core images, 
not the 360 degree photos were considered in this work. 
Further details on the photographing conditions can be 
found in Kaehr and Gysi (2021). The photographs were 

Fig. 1  Left: Cartographic representation illustrating the geographical region of northern Switzerland. The map specifically features the borehole 
site of Trüllikon 1–1 which is selected for the data analysis of this study. Background: ©Data:swisstopo and hillshading from NASA SRTM. Right: 
Abstracted lithological profile of the section Trüllikon 1–1 showing the interval between 770.35m and 939 m depth. The blue bars denote 
the available data segments

https://nagra.ch
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stored along with the corresponding drilling depth. An 
example of such photographs is shown in Fig. 2a.

Along with the photographs, data from the petrophysi-
cal Multimineral Log Analysis (MultiMin) (Marnat and 
Becker, 2021) was used for the labeling in the regression 
task. The MultiMin method is a stochastic workflow for 
log analysis based on the assumption that every bore-
hole log measurement is determined by the mineral and 
fluid content of the rock that surrounds the borehole. 
If the linear or non-linear relations between measured 
properties and rock composition are known, it is possi-
ble to calculate the theoretical log response for a given 
rock composition or use all available log information 
to estimate the rock properties of interest. By compar-
ing measured and predicted log values, it is possible to 
assess the quality of the estimated properties. For details 
see Chapter 3.3 in Marnat and Becker (2020). Petrophysi-
cal logs available for the analysis included caliper log, 
gamma ray log, spectral gamma ray log for U, Th and K, 
neutron hydrogen index, gamma-gamma density log, ele-
ment spectroscopy, electrical resistivity, and a sonic log. 
In addition, multi-sensor core logger data (bulk density, 
compressional (P) wave velocity, spectral gamma ray 
curves for K, Th and U, and X-ray fluorescence elemen-
tal analysis for Fe, Si, Ca, Al, Ti and S were available for 
Opalinus Clay and its confining units. These logs and lab 
measurements of mineralogy (XRD), porosity and den-
sity were used for the MultiMin modeling of porosity and 

mineral composition; details on that can be found in the 
Nagra working reports (Marnat and Becker, 2021, 2020).

The MultiMin model was utilized to calculate mineral 
composition approximately every 15 cm in terms of clay 
minerals (kaolinite, illite, smectite, and chlorites), other 
(alumino) silicates (quartz, potassic feldspars, plagioclase 
- this group of minerals will be referred to as silicates for 
the rest of this work), carbonates (calcite, siderite, dolo-
mite, ankerite), iron oxide, evaporates (anhydrite), and 
organic carbon (kerogen). For the sake of simplicity and 
robustness of the CNN model, only the total amount of 
total clay, carbonate, and silicate was considered for the 
regression.

The core samples are grouped to six distinct forma-
tions: 1. Parkinsoni-Württembergica-Schichten (738.97−
774.55 m), 2. Humphriesioolith Formation (774.55−
787.50 m), 3. Wedelsandstein Formation (787.50−815.51 
m), 4. Murchisonae-Oolith Formation (815.51−816.42 
m), 5. Opalinus Clay (816.42−927.91 m), 6. Staffelegg For-
mation (927.91−971.68 m); with the numbers in brackets 
giving the measured core depth. A visual representation 
of the abstracted lithology is provided in Fig. 1, right.

For validating the trained neural network model, bulk 
XRD measurements were used. Within the 55  ms of 
core, a total of 23 bulk XRD measurements were avail-
able. The exact positions within the core are detailed in 
Table  3, Appendix 3, and are visually accessible in the 

Fig. 2  Preprocessing pipeline, consisting of five distinct steps, from the original image (a) to the final 1 cm image segments (e). The 1 cm segments 
with the red cross next to the image are excluded from the analysis, since the cracked area size is bigger than 5000 pixels
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core photograph overview in the Appendix 4 (highlighted 
by blue rectangles).

3 � Methodology
3.1 � Image data preprocessing
To facilitate robust and automated analysis of drill core 
photographs, a standardization process for colour bal-
ance and image dimensions was performed, and arti-
facts, such as cracks or missing fragments were labeled. 
Accordingly, a five-step preprocessing routine was intro-
duced for all images. First, the photographs have been 
corrected for color (Step 1) and white balance (Step 2). 
Then, an automated algorithm for core segmentation 
from background (Step 3), core splitting into equally 
sized segments (Step 4), and crack detection (Step 5) was 
applied.

The preprocessing was implemented using the Python 
Imaging Libraries PILLOW and scikit-learn, (Clark 
2015; Pedregosa et al. 2011). The five distinct steps of the 
automatic preprocessing pipeline are described in detail 
below and are as follows:

1. The first step of the color correction involved creat-
ing a color profile (ICC profile) using the ColorChecker 
from X-rite library. The ICC profile was then subse-
quently applied to the images. This step ensured that the 
color representation across the data set was consistent 
throughout the images.

2. The second step implemented the correction of 
the white balance using the white colour patch (A) as a 
ground truth for true white. By comparing the color val-
ues of the white patch with the rest of the image, the pixel 
values of the image were normalized relative to the max-
imum value found on the white patch. Figure  2a shows 
one example from the data set. The color and white bal-
ance corrected image is depicted in Fig. 2b.

3. The third step consisted of subtracting the back-
ground and extracting the domain representing the drill 
core from the photograph (Fig.  2c, d). The segmenta-
tion algorithm first used the length and depth of the 
core piece, recorded in the name of the photograph, to 
approximately locate and cut the core domain from the 
background (Fig.  2c). This was possible, since the core 
was always centered in the middle of the image. Further, 
Otsu’s method (Otsu 1979) was used to separate the core 
from the background based on intensity distribution. 
Morphological operations were then applied to refine 
the segmentation. Next, continuous regions that belong 
to the core were identified and used to create a bounding 
box that accurately encompasses the core. The image was 
subsequently cropped using this bounding box, focus-
ing the analysis exclusively on the core region for further 
processing and evaluation (Fig. 2d).

4. In the fourth step of the preprocessing pipeline, the 
extracted core images were divided into equally sized 
1  cm depth segments. The segmentation algorithm was 
based on the core length obtained from the image file-
name, resulting in images with a width of around 100 
pixels and a height of 850 pixels corresponding to a 1 cm 
segment of the drill core with a certain depth. (Fig. 2e). 
If a segment overlapped two continuous core images, 
they were merged to form a cohesive segment. This divi-
sion resulted in 5496 core segments from all available 
photos, out of which 361 could be used for creating the 
regression model to predict the mineral content from the 
1 cm drill core images. The small number of images for 
the regression task is due to the number of correspond-
ing data from the MultiMin analysis. The remaining core 
segments (i.e. 5135) were used for the classification task.

5. In the final, fifth, step, cracked segments were 
detected by binarizing the image again with Otsu’s 
method. The images containing a crack were not 
excluded from the beginning, but the size of the cracked 
area per segment was stored in the filename. The seg-
ment was saved as a TIFF file with the naming conven-
tion: “DxC.tif,” where D was the depth and C was the 
cracked area size in pixels (Fig.  2e). These images pro-
vided the input for the machine learning models. Images, 
where the cracked area size exceeded a certain thresh-
old of, e.g., 5000 pixels, were removed from the data set 
for data quality improvements and thus better model 
performance.

3.2 � Neural networks and transfer learning
Neural networks have emerged as powerful tools for 
modeling a functional relationship between generic input 
and output. In particular, convolutional neural networks 
(CNN) have been proven specifically useful in image 
analysis, as they can autonomously learn feature engi-
neering through the use of filters. Here, the basic prin-
ciples of CNN usage are described, without providing 
intricate details, those can be found in Geron (2019).

Two neural network architectures were applied in this 
work. The first NN architecture was designed and trained 
to take the 1 cm drill core images as an input and predict 
the formation class as an output (i.e. classification task). 
The second NN architecture was intended for regression, 
and it was set up to take the 1  cm drill core images as 
an input, and estimate the content of clay, carbonate and 
silicate minerals in the core as output.

For that, the concept of transfer learning was used 
rather than creating and training a neural network archi-
tecture from scratch. In this process, a model trained for 
a similar but different task served as a backbone architec-
ture and additional layers were placed on top of the pre-
trained layers, see Fig. 3. Training such a neural network 



    8   Page 6 of 26	 R. Boiger et al.

can be done in two ways, either all weights and biases are 
learned, or the ones of the pretrained model are fixed and 
only the new ones are updated.

In this work, pretrained deep convolutional neu-
ral networks (VGG16, ResNet18, ResNet34, ResNet50, 
ResNet101, ResNet152 (He et al., 2016) were used to gen-
erate appropriate models. The residual neural networks 
(ResNet) are particularly powerful because compared to 
very deep convolutional neural networks (like VGG) they 
overcome the vanishing gradient problem by using short-
cuts (skip-connections). The classification and regression 
models using the different pretrained convolutional neu-
ral networks were implemented using pytorch (Paszke 
et  al. 2019), a machine learning library for python and 
C++. The pretrained models implemented in pytorch, 
were originally trained on the ImageNet data set, stor-
ing their weights and biases. The ImageNet data set com-
prises over 14 million hand-annotated images, spanning 
thousands of categories, such as vehicles, animals, per-
sons, fruits, and geological formations. For our models, 
pretrained models on this data set are responsible for 
extracting general features from images. Therefore the 
weights and biases of these pretrained backbone archi-
tectures were kept fixed during the training process of 
our specific models. While the last layers added on top of 
the pretrained models were adapted for the specific tasks. 
This is the common state-of-the-art procedure in image 
classification applications.

For training neural networks, typically the loss function 
is minimized, which computes the difference between 
the actual and predicted output targets. Different optimi-
zation algorithms are available. In this work, the Adam 
optimization algorithm was used together with a cross-
entropy loss for the classification and a mean squared 
error loss for the regression. The training is additionally 
controlled by an early stopping procedure. This entails 
continuing training as long as the loss is decreasing and 
the performance on the validation data set is increasing. 
If this is not the case for a few epochs, then the training 
is stopped. The metrics used for evaluating the model 
are the accuracy for the formation classification and the 
(root) mean squared error and coefficient of determina-
tion R2 for the mineral content regression. To see the 
generalization performance of the neural network and to 
not introduce a bias through transfer learning, the data 
set was divided as follows: 5135 image segments were 
used solely for classification, and another 361 (i.e. 6.6%) 
solely for regression. For both tasks, the data were sub-
divided into three sets, the training and validation data 
set used for training, and the test data set used solely 
for testing after the training had been completed. More 
specifically for the classification task with a crack thresh-
old below 5000 pixels, 4658 images were used for train-
ing (Parkinsoni-Württembergica-Schichten: 330 images, 
Humphriesioolith Formation: 911 images, Wedelsand-
stein Formation: 250 images, Murchisonae-Oolith 
Formation: 43 images, Opalinus Clay: 2498 images, 

Fig. 3  Architecture of the neural network for the mineral content regression with three formation models as a backbone architecture
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Staffelegg Formation: 626 images), 114 images for valida-
tion (19 images per class) and 113 images for testing (Par-
kinsoni-Württembergica-Schichten: 18 images and 19 
images in all other classes). For the regression task, 276 
images were used for training, 34 images for validation 
and 34 images for testing in the case of a crack thresh-
old of 5000; for the threshold of 1000, it was 254, 32 and 
31 images for training, validation and testing. Among the 
images for the regression task, in all images there were 
mixtures of clay, carbonate and silicate and not purely 
one element. It is important to mention that the images 
used for the regression task are independent from the 
images used for the classification task. So no images were 
used twice in the whole process. Also all the training, val-
idation and testing images were independent from each 
other. All the images amongst many others can be found 
in Kaehr and Gysi (2021), in this document the cores are 
extracted from the background.

4 � Results and discussion
4.1 � Formation classification
Six different pretrained backbone architectures 
(ResNet18, ResNet34, ResNet50, ResNet101, ResNet152, 
VGG16) were benchmarked for the formation classifi-
cation task. The ResNet architecture requires same size 
and normalized input images. To use the image segments 
as input for the ResNet, the segments were loaded into 
a range between 0 and 1, normalized by using the mean 
and standard deviation, and resized to 850x100 pixels. 

The output of the ResNet was then a 1000-dimensional 
vector. During training, the loaded weights and biases of 
the pretrained network were fixed. The 1000-dimensional 
vector returned by the backbone architecture served as 
input for the classification part. For the formation clas-
sification, the pretrained neural network was comple-
mented with a linear layer of input 1000 and output 500 
dimensions (1000x500), a ReLU layer (500x500) and 
again a linear layer (500x6). The last layer had 6 output 
dimensions due to the chosen encoding. Since the for-
mation classes were categorical, each class needed to be 
encoded to a number; this was done with one-hot encod-
ing, where the first class was represented as (1,0,0,0,0,0), 
the second as (0,1,0,0,0,0), and so forth until the last class 
(0,0,0,0,0,1). The implemented and trained model gave in 
the end the number of the predicted class, as an integer 
among {0, 1, 2, 3, 4, 5}.

After the training phase, the performance of the mod-
els was evaluated exclusively with the test data set in 
terms of accuracy. The graphical representation of the 
results, depicted as box plots derived from 14 different 
seeds for training initialization, is presented in Fig.  4a. 
In these plots, the blue star denotes the mean, the hori-
zontal orange line represents the median, while the box 
encapsulates the lower and upper quartiles. The “whisk-
ers,” short horizontal lines, denote the values for the first 
(lower) and third (upper) quartiles ±1.5 times the inter-
quartile range, which is the length between the first and 
third quartiles. Outliers are marked as individual circles. 

Fig. 4  Left: Formation classification results for the test data set for different backbone architectures with 14 different seeds each. Right: Confusion 
matrix for the formation classification model based on ResNet152 with artefact threshold T=5000 pixels for the test data set
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As can be seen in Fig. 4a, the highest performing models 
are the ones with ResNet152 as a backbone architecture 
with the best one having an accuracy of 96.7%. For the 
overall best model, the confusion matrix is depicted in 
Fig.  4b. This matrix illustrates the comparison between 
the predicted and true formation classes for the test data 
set. Considering, for example the true class 2 (i.e. Wedel-
sandstein Formation) in row 3, one can see in the matrix 
that 95% of the images were classified correctly as class 
2, whereas 5% were wrongly classified by the model as 
class 3. The plot reveals that misclassified images primar-
ily correspond to neighboring classes. To investigate this 
further, the analysis was extended to the whole data set. 
Notably, out of 4885 images, only 48 were falsely classi-
fied (1 %), with the majority of these misclassifications 
occurring between adjacent classes. Figure  5 illustrates 
the number of true and false predicted image slices for 
each formation. Among the 48 falsely predicted image 
slices, 8 images between 891.03 to 891.18m depth were 
predicted to fall into the Staffelegg formation instead of 
the Opalinus Clay. This misclassification is attributed to 
the high lithological similarity between the Opalinus Clay 
and the Staffelegg clay-rich rocks.

Similarly, 14 images were misclassified at the boundary 
between these two formations which again is attributed 
to little lithological difference between the samples at the 
boundary. Therefore, it is important to acknowledge that 
for classification performance of the CNN on core sam-
ples, stark differences between rock compositions facili-
tate differentiation, while similar or weak differences may 
lead to false classifications and further details would need 
to be considered.

The accuracy achieved at this stage is considered sat-
isfactory and no further refinement of the models was 
pursued.

4.2 � Mineral content regression
4.2.1 � Comparison of neural network model architectures
Initially, the same architecture as for the formation clas-
sification, but with a linear layer of output dimension 3 
was tested for the mineral content regression. The per-
formance of this model was very poor with an average R2 
value of −0.23 over 15 different seeds. Hence, a different 
strategy was developed for the mineral content regres-
sion. Since the formation classification model performed 
very well, the trained formation classification neural 

Fig. 5  Counts of true and false predicted classes for each formation. In the x-axis, the classes are numbered; C0 corresponds to Park.Wuertt.
Schichten, C1 to Humphr. Formation,..., C5 to Staffelegg Formation. For a better understanding of the figure, consider e.g. the Park. Wuertt.
Schichten, here the first 6 x-labels are relevant, the number of counts, 366 for True C0 means that 366 images were correctly classified as Park. 
Wuertt.Schichten, so class C0; no image was classified as class C1, C2, C3, or C5 and only one image that should have been a Park. Wuertt.Schicht 
was classified as class C4 (Opalinus Clay), so this was misclassified
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network, except the last layer, was used as the backbone 
architecture for the regression model. A linear layer 
(500x250), a ReLU layer (250x250), followed by a drop-
out layer and finally a linear layer (250x3) were added on 
top to solve the regression task (see Fig. 10 in the Appen-
dix 2). With such an architecture, the classification of the 
images according to the rock type is performed first and 
helps to perform mineral composition analysis. The same 
strategy was also tested not only with one but with the 
three formation classification models showing the best 
performance, which were concatenated, and the follow-
ing layers were added on top, see Fig.  3: A linear layer 
(1500x700), a ReLU layer (700x700), a dropout layer, a 
linear layer (700x250), a ReLU layer (250x250), a linear 
layer (250x3), and a sigmoid layer (3x3). Additionally, 
models were trained using a reduced crack detection/
deletion threshold of 1000 pixels, as opposed to the pre-
vious threshold of 5000 pixels, for the model employing 
the ensemble of three formation classification models.

In summary, three model types were trained and tested 
for mineral content regression. These were: 1) the best 
formation classification model as backbone architecture 
with crack detection/deletion threshold of 5000 pixels 
(T5000-1 m); 2) the best trio of formation classification 
models as backbone architecture with a threshold of 5000 
(T5000-3 m); 3) the best trio of formation classification 
models as backbone architecture with a threshold of 1000 
(T1000–3 m).

Each model type was trained 18 times with different 
seeds. The outcomes in terms of the coefficient of deter-
mination (R2) for the test data set are reported in Table 1 
and are visualized in Fig.  11 in the Appendix 2. Data 
interpretations need to be aware that data used for train-
ing are derived from a model with inherent uncertainty.

The data in Table 1 suggest a subtle better performance 
in the regression models that utilize the ensemble of 
three formation models as a backbone architecture. The 
R2 values for the models with a larger crack deletion area 
of 5000 pixels are higher, but further investigations are 
needed to determine the significance of detected cracks 
on the mineral content regression modeling. Therefore, 
saliency maps were considered, to better understand 
the importance of crack detection and further need to 
dismiss these images. A saliency map for CNNs high-
lights the most relevant regions or features within an 
input image, helping to identify areas of significance for 
the particular task. The assigned dark colors refer to the 
“unimportant” domains, whereas the lighter red domains 
are the most “significant” ones for the neural network. 
From these maps, as depicted in Fig. 6, one can see that 
cracks or color marks appear very dark in the saliency 
maps, meaning that those features are not so relevant for 
solving the regression task. Hence, the size of the crack 
deletion area was not considered further within this 
work.

4.2.2 � Performance of best mineral content regression model
The best model according to the R2 values on the test 
data set was the one with three formation models as a 
backbone architecture and a threshold of 5000 pixels and 
a seed of 1000. The comparison of the multiMin model 
data and the CNN predicted mineral content is depicted 
in Fig. 7. For this best mineral content regression model, 
the absolute and relative errors as well as the R2 val-
ues for each individual mineral within the test data set 
were computed: The model exhibits a moderate level of 

Table 1  Mean and maximum R2 values for the test data set for 
the three different model types

R2 test mean R2 test max

T5000_1m 0.560 0.641

T5000_3m 0.617 0.691

T1000_3m 0.580 0.673

Fig. 6  Saliency maps of 4 different 1 cm image slices, upper images show the true image, lower images the corresponding saliency maps
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accuracy in predicting carbonate mineral content, with 
an absolute error of 0.059 and a relative error of 39.1%. 
While the model’s R2 value of 0.609 indicates a reason-
able fit to the data, further refinement may be neces-
sary to enhance the accuracy of the model. In contrast, 
the model performed much better in predicting the sili-
cate mineral content, with an absolute error of 0.038 and 
a relative error of 18.7%. The higher R2 value of 0.707 

underscores the model’s ability to explain the variance in 
silicate content. The best results with the trained models 
were obtained from the prediction of the total clay con-
tent, with an absolute error of 0.046 and a lower relative 
error of 10.7%. The R2 value of 0.811 refers to a robust 
correlation that emphasizes the model’s capability to cap-
ture the variability in total clay content effectively (see 
also Fig.  7). The high prediction accuracy for the total 

Fig. 7  The first column shows the various formations along the depth, the second shows the predictions of mineral content with MultiMin model, 
whereas the third column shows the CNN predicted mineral content in this rock. Note that images were only available for the coloured areas

Table 2  Comparison between the MultiMin log data and the CNN model prediction in terms of absolute (abs.err.) and relative (rel.err.) 
error of all three minerals for each formation. nr gives the number of data points available per formation. nr gives the number of data 
points available per formation

Formation nr Carbonate abs.
err.

Total clay abs.
err.

Silicate abs.err. Carbonate rel.
err. (%)

Total clay rel.
err. (%)

Silicate 
rel.err.
(%)

Park 26 0.03 0.025 0.025 16.42 5.21 10.87

Humphr 69 0.037 0.037 0.037 9.62 13.37 19.86

Wedel 22 0.033 0.035 0.022 15.67 11.24 4.89

Murch 5 0.033 0.038 0.067 21.06 11.17 16.00

Opa 173 0.051 0.036 0.027 41.14 6.73 10.17

Staffel 49 0.045 0.036 0.034 8.96 10.75 36.62
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clay content may be due to several reasons including bet-
ter spectral correlations with the clay phases.

In Appendix 3 Fig.  12, another direct comparison, of 
the MultiMin log data on the x-axis versus the predic-
tions on the y-axis is given. The overall trend looks quite 
assuring and is supported by the metrics on the test data 
set, although there are some differences when consider-
ing all the details. Nevertheless, the model is already well 
suited for distinguishing between low and high mineral 
content for each species.

4.2.3 � Model performance across formations
To investigate the model performance further, the abso-
lute and relative errors for the mineral content predic-
tions for each formation were investigated: The results 
are depicted in Table  2, where nr gives the number of 
considered data points per formation. From the table, 
one can see that the performance varies a lot among 
the different formations. Summarizing, the lowest 
error values were achieved as follows: carbonates con-
tent was predicted best for the Humphriesioolith and 

the Staffelegg Formation with a relative error below 9.7 
%. Clay minerals content predictions showed a rela-
tive error below 6.8% for the Parkinsoni-Württember-
gica-Schichten and the Opalinus Clay, while silicates 
predictions had a relative error below 5.1% for the 
Wedelsandstein Formation. Throughout the analy-
sis, across all formations a systematic better prediction 
emerged for the mineral phases, which were prevalent in 
the selected formations. One reason for the differences 
among the various formations could be, that the number 
of data points for training the model was not the same 
for each formation class. In addition to improving the 
results, assuming that many more data points may be 
available, one model for each formation could be trained.

4.3 � Comparison with bulk XRD measurements
The training of the CNN for the mineralogical analysis was 
performed using data provided by MultiMin log model, 
which provides an indirect prediction of mineral content 
based on drill-logs data. The only measured data available 
for the true evaluation of the model’s performance are the 
actual bulk XRD measurements performed on the cores. 

Fig. 8  Mean (red dots) and 2 σ of the CNN predicted mineral content from images at XRD depth ± 5 cm and the according bulk XRD 
measurements (blue stars)
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As explained in Marnat and Becker (2021, 2020) the core 
data of porosity, mineralogy and rock density were used for 
calibration of log measurements in the MultiMin workflow, 
although this does not mean that the MultiMin model data 
exactly reproduce the measured core data. The difference 
between modelled and measured data allows us to evaluate 
the performance of the model. Therefore, the analysis of the 
performance of CNN predictions and MultiMin log model 
were both performed against true XRD core measurements.

In total 23 mineralogical data points obtained by XRD 
measurements on samples from core intervals used in 
image analysis were available for comparison with the 
model predictions. The comparison of core and log min-
eral compositions needs to consider small differences and 
uncertainties. For example, the rock samples taken for 
the analysis represent a core fragment with a volume of 
1–10  cm3. These samples are not necessarily located on 
the surface of the core. Quite in contrary, the samples 
are taken from the core center to avoid contamination 
or any alteration processes. Thus, the prediction based 
on the visual information from the surface can not be 
more accurate than the typical variation of mineralogi-
cal content within a domain of 10×10×10 cm3, which was 
taken for the laboratory analysis. Accordingly, 11 image 
segments were taken for each data point as input for the 
model and the mean and standard deviation, σ , of the 
predicted mineral content were computed. The full table 
of results can be found in the Appendix 3, Table  3. In 
Fig. 8 the mean (red dot) and the 95% confidence inter-
val, i.e. the 2 σ region, of predictions are depicted for 
each mineral, together with the real measurements (blue 
stars). Almost all the measurements lie within the 2 σ 
region. The only significant deviation is observed in one 
sample from Humphriesioolith. The photographic inter-
pretation shows an unusually high carbonate content and 
is part of a thin layer of elevated carbonate content pre-
sent within the heterogeneous Humphriesioolith unit.

To have a comparison to the MultiMin log data, also for 
the predicted model data the Spearman correlation coef-
ficient (cc) was calculated for each mineral, taking the 
prediction at the MultiMin log data depth:

Carbonate: ccMultimin = 0.80 ( pval = 4.21E − 06 ), 
ccCNN = 0.90 ( pval = 6.90E − 09),

Clay: ccMultimin = 0.93 ( pval = 1.42E − 10 ), 
ccCNN = 0.90 ( pval = 6.43e − 09),

Silicate: ccMultimin = 0.84 ( pval = 5.51E − 07 ), 
ccCNN = 0.81 ( pval = 3.31E − 06).

All values, including the relative and absolute errors; 
can be found in the Appendix 3, Table 4. This metric was 
chosen, since this was the metric used in Marnat and 
Becker (2021) to compare the MultiMin log data to the 
XRD measurements. The neural network model predic-
tions are in good agreement with the MultiMin log data 
and show similar accuracy as illustrated in Fig. 9.

In summary, the mineral content regression model pre-
sents a promising tool for mineral estimation from drill 
core images for the selected formations within this core, 
although further refinement of the model to increase the 
accuracy would be desired. In the future, an expansion 
of the dataset and inclusion of different lithological core 
sections will be considered.

5 � Conclusion and outlook
This study successfully established and tested an automatic 
workflow for preprocessing and analysis of drill core images 
based on machine learning methods. A pretrained ResNet 
architecture was trained as part of the workflow to clas-
sify the 1 cm drill core segments into 6 different formation 
classes (for which data and images were available). The clas-
sification model achieved a prediction accuracy of 96.7% 
for unseen images. Big parts of this formation classification 
model were subsequently used as a backbone architecture 
to establish a NN model to predict the mineral content (sili-
cate, total clay and carbonate) from only drill core images. 

Fig. 9  Bulk XRD measurements (only representing carbonate, total clay, and silicate compositions) plotted versus MultiMin log data (red and green 
dots) and overlain with CNN predicted mineral content at MultiMin log data depth (black stars). The red dots correspond to the Opalinus clay, 
whereas the green dots to all the other formations
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The CNN mineral content regression predictions were 
compared to the XRD measurements and showed compa-
rable good correlations as the MultiMin log data. The criti-
cal technique used for both models was transfer learning, 
which involved the usage of models that were trained on 
related tasks and hence, the re-use of the obtained knowl-
edge. It has to be emphasized that due to the limited num-
ber of experimentally measured mineralogical data used in 
this study (23), the CNN model was trained using a model 
based on the MultiMin log data set (361) derived from drill 
log data. The data analysis shows that both models, CNN 
and MultiMin log, demonstrate the same prediction per-
formance when benchmarked against the measured miner-
alogical lab (XRD) data. In contrast to other models in the 
literature, the CNN model constructed in this study relies 
on images only and can be used for the image-based inter-
polation of mineralogical data down to 1 cm resolution.

Although both presented CNN models (formation clas-
sification, mineral content regression) show already good 
accuracy, there are several options to possibly further 
improve the performance, which lie outside the scope 
of the current paper: First, the hyperparameters, so the 
number of layers and neurons, as well as the activation 
functions were chosen to be fixed. A thorough search 
for optimal hyperparameters could drastically increase 
the performance of the model. Second, another choice of 
the backbone architecture (here ResNet was used) could 
improve the model and is planned for future work (like 
e.g. transformer networks or self-attention mechanisms).

In general, the transfer learning strategy from pretrained 
models seems to perform better than starting training 
from scratch. The ideal case would be to have a model that 
was trained on a huge data set of drill core images from 
different places all over the world to extract already impor-
tant features from the images. The model fine-tuning could 
then be done for the specific applications and data sets.

The number of data points is essential for the perfor-
mance of a machine learning model. In this study, the 
formation classification model is based on more than 
5000 images, whereas the mineral content regression 
model was based on only 361 images. Increasing the 
amount of data would definitely improve the model and 
make it more robust and capable of generalization.

The data set in this study could benefit from further 
augmentation by incorporating images from other bore-
holes of the same formations of complementary geo-
logical units. This expansion would not only increase the 
data set’s size but also enhance the model’s ability to gen-
eralize across diverse and possibly challenging geological 
formations and thus rock compositions. Another cost-
efficient option to augment the data set would be to cre-
ate a synthetic data set with geostatistical methods.

The performance of the models might also be influ-
enced by the choice of the segmentation size of the 
images, in this work we used 1  cm image segments. 
Decreasing the width or height of the segments would be 
a way of enlarging the data set, although each segment 
would have less information. Increasing the width would 
have the opposite effect, the data set available would be 
reduced, but each segment would contain more informa-
tion. Optimizing this aspect can be crucial for achieving 
a balance between data quantity and quality.

To enhance the data quality, the radial distortion of the 
images, due to the position of the camera in relation to 
the drill core, should be considered. In future work, the 
implementation of a transformation function for correct-
ing the radial distortion is planned.

In summary, this study provides a solid foundation for 
the regression of mineral content from drill core images 
using deep learning techniques. The outlined future 
research directions provide a road map for improving 
model performance, data set robustness, and overall 
predictive accuracy. Ultimately image-based regression 
methodologies will have the potential to support the field 
of geological analysis and drilling technologies.

Appendices
1. List of abbreviations (alphabetical order)

•	 cc: Correlation coefficient
•	 chemical elements: U: Uranium; Th: Thorium; K: 

Potassium; Fe: Iron; Si: Silicon; Ca: Calcium; Al: Alu-
minium; Ti: Titanium; S: Sulfur;

•	 CNN: Convolutional neural network
•	 ICC: International Color Consortium (colour profile)
•	 NN: Neural network
•	 pval : P-value (probability)
•	 pXRF: Portable X-ray Fluorescence analysis
•	 R2: Coefficient of determination
•	 ReLU: Rectified Linear Unit
•	 ResNet: Residual Neural Network
•	 RF: Random Forest
•	 SVM: Support Vector Machine
•	 TIFF: Tagged Image File Format
•	 VGG: Visual Geometry Group (a deep CNN archi-

tecture)
•	 XRD: X-ray Diffraction

2. Additional figures for mineral content regression
See Figs. 10, 11 and 12.
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Fig. 10  Architecture of the neural network for the mineral content regression with one formation model as a backbone architecture

Fig. 11  Boxplot for comparing the three different model types for the mineral content regression in terms of the R2 values of the test data set

Fig. 12  MultiMin log data vs CNN model predicted data for each mineral separately, the x and y axis show the according weight %
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3. Additional tables for comparison between model 
and bulk XRD measurements
See Tables 3 and 4.

4. Overview of core photographs
The following section contains the core images available 
and used in this study, already preprocessed until step 
3, so the original image was color and white balance 

corrected and cropped from the background. For each 
photo, the specific depth range is written above the 
photo together with the corresponding lithology class. 
The blue rectangles indicate where XRD laboratory 
measurements were performed. For model validation 
purposes, the slices at the depth given for the XRD 
measurements ± 5 cm are considered (blue rectangles).

Drill core photographs, extracted from the 
background

Table 3  Comparison of model predicted data and bulk XRD measured data. The mean depth is given in meter [m]. The columns Sil., 
Carb., Clay show the measured mineral content. The columns Sil. pred.mean, Carb.pred.mean, Clay pred. mean and Sil.pred.std., Carb.
pred.std., Clay pred.std. denote the mean and standard deviation of the predictions with the CNN model for images of the according 
measurement depth ±5cm.  The mean depth is given in meter [m]. The columns Sil., Carb., Clay show the measured mineral content. 
The columns Sil. pred.mean, Carb.pred.mean, Clay pred.mean and Sil.pred.std., Carb.pred.std., Clay pred.std. denote the mean and 
standard deviation of the predictions with the CNN model for images of the according measurement depth ±5cm

Mean depth 
[m]

Sil. Sil. pred 
mean

Sil. pred 
std

Carb. Carb. pred 
mean

Carb. pred 
std

Clay Clay pred 
mean

Clay pred std Lith- ology

0 772.73 23.3 29.16 2.58 22.4 23.01 2.88 51.66 44.43 4.41 Park. Würt. Sch.

1 778.32 38.7 28.14 3.25 21.1 36.99 2.93 38.71 32.98 3.54 Humphr. Form.

2 783.13 12.8 30.63 2.38 75.34 39.36 5.2 11.62 32.02 2.44 Humphr. Form.

3 788.76 49 44.52 2.3 17.98 22.41 3.95 31.6 30.33 3.54 Wedels. Form.

4 814.82 53.4 48.2 3.47 17.52 19.4 5.05 27.93 24.97 3.56 Wedels. Form.

5 815.28 51.2 45.46 2.93 24.68 24.33 5.04 23.32 26.74 4.32 Wedels. Form.

6 826.39 31 30.44 1.77 10.17 12.28 4.19 54.68 56 2.09 Opalinus Clay

7 828.51 31.17 28.67 2.97 7.87 11.68 3.53 58.24 59.01 3.22 Opalinus Clay

8 851.84 30.66 35.15 2.7 10.41 10.66 3.87 57 53.53 1.69 Opalinus Clay

9 851.88 31.65 35.73 2.4 11.27 9.87 3.75 54.37 53.77 1.82 Opalinus Clay

10 851.95 33.99 34.93 1.77 11.04 14.19 6.62 53.4 53.36 1.87 Opalinus Clay

11 852.05 35.97 33.3 3.66 15.43 12.26 3.92 47.16 54.28 3.39 Opalinus Clay

12 854.18 35.89 34.72 3.84 12.49 14.49 5.94 50.11 51.23 2.92 Opalinus Clay

13 890.39 31.2 36.48 3.26 10.25 14.73 5.46 57.31 48.36 5.84 Opalinus Clay

14 923.34 23.2 27.72 2.64 8.67 9.2 3.5 66.37 60.36 3.25 Opalinus Clay

15 923.81 23.89 24.99 3.11 9.03 7.19 3.33 65.41 63.46 3.53 Opalinus Clay

16 925.11 22.11 27.02 3.28 10.96 13.19 6.28 65.41 59.32 4.37 Opalinus Clay

17 925.16 22.39 26.36 3.69 11.7 12.46 6.43 64.35 59.84 4.55 Opalinus Clay

18 925.17 22.86 26.12 3.79 11.73 12.41 6.43 63.71 59.99 4.6 Opalinus Clay

19 927.41 19.38 16.12 4.71 14.4 31.27 9.23 64.86 48.86 5.96 Opalinus Clay

20 935.59 12.52 6.24 4.37 48.63 47.13 7.84 33.77 32.39 5.43 Staffel. Form.

21 938.53 14.2 12.6 5.8 40.43 46.45 4.15 36.85 39.13 3.85 Staffel. Form.

22 938.9 15.2 7.93 5.14 42.77 45.05 10.55 35.6 36.77 5.85 Staffel. Form.

Table 4  Absolute (Abs.err.), relative (Rel.err.) error, coefficient of determination (R2) and Spearman correlation coefficient (cc) of the 
three minerals and the according p-values (p-val), computed for the 23 XRD measurement data points compared to the MultiMin 
Log data and the CNN model predictions. The metrics are computed for the predicted values at the corresponding MultiMin Log data 
depth. The metrics are computed for the predicted values at the corresponding MultiMin Log data depth

XRD MultiMin 
Carbonate

XRD MultiMin 
Total clay

XRD MultiMin 
Silicate

XRD CNN Carbonate XRD CNN Total clay XRD CNN Silicate

Abs.err. 5.36 3.91 3.81 5.69 4.26 3.87

Rel.err. 25.29% 12.84% 17.88% 24.08% 13.59% 17.38%

R2 0.68 0.88 0.75 0.61 0.84 0.78

cc 0.80 0.93 0.84 0.90 0.90 0.81

p-val 4.21E–06 1.42E–10 5.51E–07 6.90E–09 6.43E–09 3.31E–06
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770.35m – 770.92m, Parkinsoni-Württembergica Schichten

770.92m-771.75m, Parkinsoni-Württembergica Schichten

771.75m-772.58m, Parkinsoni-Württembergica Schichten

772.58m-773.06m, Parkinsoni-Württembergica Schichten

773.06m-773.55m, Parkinsoni-Württembergica Schichten

773.55m-773.73m, Parkinsoni-Württembergica Schichten

773.73m-773.80m, Parkinsoni-Württembergica Schichten

773.80m-773.93m, Parkinsoni-Württembergica Schichten

773.93m-774.39m, Parkinsoni-Württembergica Schichten

774.39m-774.55m, Parkinsoni-Württembergica Schichten 774.55m-774.83m Humphriesoolith Formation

774.83m-775.23m, Humphriesoolith Formation

775.23m-775.63m, Humphriesoolith Formation
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775.63m-776.36m, Humphriesoolith Formation

776.36m-776.92m, Humphriesoolith Formation

776.92m-777.80m, Humphriesoolith Formation

777.80m-778.22m, Humphriesoolith Formation

778.22m-778.54m, Humphriesoolith Formation

778.54m-779.44m, Humphriesoolith Formation

779.44m-779.93m, Humphriesoolith Formation

779.44m-779.93m, Humphriesoolith Formation

779.93m-780.63m, Humphriesoolith Formation

782.94m-783.76m, Humphriesoolith Formation

783.76m-784.60m, Humphriesoolith Formation

784.60m-785.20m, Humphriesoolith Formation
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785.20m-785.94m, Humphriesoolith Formation

785.94m-786.74m, Humphriesoolith Formation

786.74m-787.50m, Humphriesoolith Formation; 787.50m-787.63m Wedelsandstein Formation

787.63m-788.43m, Wedelsandstein Formation

788.43m-788.99m, Wedelsandstein Formation

788.99m-789.92m, Wedelsandstein Formation

814.70m-815.51m, Wedelsandstein Formation; 815.51m-815.38m, Murchisonae-Oolith Formation

815.38m-815.68m, Murchisonae-Oolith Formation

815.68m-816.02m, Murchisonae-Oolith Formation

816.02m-816.42m, Murchisonae-Oolith Formation

816.42m-817.32m, Opalinus Clay

817.32m-818.04m, Opalinus Clay
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818.04m-818.63m, Opalinus Clay

818.63m-819.38m, Opalinus Clay

819.38m-819.41m, Opalinus Clay

819.41m-819.56m, Opalinus Clay

819.56m-819.75m, Opalinus Clay

819.75m-820.15m, Opalinus Clay

824.04m-824.42m, Opalinus Clay

824.42m-825.40m, Opalinus Clay

825.40m-825.57m, Opalinus Clay

825.57m-825.66m, Opalinus Clay

825.66m-826.48m, Opalinus Clay

826.48m-826.82m, Opalinus Clay
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826.82m-827.02m, Opalinus Clay

827.02m-827.28m, Opalinus Clay

827.28m-827.75m, Opalinus Clay

827.75m-828.38m, Opalinus Clay

828.38m-828.70m, Opalinus Clay

850.04m-850.95m, Opalinus Clay

850.95m-851.70m, Opalinus Clay

851.70m-852.20m, Opalinus Clay

852.20m-852.30m, Opalinus Clay

852.30m-853.13m, Opalinus Clay

853.13m-853.36m, Opalinus Clay

853.36m-853.60m, Opalinus Clay
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853.60m-853.75m, Opalinus Clay

853.75m-853.90m, Opalinus Clay

853.90m-854.05m, Opalinus Clay

854.05m-854.30m, Opalinus Clay

854.30m-854.84m, Opalinus Clay

854.84m-855.47m, Opalinus Clay

860.03m-860.85m, Opalinus Clay

860.85m-861.22m, Opalinus Clay

861.22m-861.54m, Opalinus Clay

861.54m-862.08m, Opalinus Clay

862.08m-862.39m, Opalinus Clay

862.39m-862.88m, Opalinus Clay
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862.88m-862.95m, Opalinus Clay

862.95m-863.56m, Opalinus Clay

863.56m-864.00m, Opalinus Clay

864.00m-864.62m, Opalinus Clay

887.15m-887.83m, Opalinus Clay

887.73m-888.13m, Opalinus Clay

888.13m-889.09m, Opalinus Clay

889.09m-889.97m, Opalinus Clay

889.97m-890.50m, Opalinus Clay

890.50m-890.85m, Opalinus Clay

890.85m-891.03m, Opalinus Clay

891.03m-891.89m, Opalinus Clay



Page 23 of 26      8 Direct mineral content prediction from drill core images via transfer learning

Drill core photographs, extracted from the background
922.49m-923.24m, Opalinus Clay

923.24m-923.94m, Opalinus Clay

923.94m-924.08m, Opalinus Clay

924.08m-924.96m, Opalinus Clay

924.96m-925.41m, Opalinus Clay

925.41m-926.03m, Opalinus Clay

926.03m-926.70m, Opalinus Clay

926.70m-927.15m, Opalinus Clay

927.15m-927.53m, Opalinus Clay

927.53m-927.91m Opalinus Clay; 927.91m-928.31m Staffelegg Formation

932.00m-932.96m, Staffelegg Formation

932.96m-933.20m, Staffelegg Formation
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