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Abstract

Microscale dating of distinct domains in minerals that contain relics of multiple metamorphic events is a key tool to
characterize the polyphase evolution of complex metamorphic terranes. Zircon and allanite from five metasediments
and five metaintrusive high-pressure (HP) rocks from the Eclogite Micaschist Complex of the Sesia Zone were dated by
SIMS and LA-ICP-MS. In the metasediments, zircon systematically preserves detrital cores and one or two metamorphic
overgrowths. An early Permian age is obtained for the first zircon rim in metasediments from the localities of Malone Val-
ley, Chiusella Valley and Monte Mucrone (292411, 27884 3.6 and 285.9+ 2.9 Ma, respectively). In the Malone Valley and
Monte Mucrone samples, the early Permian ages are attributed to high-temperature metamorphism and coincide with
the crystallization ages of associated mafic and felsic intrusions. This implies that magmatism and metamorphism were
coeval and associated to the same tectono-metamorphic extensional event. In the Malone Valley, allanite from a meta-
sediment is dated at 241.1 £ 6.1 Ma and this age is tentatively attributed to a metasomatic/metamorphic event during
Permo-Triassic extension. Outer zircon rims with a late Cretaceous age (67.4 £ 1.9 Ma) are found only in the micaschist
from Monte Mucrone. In metagabbro of the Ivozio Complex, zircon cores yield an intrusive age for the protolith of

340.7 + 6.8 Ma, whereas Alpine allanite are dated at 62.9+4.2 and 55.3+ 7.3 Ma. The Cretaceous ages constrain the tim-
ing of the HP metamorphic stage. The presence of zircon overgrowth only in the central area of the Eclogite Micaschist
Complex is attributed to local factors such as (1) multiple fluid pulses at HP that locally enhanced zircon dissolution and
recrystallization, and (2) slightly higher temperatures reached in this area during HP metamorphism.
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1 Introduction

The Sesia Zone (SZ) in the Italian Western Alps repre-
sents a slice of Adriatic continental crust that under-
went blueschist to eclogite facies metamorphism during
convergence between the African and European plates.
Since more than 50 years, extensive structural and petro-
logical studies have been focused on unravelling the pres-
sure—temperature (P-T) evolution of the SZ during the
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subduction, exhumation and continental collision of the
Alpine orogenic cycle (e.g. Dal Piaz et al. 1972; Compag-
noni 1977; Pognante et al. 1980; Oberhénsli et al. 1985;
Zucali et al. 2004; Regis et al. 2014; Giuntoli et al. 2018a).
The SZ is however composed by large sections of pre-
Alpine basement that record evolution through the Vari-
scan collision and post-Variscan extension and rifting,
before being involved in the Alpine cycle (e.g. Lardeaux
and Spalla 1991; Rubatto et al. 1999; Giuntoli et al. 2018a,
2018b). Reconstructing the pre-Alpine evolution of the
SZ is a necessary condition for understanding its Alpine
history.

Dating of robust mineral relics that may survive mul-
tiple metamorphic events is a key tool to study terranes
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characterized by a polymetamorphic evolution. Meta-
morphic conditions have been extensively determined
for both the pre-Apine and Alpine evolution of the SZ
(e.g. Dal Piaz et al. 1972; Compagnoni 1977; Pognante
et al. 1980; Oberhinsli et al. 1985; Pognante 1989a, 1991;
Lardeaux and Spalla 1991; Rebay and Spalla 2001; Zucali
et al. 2002; Giuntoli et al. 2018b). Reliable age data on the
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pre-Alpine history remain limited (Fig. 1; Paquette et al.
1989; Bussy et al. 1998; Rubatto 1998; Rubatto et al. 1999;
Cenki-Tok et al. 2011; Regis et al. 2014; Kunz et al. 2018).
In particular, only a few studies have presented age data
obtained by in situ analysis techniques (Cenki-Tok et al.
2011; Rubatto et al. 2011; Halama et al. 2014; Regis et al.
2014; Giuntoli et al. 2018a; Kunz et al. 2018), which are
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Fig. 1 Geotectonic map of the Sesia Zone (after Manzotti et al. 2014; Regis et al. 2015; Giuntoli and Engi 2016) showing age data for the pre-Alpine
metamorphism in the Eclogitic Micaschist Complex. Age data are from: (1) Bussy et al. (1998); (2) Cenki-Tok et al. (2011); (3) Kunz et al. (2018);

(4) Paquette et al. (1989); (5) Regis et al. (2014); (6) Rubatto (1998); (7) Rubatto et al. (1999) and (8) this study. P-T paths for the EMC are from: (1)
Lardeaux and Spalla (1991); (2) Rebay and Spalla (2001); (3) Giuntoli et al. (2018a)
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better suited to unravel different stages of complex evolu-
tions. This represents a significant limitation considering
that the SZ is composed of slices that may have different
origin and P-T—time paths (Babist et al. 2006; Regis et al.
2014; Giuntoli et al. 2018b).

Initial efforts in determining the timing of Alpine
metamorphism focused on phengite and biotite dating
(Oberhinsli et al. 1985; Venturini 1995) and Rb—Sr geo-
chronology (Oberhénsli et al. 1985; Ramsbotham et al.
1994; Venturini 1995; Inger et al. 1996; Ruffet et al. 1997;
Dal Piaz et al. 2001; Babist et al. 2006) (Fig. 2). How-
ever, in the SZ white mica is commonly zoned, display-
ing partial overprint and recrystallization features (e.g.
Konrad-Schmolke and Halama 2014; Regis et al. 2014;
Giuntoli et al. 2018b). Halama et al. (2014) provided an
improvement on this bulk approach and linked phengite
ages with fluid flow and deformation events in the SZ
eclogites by UV laser *°Ar/*Ar dating. One of the first
applications of Lu—Hf dating of garnet investigated sam-
ples from the SZ and obtained an age of 69.2+1.2 Ma
(Duchéne et al. 1997). However, applicability of this
method in the SZ is hampered by the polymetamorphic
nature of garnet in the abundant basement rocks (e.g.
Giuntoli et al. 2018b). Bulk U-Pb dating of metamor-
phic minerals, such as titanite, has been successfully
applied to monometamorphic samples (~ 66 Ma: Rams-
botham et al. 1994; Inger et al. 1996), but this method
is inadequate for dating polymetamorphic slices due
to pre-Alpine inheritance (Castelli and Rubatto 2002).
Despite important constraints have been obtained for
the Alpine-related metamorphism with these methods,
they are largely unsuitable to retrieve the pre-Alpine
evolution through the investigation of polycyclic min-
eral relics.

In situ dating of U-Th-Pb bearing minerals has become
of key importance for investigating rocks that record epi-
sodic recrystallization or partial re-equilibration stages
thanks to the ability to target specific growth domains
using laser ablation inductively coupled plasma mass
spectrometry (LA-ICPMS) and secondary ion mass spec-
trometry (SIMS, or ion microprobe). Rubatto et al. (1999)
reported the first in situ zircon U-Pb age data for the
SZ, shading light on the Cretaceous timing of eclogite-
facies metamorphism, but also constraining the ages of
both protoliths and detrital components. More recent
studies contributed to constrain Alpine and pre-Alpine
metamorphic evolution of the SZ by in situ dating of zir-
con (Rubatto et al. 2011; Regis et al. 2014; Giuntoli et al.
2018a; Kunz et al. 2018) and allanite (Cenki-Tok et al.
2011; Regis et al. 2014; Giuntoli et al. 2018a). These stud-
ies have combined dating of distinct chemical domains
in zoned minerals with textural and trace element anal-
ysis to link the U-Pb ages to assemblages and possibly
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metamorphic stages. However, the knowledge about the
timing of the pre-Alpine metamorphic evolution is still
limited and U-Th-Pb in situ dating constraints on zircon
and allanite are only available for few localities (Fig. 1).

This study reports results obtained by combining in situ
SIMS dating with LA-ICP-MS trace element composition
of zircon and LA-ICP-MS allanite dating from different
eclogites and metasediments from the southern and the
central SZ, in order to improve our understanding of the
polymetamorphic evolution of this slice of Adriatic con-
tinental crust.

2 Geological setting

The SZ is the largest exposed slice of Adriatic continental
crust in the Western Alps. It was part of the distal con-
tinental margin of the Adriatic plate that was separated
from the European continent by the Piemonte-Liguria
Ocean (e.g. Dal Piaz et al. 2001; Babist et al. 2006; Man-
zotti et al. 2014). It exposes a variety of metapelites,
metagranitoids, mafic bodies and subordinated ultra-
mafic bodies and marbles (e.g. Dal Piaz et al. 1972; Com-
pagnoni 1977; Regis et al. 2015; Giuntoli and Engi 2016)
(Fig. 1). Known pre-Alpine magmatic and metamorphic
stages are (1) early Carboniferous gabbroic intrusions in
the crystalline basement (Rubatto 1998; Rubatto et al.
1999) and associated metamorphism, which remains
largely unconstrained as it was dated only in a single
sample from Cima di Bonze (Regis et al. 2014), and (2)
bimodal magmatism at the Carboniferous-Permian
boundary, with related amphibolite to granulite-facies
metamorphism (Oberhénsli et al. 1985; Lardeaux and
Spalla 1991; Rubatto et al. 1999; Rebay and Spalla 2001;
Giuntoli et al. 2018a). The whole sequence underwent
subduction in the Late Cretaceous to Early Paleocene
prior to the Alpine collision. Blueschist-facies to eclogite-
facies metamorphism was followed by decompression
and cooling to blueschist-facies conditions and a final
greenschist-facies overprint.

The SZ has been traditionally divided into three subu-
nits based on the different degree of HP imprint (Com-
pagnoni 1977): (1) the Eclogitic Micaschist Complex
(EMC), (2) the Gneiss Minuti Complex (GMC) and (3)
the Second Dioritic-Kinzigitic Zone (IIDK) (Fig. 1). Dur-
ing Alpine subduction, the EMC recorded maximum
P of 2.0 GPa and maximum T of 600+ 50 °C (Compag-
noni 1977; Gosso 1977; Konrad-Schmolke et al. 2006;
Pognante 1989a; Tropper and Essene 1999; Zucali et al.
2002; Rubatto et al. 2011; Regis et al. 2014; Giuntoli et al.
2018b). The southern portion of the EMC was recog-
nized to record lower peak conditions with respect to
the central part (P~ 1.6 GPa, T=500-550 °C, Pognante,
1989a). In the EMC, phengite-schists constitute the
dominant rock type, together with minor eclogites and
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Fig. 2 Geotectonic map of the Sesia Zone (after Manzotti et al. 2014; Regis et al. 2015; Giuntoli and Engi 2016) showing age data for the Alpine
metamorphism in the Eclogitic Micaschist Complex (legend in Fig. 1). Age data are from: (1) Babist et al. (2006); (2) Cenki-Tok et al. (2011); (3) Dal

Piaz et al. (2001); (4) Duchéne et al. (1997); (5) Giuntoli et al. (2018a); (6) Halama et al. (2014); (7) Inger et al. (1996); (8) Oberhansli et al. (1985); (9)
Ramsbotham et al. (1994); (10) Regis et al. (2014); (11) Rubatto et al. (1999); (12) Rubatto et al. (2011); (13) Ruffet et al. (1997); (14) Venturini (1995) and
(15) this study. P-T paths are from: (1) Pognante (1989a); (2) Inger et al. (1996); (3) Zucali et al. (2002); (4) Zucali et al. (2004); (5) Babist et al. (2006); (6)
Zucali and Spalla (2011); (7) Rubatto et al. (2011); (8) Regis et al. (2014); (9) Giuntoli et al. (20183, b)
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orthogneisses. In this subunit, the eclogite mineral
assemblages are well preserved, only locally overprinted
by late greenschist-facies metamorphism associated to
Alpine collision. Ages of HP metamorphic minerals in
the EMC (Fig. 2) are ranging mainly between~85 and
60 Ma (Oberhinsli et al. 1985; Ramsbotham et al. 1994;
Venturini 1995; Inger et al. 1996; Duchéne et al. 1997;
Ruffet et al. 1997; Rubatto et al. 1999; Dal Piaz et al.
2001; Babist et al. 2006; Cenki-Tok et al. 2011; Rubatto
et al. 2011; Halama et al. 2014; Regis et al. 2014; Giuntoli
et al. 2018a), with younger ages limited to Rb—Sr in mica
(Ramsbotham et al. 1994; Inger et al. 1996; Ruffet et al.
1997). Most of these ages are attributed to HP conditions,
and it has been proposed that this spread is due to over-
printing of multiple metamorphic stages (e.g. Rubatto
et al. 2011), diachronous metamorphism across slices
(e.g. Regis et al. 2014; Giuntoli et al. 2018a) and recrys-
tallization related to deformation and fluid flow affecting
phengite (Halama et al. 2014). Alpine peak conditions for
the GMC are 1.1-1.2 GPa and 350-500 °C (e.g. Pognante
1989a, 1989b; Giuntoli et al. 2018b). In the GMC, green-
schist-facies metamorphism associated to Alpine col-
lision pervasively overprinted the HP paragenesis and
age constraints are limited (e.g. Giuntoli et al. 2018a).
The IIDK consists of kilometric lenses of extensively pre-
served pre-Alpine amphibolites and granulites recording
only local eclogite re-equilibration (e.g. Dal Piaz et al.
1971; Vuichard 1987). Further subdivisions of the SZ
have been proposed after that of Compagnoni (1977),
including attempts to identify different slices within the
EMC (Venturini et al. 1994; Venturini 1995; Babist et al.
2006; Regis et al. 2014; Giuntoli and Engi 2016; Giuntoli
2018a, b). However, these subdivisions are mostly based
on detailed studies of the central EMC only, and a com-
mon nomenclature and location of the boundaries among
slices are not well established throughout the unit. There-
fore, in the following we refer to the EMC as defined by
Compagnoni (1977).

3 Sample description

This study investigates four different areas located in
the southern and central part of the EMC (Fig. 1, 2): (1)
Malone Valley; (2) Ivozio Complex; (3) Chiusella Valley;
and (4) Monte Mucrone. In these localities, evidence of
polymetamorphism has been reported and the typi-
cal association of metasediments and eclogites is found.
These features grant a diversity of pre-Alpine inheritance
and a variety of rock compositions that may favour the
formation of U-Pb minerals during metamorphism.

The samples collected represent the main rock types
at each locality. At Monte Mucrone and Malone Valley
the dominating rock types are micaschists with inter-
calated lenses of eclogites, whereas the Ivozio Complex
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is essentially made of eclogites; in the Chiusella Val-
ley, metagabbros are overridden by pre-Alpine Mn-rich
sediments (quartzites and calcschists). GPS location, full
mineral assemblages and P-T conditions of each locality
based on literature data are reported in Table 1. Sample
locations are shown in Figs. 1 and 2; microphotos of the
analysed samples are given in Additional file 1. In all the
analysed samples, the dominant assemblage is composed
of HP minerals, with possible pre-Alpine relics of amphi-
bolite to granulite-facies minerals.

3.1 Malone Valley

The studied outcrop is located in the southern part of the
EMC, near Alpe Mecio,~2.5 km South-West of Monte
Soglio. At the metre scale, strongly foliated glaucophane-
epidote-rich schists are associated with garnet-bearing
micaschists and quartz layers (Vho et al. 2020) in which
lozenge-shape aggregates of zoisite are preserved and are
interpreted as lawsonite pseudomorphs, as already pro-
posed by Pognante (1989a). Decimetric eclogite boudins
are found within the schists and are typically surrounded
by an epidote-rich, cm-thick rim. Two metasediment
and one eclogite samples collected at this outcrop are
investigated.

Sample AV16-44 is a fine-grained glaucophane-epi-
dote-schist. It contains two types of garnet: (1) sub-mil-
limetric garnet grains that are rich in epidote inclusions
and are distributed within the foliation and (2) plurimil-
limeter garnet porphyroblasts surrounded by the folia-
tion, preserving a porphyroclastic fractured core and
a rim rich in epidote inclusions. Sample AV16-45 is a
quartz-rich, garnet-bearing micaschist with phengite,
paragonite, chlorite and allanite defining a pervasive
foliation that wraps around mm-sized garnets. Sample
AV16-51 is a micaschist with a strong foliation marked
by phengite and chlorite that wraps plurimillimetric gar-
net grains and lozenge-shaped aggregates of clinozoisite
and quartz interpreted as pseudomorphs after lawsonite.
Sample AV16-47 is a mafic boudin embedded in the
metasediments. The matrix is weakly foliated, dominated
by glaucophane, epidote and euhedral garnet crystals
with a size of 100-500 pum. It contains lenses of ompha-
cite surrounded by epidote.

3.2 Ivozio Complex

The Ivozio Complex is located at the southeastern edge
of the SZ, near the village of Ivozio. It consists of a met-
agabbro body with a diameter of ~500 m, associated to
scarce ultramafic rocks and surrounded by micaschists
(Pognante et al. 1980; Zucali et al. 2004; Delleani et al.
2018). Mafic lithologies have fully recrystallized during
Alpine HP metamorphism and mainly consist of glau-
cophane, omphacite and garnet in various proportions,
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Table 1 List of the analysed samples. Mineral abbreviations are from Whitney and Evans (2010)

Sample Location?® Lithology Mineralogy® Peak P-T conditions
Malone Valley
AV16-44 N 45°21729.64"  Blueschist GIn (50%) + Grt (20%) + Spn (10%) &= Ep &= Ph + Aln + Ap & Cpx & Chl (retro- ~1.7 GPa
E09° 31/ 03.00" grade) = Amp (retrograde) £ Zrn 500 °C¢
AV16-45 N 45°21729.64" Micaschist Qz (35%) + Ph (35%) + Grt (15%) 4 Pg (5%) &= Chl+=Ab £ Spn + Aln+Zm ~1.7 GPa
E09°31703.00” 500 °C¢
AV16-51 N 45°21729.64” Lws-micaschist Qz (30%) +Wm (15%) 4 Chl (15%) + Czo (Lws pseudomorphs) (10%) + Grt ~1.7 GPa
E 09°31703.00" (10%) + GIn (10%) 4+ Spn (5%) £ Aln+Zrmn 500 °C*
AV16-47 N 45°21/29.64" Eclogite Matrix: GIn (50%) 4 Grt (20%) + Ep (15%) &= Ph = Zo £ Ap £ Chl (retr.) = Amp ~1.7GPa
E09°31/03.00” (retrograde) £ Ab (retrograde) & Spn£ Zrn 500 °C¢
Boudin core: Omp (90%) = Spn £ Amp (retr.) £ Ab (retrograde)
Boudin rim: Ep (55%) 4+ Spn (35%) &= Grt+Zrn
Ivozio Complex
AV16-21 N 45°32/ 09" Eclogite Domain 1: Grt (50%) + Omp (25%) + GIn (15%) &= Ph £ Rt + Py 1.8-2.3 GPa
E07°50" 46" Domain 2: Qz (30%) + Grt (30%) 4 Ph (30%) £ Ep £ Rt 550-600 °C¢
AV16-53 N 45°32/10.20” Blueschist Grt (50%) + GIn (40%) 4= Cpx (relics) &= Rt £ Aln £ Ph &+ Zo + Qz + opaques 1.8-2.3 GPa
E07°50' 46.44" 550-600 °CY
AV16-57 N 45°32/14.58" Eclogite Omp (50%) + Grt (25%) + GIn (15%) + Ph (15%) + Chl (retro- 1.8-2.3 GPa
E07°50" 45.88" grade) &Rt Aln £ opaques 550-600 °C¢
Chiusella Valley
VC10-04 N 45°33/03.70” Mn-rich quartzite Qz (60%) + Grt (20%) + GIn (15%) £ Aln£Zrn ~1.8 GPa
E07°43"43.20" 550 °C®
Monte Mucrone
AV17-07 N 45°3752.98" Micaschist Ph (35%) 4 Grt (35%) + Pg (15%) + Qz (5%) = Rt = Aln £ Zrn 4= Chl & Cpx (rel- 1.3-1.5GPa
E07° 56/ 23.58" ics) £ opaques 500-600 °C’
AV17-16 N 45°37/51.18" Eclogite Matrix: GIn (30%) + Grt (25%) +Omp (20%) 4 Ph (10%) + Pg 1.3-1.5GPa
EQ7° 56 34.24" (5%) £ Rt Ap+Zn 500-600 °C*

Veins: Ph (40%) + Grt (30%) + GIn (20%) &Rt £ Ep

@ Coordinates refer to WGS84
b Modal % is based on visual estimation

¢ Pognante (1989a)

d Zucali et al. (2004); Zucali and Spalla (2011)
¢ Regis etal. (2014)

f Zucali et al. (2002) and references therein

with subordinate phengite, zoisite and quartz; lozenge-
shape aggregates of zoisite and paragonite, which are
interpreted as lawsonite pseudomorphs, are locally pre-
sent (Zucali et al. 2004; Zucali and Spalla 2011). In the
studied samples, zircon cores are the only pre-Alpine
mineral relics.

Eclogite sample AV16-21 consists of two domains:
(1) a glaucophane-bearing eclogite, dominated by
pale rose, inclusion-poor garnet and omphacite, with
minor rutile, phengite and pyrite, and (2) a quartz-
rich domain containing mm-size phengite crystals and
garnet; the garnet has an inclusion-rich core (mainly
quartz, phengite and rutile) and an inclusion-free rim.
Sample AV16-53 is a glaucophane-garnet-fels with gar-
net grains from 1 mm up to 2 cm in size. Glaucophane
grains are euhedral and have sharp and well-preserved
contacts with garnet. Relics of clinopyroxene are locally
preserved. Eclogite AV16-57 contains mainly ompha-
cite and garnet; locally phengite veins and enrichment

in glaucophane and phengite occurs. In these domains,
glaucophane grains are pale blue in colour, with an
irregular shape and retrogression to green amphibole
along the rims, garnet is strongly fractured with locally
resorbed rims and omphacite is present as relic phase.

3.3 Chiusella Valley

In the Chiusella Valley, located West of Cima di Bonze,
coarse grained metagabbro is overridden by a few
meters of Mn-rich quartzite and micaschist locally
interbedded with metabasalt and metagabbro. Sam-
ple VC10-04 was collected near Alpe Solanger. It is a
Mn-rich quartzite, characterized by a pervasive milli-
metre to submillimetric foliation that is marked by iso-
oriented elongated glaucophane blasts and quartz and
garnet layers. It contains pink garnet crystals with atoll
texture and accessory allanite and zircon.
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3.4 Monte Mucrone

Monte Mucrone is the northernmost area investigated
and is dominated by micaschists and paragneisses that
include centimetric to metric mafic lenses and boudins.
The metasediments locally preserve relics of migmatitic
textures. Samples were collected between the Albergo
Savoia and Bocchetta del Lago.

Sample AV17-07 is a micaschist containing quartz,
several hundreds of microns size phengite and lozenge-
shape aggregates of fine-grained paragonite, whose shape
resembles that of lawsonite pseudomorphs. Garnet
occurs as millimetre porphyroclastic cores surrounded
by euhedral, smaller garnets and as submillimetre euhe-
dral grains. Locally garnet has atoll textures with quartz
and coarse grained phengite filling the central part. Sam-
ple AV17-16 is an eclogite composed of glaucophane,
garnet, omphacite, paragonite, phengite and minor rutile,
which contains veins and pods of oriented coarse grained
phengite, garnet and glaucophane.

4 Analytical methods

4.1 Mineral separation and grain mount preparation
Samples were disaggregated using a SELFRAG appara-
tus (Institute of Geological Sciences, University of Bern),
which produces a high yield of intact mineral grains by
high-voltage pulsing, and sieved to select the grain frac-
tion between 64 and 250 um. Zircon and allanite grains
were separated using conventional magnetic and density-
based techniques, hand-picked, mounted in epoxy resin
or acrylic and manually polished down to expose the near
equatorial section.

4.2 SEM imaging

Back scattered electron (BSE) images of allanite were
obtained from polished thin section with a ZEISS EVO
50 scanning electron microscope at the Institute of
Geological Sciences (University of Bern) using a volt-
age of 20 kV, current of ~1 nA and a working distance of
10 mm. Zircon charge contrast (CC) and BSE images of
allanite in grain mount were taken with the same instru-
ment at 10-16 kV accelerating voltage, variable pres-
sure (VP) conditions and 10 mm working distance. It has
been demonstrated that CC images correlate exactly to
cathodoluminescence images and result from the com-
plex interaction between the electron beam, the posi-
tive ions generated by electron-gas interactions in the
chamber, a biased detector, and the sample (Griffin 2000;
Watt et al. 2000). Internal check in the Bern laboratory
confirmed that CC images are identical to panchromatic
cathodoluminescence images, but have the advantage to
require no coating of the sample.
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4.3 LA-ICP-MS trace element analysis

Trace element analyses of zircon were performed at the
Institute of Geological Sciences (University of Bern)
using two different instruments: (1) a LA-ICP-MS Geo-
las Pro 193 nm ArF excimer laser coupled to an Elan
DRC-e quadrupole ICP-MS (samples AV16-21, AV16-44,
AV16-47) and (2) a RESOlution Laser System coupled
to an Agilent 7900 quadrupole ICP-MS (samples AV16-
45, AV16-51, AV17-07, AV17-16). A He-H, gas mixture
was used as the aerosol transport gas. Allanite and zircon
trace element analyses were performed with laser beam
diameters of 20 and 24 pm, frequencies of 9 and 5 Hz
and energy densities on the sample of 2.5 and 4.0 Jecm ™2,
Sample analyses were calibrated using NIST SRM 610
and 612 (Jochum et al. 2011) and accuracy was moni-
tored using the reference material BCR-2 g and GSD-
1Gg (Jochum et al. 2005). Data reduction was performed
using the SILLS software package (Guillong et al. 2008;
samples AV16-21, AV16-44, AV16-47) and the software
Iolite (Hellstrom et al. 2008; Paton et al. 2011; samples
AV16-45, AV16-51, AV17-07, AV17-16). Further infor-
mation on the instrument setup is reported in Additional
file 2 (Tables AF2-T1, AF2-T2).

4.4 Allanite LA-ICP-MS dating

Allanite was dated on polished thin sections and on sepa-
rate single grains mounted in acrylic. In situ analyses
were performed using a LA-ICP-MS Geolas Pro 193 nm
ArF excimer laser coupled to an Elan DRC-e quadrupole
ICP-MS at the Institute of Geological Sciences (Uni-
versity of Bern). The analytical procedure is described
in detail in Burn et al. (2017). Spot sizes were chosen
at 24 pm. Frequency used was 9 Hz and energy den-
sity on the sample 2.5 Jecm ™2 NIST SRM 610 (Jochum
et al. 2011) measurements were performed for quanti-
fication of U- and Th-concentrations. Ple$ovice zircon
(337.13£0.37 Ma, Slama et al. 2008) was used as pri-
mary standard. The quality of the data was monitored
using secondary allanite standards (CAP: 275+1.5 Ma,
Barth et al. 1994; SISS 31.5+0. 5 Ma, von Blackenburg
1992). Data reduction was performed with the in-house
program TRINITY (Burn et al. 2017). Common lead cor-
rection on single analyses was performed based on *’Pb
according to the procedure of Gregory et al. (2007) as
updated in Burn et al. (2017). Th-Pb ages obtained for
CAP secondary standards for each measurement ses-
sion overlap with the reference value within uncertainty
(calculated ages between 277 +5 and 28247 Ma); SISS
Th-Pb ages overlap with the reference value for each ses-
sion (calculated ages between 31.1+1.0, 29.0+1.7 Ma
and 29.9 +0.7 Ma) (for details see Additional file 2, Table
AD2-T3). Given the relatively high percept of initial Pb
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in the allanite analyses (typically 40-100%), the more
robust age for a statistically consistent data population
is obtained in most cases with a regression in the Tera-
Wasserburg (TW) diagram using uncorrected ratios,
thus avoiding having to assume an initial Pb composition.
Therefore, the reported values are obtained following this
strategy when not differently specified. Results are given
at 95% confidence limit. Within individual samples, the
Th-Pb dates were concordant with the U-Pb dates, but
were more dispersed.

4.5 Zircon ion microprobe and LA-ICP-MS dating

Zircon grains in all samples except for VC10-04 were
analysed for U, Th and Pb using the Cameca IMS 1280HR
ion microprobe instrument at the SwissSIMS facility
(University of Lausanne, Switzerland). An O®~ primary
beam was used with a 3—7 nA current and focused to a
spot size of 20-25 um. Secondary ions were extracted
at 10 kV, a mass resolution power M/AM ~ 5000 at 10%
of the peak height, and an energy window of 50 eV. Run
table and analytical conditions were similar to those pre-
viously described for zircon U-Th-Pb analysis by White-
house and Kamber (2005). Reference zircon Temora
(416.75+0.24 Ma, Black et al. 2003) was used as primary
standard during calibration, using a UO,/U vs. Pb/U rela-
tive sensitivity calibration; the calibration uncertainty
was between 1.15 and 1.87% for each analytical session.
Reference zircon Ple$ovice (337.13+£0.37 Ma, Sldma
et al. 2008) was used as secondary standard and returned
Concordia ages within 1% of the reference value in each
analytical session (335.24+8.3 Ma and 338.0+£3.2 Ma).
Data reduction was carried out using the CAMECA-
CIPS software compiled by Martin Whitehouse (analyti-
cal session 1, samples AV16-21, AV16-44, AV16-47) and
SQUID 2.50 (add-in for Microsoft Excel; Ludwig 2009)
(analytical session 2, samples AV16-45, AV16-51, AV17-
07 and AV17-16). Common Pb correction was based on
the measured ***Pb signal (when significant relative to
background) assuming the present day model terrestrial
Pb composition of Stacey and Kramers (1975). A 2°8Pb-
based correction (Williams 1998) was applied to ages
younger than 100 Ma low in Th/U zircon (sample AV17-
07). Calculations of Concordia and weighted ages and
plots were done using Isoplot 4.15 (add-in for Microsoft
Excel; Ludwig 2003). Age calculations use the decay con-
stant recommendations of Steiger and Jager (1977). To
account for external errors, uncertainties on average ages
were forced to be at least 1%. Average ages are given at
95% confidence limit if not otherwise specified.

U-Pb analyses of zircon of sample VC10-04 were
obtained by LA-ICP-MS at the Institute of Geologi-
cal Sciences (University of Bern). The analyses were
performed using a LA-ICP-MS Geolas Pro 193 nm
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ArF excimer laser coupled to an Elan DRC-e quadru-
pole ICP-MS following the strategy described in Man-
zotti et al. (2012). The ablation was performed with an
energy density on the sample of 5 Jecm™? using beam
diameters of 25 pm. A He-H, gas mixture was used as
the aerosol transport gas. Zircon reference material
GJ-1 (608.53+0.37 Ma, Jackson et al. 2004) was used
to correct for elemental fractionation and instrumen-
tal mass bias. NIST SRM 610 (Jochum et al. 2011) was
used for the quantification of concentrations, using **Si
as an internal standard. Secondary standards PleSovice
zircon (337.13+£0.37 Ma, Sldma et al. 2008) and 91,500
zircon (1065 Ma, Wiedenbeck et al. 1995) returned ages
within 1% of the reference value. Data processing was
performed offline using the Lamtool version 081117 fol-
lowing the procedure detailed in Manzotti et al. (2012).
Calculations of Concordia and weighted ages and plots
were done using Isoplot 4.15 (add-in for Microsoft Excel;
Ludwig 2003). To account for external errors, uncertain-
ties on average ages were forced to be at least 1%. Average
ages are given at 95% confidence limit if not otherwise
specified.

5 Results

5.1 Malone Valley

5.1.1 Blueschist AV16-44

Zircon grains have a variable shape and are characterized
by the presence of rounded cores with various zoning
patterns occasionally overgrown by a grey, weakly zoned
rim of maximum width of ~30 pm, but typically <10 pm
thick (Fig. 3). Two core analyses result in 2°°Pb/**U
dates of 645+12 Ma and 604+11 Ma; along with the
internal crystal morphology, this suggests a detrital ori-
gin (Table 2). Due to the small size and rare occurrence
of rims, only four spots could be measured and return a
weighted average age of 292411 Ma (Fig. 3, Additional
file 3). The Th/U value for the rim is 0.03—-0.13.

Allanite was found in the matrix as grains with a
dimension ranging from~60 to~250 um, character-
ized by a core brighter in BSE images and a darker rim
(Fig. 4). The grains are usually fractured, making impos-
sible to separate whole allanite grains from the sample.
Th/U ratio ranges between 0.4 and 14.3 (Table 3). On the
TW diagram, the allanite data spread along a single mix-
ing line (initial 2’Pb/>°Pb=0.8240.04) that intercepts
the Concordia at 241.1+6.1 Ma. The REE patterns of
this allanite are relatively flat with a minor enrichment in
LREE (Lay/Luy=4.9-21.2) and no significant Eu anom-
aly (Fig. 5, Additional file 4).



Geochronology of the Sesia Zone from Carboniferous to Cretaceous

Page 9 of 33

24

MALONE VALLEY

AV16-44 blueschist

Weighted average = e
0.0501292.3 £ 11.0 Ma (95% conf.)
N=4

MSWD = 1.5
Probability = 0.20

0.048|

0.046]

206Pp/238U

0.044

Concordia age =

292.7 + 7.6 Ma (2sd)

Data-point error ellipses: 2sd|

026 028 030 032 034 036
207Pb/235U

0.042]

AV16-45 micaschist

-
o
=

0.053

Weighted average =
289.4 * 3.9 Ma (95% conf.)
0.051fN =18 3
MSWD = 2.2

Probability = 0.003

e
o
@

=
o
)

0.049

zircon/chondrite
2
206Pp/238U
o
o
S
~

100 0.045
10-1 0.043 Concordia age =
289.2 3.1 Ma (20)
10-2 0.041 Data-point error ellipses: 20
La Ce Pr Nd Sm Eu Gd Tb Dy Ho Tm Er Yb Lu ’ 0.26 0.30 034 038 0.42

207Pb/235

AV16-51 Lws-micaschist

=
o
S

0.051 Weighted average =
! 285.9 + 2.9 Ma (95% conf.)
N =24
0.049 Mswp = 1.19
Probability = 0.24

N
o
@

g 102 0.047
5 2
2 £0.045
5 101 g0.
s o
8 £0.043
= [3Y
F 100
0.041
1o 0.039 Concordia age =

285.4 + 2.9 Ma (20)
Data-point error ellipses: 20

0.037
La Ce Pr Nd Sm Eu Gd Tbh Dy Ho Tm Er Yb Lu 025 027 029 031 0.33 035 0.37
207Pb/235U

Fig. 3 Zircon in metasediments from Malone Valley. Blueschist AV16-44: a-d CC images of the analysed zircon grains. Scale bar in all images is 30 um.

Measured spots are shown (yellow circles) with the associated date (< 16 Ma). e Concordia plot of zircon rim dates and weighted average *®Pb/?*U age.
The green circle represents the calculated Concordia age. Micaschist AV16-45: f-i Selected CC images of analysed zircon grains. Scale bar in all images is

30 um. Measured spots are shown (yellow circles) with the associated date ( 10 Ma). j REE patterns of zircon rims. k Concordia plot of zircon rim dates
and weighted average 2%Pb/2%8U age. The green circle represents the calculated Concordia age. Lws-micaschist AV16-51: I-o Selected CC images of

analysed zircon grains. Scale bar in all images is 30 um. Measured spots are shown (yellow circles) with the associated date (£ 10, Ma). p REE patterns of
Zircon rims. g Concordia plot of zircon rim dates and weighted average 2*Pb/”**U age. The green circle represents the calculated Concordia age
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Table2 U, Th and Pb SIMS zircon data of the eclogite AV16-21 from Ivozio Complex, the eclogite AV16-47
and the blueschist AV16-44 from Malone Valley

Spotname U (ug/g) Th(ug/g) Th/U f206* Concordia diagram (2°*Pb corr.)

206pp/238y  +10 Comments

207pp/235y  +£106% 2%Pb/38U +10% p Age (Ma)
Ivozio Complex—AV16-21 eclogite
@12 2797 190 007 0.3 03787 195 0.05159 1.87 09616 3243 59  Core
@15 1224 59 005 002 0.3859 1.98 0.05267 191 09619 3309 6.2  Core
@7 4281 793 019 010 03973 198  0.05352 1.87 0.9449 336.1 6.1  Core
@14 3151 228 0.07 001 0.3958 1.90 0.05383 1.88 0.9888 338.0 6.2  Core
@6 495 15 003 078 04035 5.99 0.05449 1.87 03128 3420 62  Core
@5 871 94 0.11 0.39 03957 341 0.05453 1.87 05499 3423 6.2 Core
@16 3467 257 007 001 0.4004 191 0.05470 1.89 0.9898 3433 63  Core
@8 2198 146 007 017 04017 229 005523 1.90 0.8279 3466 64  Core
@13 2000 123 006 0.02 04139 1.89 0.05635 1.87 09921 3534 64  Core
@1 2910 208 007 002 04203 189  0.05660 1.87 0.9888 3549 65 Core
@10 4297 334 008 002 0.4389 1.89 0.05964 1.88 0.9964 3734 6.8  Possible inheritance
@ll 1096 87 008 002 04570 2.16 0.06246 2.04 0.9473 3905 7.7 Possible inheritance
@2 95 43 045 023 05007 2.74 0.06593 1.89 06887 411.6 7.5 Possible inheritance
Malone Valley—AV16-44 blueschist
@6 357 24 007 010 03286 228 0.04475 2.02 08849 2822 56 Rim
@l 41 1 003 123 03143 5.73 0.04650 1.88 03284 2930 54  Rim
@7 311 20 006 0.6 03376 211 0.04703 1.90 09042 2963 55 Rim
@5 496 64 013 007 03399 201 0.04718 1.88 09389 2972 55 Rim
@3 77 30 039 013 08102 2.19 0.09825 1.91 08714  604.1 1.0  Core
@2 49 27 056 052 09077 297 0.70530 1.88 06322 6454 1.6 Core
Malone Valley-AV16-47 eclogite
@il 9 2 021 449 0.2492 27.62 0.03858 2.53 0.0916  244.0 6.1  Possible Pb loss
@16 8 3 035 329 02370 3835 0.04164 1.95 0.0507 2630 50
@8 6 1 021 307 0.2882 2548 0.04221 2.09 0.0819 266.5 54
@13 9 3 036 255 02792 2351 0.04331 2.00 0.0850 2733 54
@15 6 3 045 332 0.3055 19.83 0.04344 1.98 0.0998 2741 53
@14 7 2 032 235 0.2919 18.63 0.04351 2.13 01141 2745 57
@18 16 3 020 241  0.2493 20.12 0.04465 2.02 0.1002 2816 56
@7 16 5 028 152 03323 13.06 0.04484 1.94 0.1483 2828 54
@2 15 2 016 062 03214 833 0.04489 1.93 02322 2831 54
@6 1 5 0.41 1.63 03190 12.89 0.04497 191 0.1481 2836 53
@4 16 6 036 171 03125 1819 004510 1.95 0.1072 2844 54
@17 323 34 011 0.08 0.3241 2.04 0.04540 1.88 09252 286.2 53
@3 10 1 015 204 03043 20.62 0.04547 1.93 0.0936 286.7 54
@19 6 1 020 326 03110 31.62 0.04550 1.88 0.0594 286.9 53
@12 9 4 042 157 03485 1447 0.04553 1.89 0.1304 2870 53
@20 14 6 044 212 03099 16.01 0.04574 1.89 0.1181 2883 53
@10 8 2 027 335 0.3028 2259 0.04577 192 0.0848 2885 54
@1 7 3 038 274 0.2845 27.23 0.04581 191 0.0701 2888 54
@9 7 2 030 169 0.3783 16.51 0.04608 1.93 0.1167 2904 55
@5 10 2 018 249 03107 24.39 0.04657 213 0.0871 2934 6.1
Ivozio Complex—AV16-21 eclogite
@12 2797 190 0.07 013 03787 1.95 0.05159 1.87 09616 3243 59  Core
@15 1224 59 005 002 03859 198  0.05267 191 09619 3309 62 Core
@7 4281 793 019 0.0 03973 1.98 0.05352 1.87 0.9449 336.1 6.1 Core
@14 3151 228 007 001 03958 190  0.05383 1.88 0.9888 3380 62 Core
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Spotname U (ug/g) Th(ug/g) Th/U f206* Concordia diagram (2°*Pb corr.) 206ph/238y  +1¢ Comments
207pp/235y  +£10% 2%Pb/*2U +10% p Age (Ma)
@6 495 15 003 078 0.4035 5.99 0.05449 1.87 03128 3420 6.2 Core
@5 871 94 0.11 0.39 0.3957 341 0.05453 1.87 0.5499 3423 6.2 Core
@16 3467 257 007 001 0.4004 191 0.05470 1.89 09898 3433 6.3  Core
@8 2198 146 007 017 0.4017 229 0.05523 1.90 0.8279 3466 64  Core
@13 2000 123 006 0.02 04139 1.89 0.05635 1.87 0.9921 3534 6.4  Core
@1 2910 208 007 0.02 04203 1.89 0.05660 1.87 0.9888 3549 6.5 Core
@10 4297 334 008 002 0.4389 1.89 0.05964 1.88 0.9964 3734 6.8  Possible inheritance
@I1 1096 87 0.08 002 04570 2.16 0.06246 2.04 0.9473  390.5 7.7 Possible inheritance
@2 95 43 045 023 0.5007 2.74 0.06593 1.89 0.6887 411.6 7.5 Possible inheritance

Data were processed using the CAMECA-CIPS software. The dates that were not used for the age calculations shown in Figs. 3, 4 and 7 are reported in italics

206
? £206 = —ggzsemmen 5100

5.1.2 Micaschist AV16-45

Zircon grains are composed of a core with variable zoning
that is overgrown by a light grey, unzoned rim of maxi-
mum width of ~ 20 um (Fig. 3). Zircon rims have low Th/U,
between 0.01 and 0.05 (Table 4). Eighteen analyses on
zircon rims yield an early Permian age of 289.4+3.9 Ma.
The REE patterns of the rims show enrichment in HREE
(Gdy/Luy=0.01-0.08, Fig. 3 and Additional file 4) and
are characterized by a variable Eu negative anomaly (Eu/
Eu*=0.07-0.30). Zircon rim contains 3.4-20 pg/g Ti
that results in Ti-in-zircon temperature values scattering
between ~655 and~810 °C (Additional file 5). However,
titanite is the Ti-bearing phase in the HP assemblage, and
in absence of rutile relics, these have to be interpreted as
minimum temperatures.

Allanite grains are typically elongated in the direction
of the foliation, with a length up to 100 um and a width
of 20-30 um. In BSE they have a brighter core some-
times showing an internal zoning, and darker rims grow-
ing preferentially in the direction of the foliation (Fig. 4).
Th/U ratio ranges between 5.6 and 20.0. On the TW dia-
gram, the allanite U-Pb analyses concentrate in a clus-
ter due to the limited variation in the total 2*’Pb/>%Pb
and **®U/?*Pb (Table 3). The regression yields an initial
207pb/2%Pb of 0.8640.02 (20), which is comparable to
the expected model common Pb at 65 Ma (Stacey and
Kramers 1975). Due to the high per cent of initial Pb in
the analyses (94-96%) and the limited variation in the
total 2**U/?Pb among individual analyses, no intercept
age could be obtained for this sample with a regression in
the TW diagram.

5.1.3 Lws-micaschist AV16-51

Zircon grains recovered from this sample are character-
ized by the presence of rounded cores (one concordant
analysis at 346 = 8 Ma) with vary variable zoning patterns

overgrown by a light grey, unzoned rim of maximum
width of 20-30 pum (Fig. 3) with a large variation in Th/U
(0.01-0.36) (Table 4). The rim U-Pb analyses form a tight
cluster on the Concordia diagram with an early Permian
average age of 285.91+2.9 Ma. REE patterns of zircon rim
show enrichment of HREE with respect to MREE (Gdy/
Luy=0.01-0.13, Fig. 3 and Additional file 4) and a nega-
tive Eu anomaly (Eu/Eu*=0.11-0.51, one analysis Eu/
Eu*=0.67). Titanium content is typically between 1.8 and
20 pg/g (Additional file 4). The calculated Ti-in-zircon
temperature values scatter between~610 and~835 °C
(Additional file 5). However, this must be interpreted as
a minimum estimate as the buffering Ti phase in the Per-
mian assemblage is unknown (titanite is present in the
HP assemblage and contains no rutile relic).

5.1.4 Eclogite AV16-47

Zircon grains are rounded and characterised by internal
sector and fir-tree zoning (Fig. 6). No significant resorp-
tion and no overgrowth are observed. Uranium and Th
contents are low (6—16 and 1-6 pg/g, respectively) as typ-
ical of mafic rocks. The Th/U ratio ranges between 0.11
and 0.44 (Table 2). The 2°Pb/?*®U dates span from 263
to 293 Ma and result in a weighted age of 282.0 £4.0 Ma
with excess scatter (MSWD =2.4). The REE pattern of
the zircon is characterized by a steep increase from mid
to HREE (Gdy/Luy=0.01-0.02, Fig. 6 and Additional
file 4). Titanium concentrations are low (1.2-3.3 ug/g)
and the lack of quartz in the rock prevents the calculation
of meaningful Ti-in-zircon temperatures.

5.2 Ivozio Complex

5.2.1 Eclogite AV16-21

Only a few zircon grains could be recovered from
eclogite AV16-21. They are characterized by CC-dark
cores with weak oscillatory zoning. CC-bright rims are
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Total 207Pb/206Ph

Total 207Pb/206Pb

ellipses are 20

MALONE VALLEY
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Fig. 4 Allanite in samples from Malone Valley. Blueschist AV16-44: a, b Thin section BSE images of allanite (Aln) associated to glaucophane (GIn) and
epidote (Ep). ¢, d BSE images of allanite (Aln) in a grain mount. e Tera-Wasserburg plot for LA-ICP-MS U-Pb allanite analyses. Data-point error ellipses
are 20. Micaschist AV16-45: f-h Thin section BSE images of allanite (Aln) associated to phengite (Ph) in the main foliation. Garnet (Grt) and quartz
(Q2) are part of the HP mineral assemblage; albite (Ab) is retrograde. i Tera-Wasserburg plot for LA-ICP-MS U-Pb allanite analyses. Data-point error

typically <10 um thick (Fig. 7) and thus U-Pb and trace
element analysis was focused on the characterization of
the zircon cores. In the dated cores, Th/U ratio ranges
between 0.03-0.19 (Table 2). Zircon cores yield an early
Carboniferous average age of 340.7+6.8 Ma (Fig. 7,
weighted average plots are shown in Additional file 3).
Older dates were obtained in three cores and indicate the
presence of inherited components.

Trace element patterns of zircon cores show a steep
increase in REE with increasing atomic number, a strong
Ce positive anomaly and a very weak Eu anomaly (Fig. 7f,
Additional file 4). The few thin rims could not be ana-
lysed for trace elements. Zircon cores contain 2-7 pg/g
of Ti and the Ti-in-zircon thermometer (Watson et al.
2006) returns an avergae temperature of 663+18 °C
(1o). However, this has to be interpreted as a minimum
temperature because it is impossible to establish what
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MALONE VALLEY
AV16-44 blueschist

—— AV16-44 == Gregory et al. (2009)
(magmatic allanite)
Regis et al. (2014)
(eclogite facies allanite)
Boston et al. (2017)
(amphibolite/greenschist
facies allanite)
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105 \

104

103

allanite/chondrite
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La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Fig. 5 Allanite REE patterns in Blueschist AV16-44 from Malone
Valley (black lines). REE patterns are compared to those of magmatic
allanites from the Bergell Pluton (Gregory et al. 2009), of HP allanites
in a metapelite from the Mombarone area of the EMC (Regis et al.
2014) and of amphibolite to greenschist facies allanite rims in a

calcschist from Campolungo in the Central Alps (Boston et al. 2017)

the Ti-buffering phase was; the rutile present in the rock
is interpreted to be part of the later Alpine HP mineral
assemblage.

5.2.2 Blueschist AV16-53

Allanite in the blueschist AV16-53 is found mostly in
contact with glaucophane, often as inclusion, and to a
lesser extent in contact with garnet and phengite (Fig. 8).
Allanite cores are brighter in BSE images and are sur-
rounded by a darker, euhedral zoisitic rim. The Th/U
ratio ranges between 0.4 and 8.3 (Table 5). The regression
of the U-Pb analyses in a TW diagram defines a lower
intercept age of 62.944.2 Ma with an initial 2’Pb/>*Pb
of 0.80 £ 0.03 (20), which is slightly lower than the model
common Pb at 65 Ma (0.84, Stacey and Kramers 1975).

5.2.3 Eclogite AV16-57

Allanite in the eclogite AV16-57 is found only in corre-
spondence of the domains enriched in glaucophane and
phengite, while it is absent in the rest of the rock. The
BSE images show allanite cores that are brighter than
allanite rims (Fig. 8). The Th/U ratio is very variable,
between 0.7 and 16.7 (Table 5). The U-Pb analyses are
relatively rich in initial Pb and thus their regression in a
TW diagram defines an age with a relatively large uncer-
tainty of 55.3+7.3 Ma. The regression defines an initial
207ph/2%%ph of 0.83 £0.01 (20), which corresponds within
uncertainty to the model common Pb at 65 Ma (0.84, Sta-
cey and Kramers 1975).
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5.3 Chiusella Valley

5.3.1 Mn-rich quartzite VC10-04

Zircon grains in this sample are characterized by the
presence of cores generally displaying oscillatory or sec-
tor zoning, occasionally partially resorbed and overgrown
by one or two unzoned, discontinuous rims (Fig. 9). The
rim1 is dark grey and has a thickness up to 30 um; rim2
is slightly lighter in colour in the CC images, up to 5 pm
thick, and therefore dating was focused on core and rim1.
Zircon cores and riml, while different in morphology,
cannot be distinguished on the basis of their U-Pb dates.
Zircon core dates span between 291.8+3.5 Ma and
261.6 4.8 Ma (Table 6); the group of 11 older dates yield
an average age of 283.24+2.8 Ma. Zircon riml vary in
age between 281.6 +2.8 Ma and 274.6 +6.2 Ma (Table 6)
with an average of 278.8+3.6 Ma (Fig. 9, weighted aver-
age plots are shown in Additional file 3).

5.4 Monte Mucrone
5.4.1 Micaschist AV17-07
Zircon grains in this sample contain partially resorbed
cores with oscillatory zoning that are overgrown by one
or two unzoned rims (Fig. 10). The two rims are distinct
in composition and age, but hardly distinguishable in the
CC images. Zircon rim1 has a low Th/U of 0.01-0.03 and
yield an age of 289.44+4.5 Ma (Table 4). Rim1l analyses
are characterized by a flat M- to HREE pattern (Gdy/
Luy=0.06-0.30) and a moderate Eu negative anomaly
(Eu/Eu*=0.11-0.27, Fig. 10 and Additional file 4). Rim1
contains variable Ti (1.4-12.8 pg/g) and Ti-in-zircon
temperature values scatter between~610 and~755 °C.
However, all rutile in the sample may be Alpine, and this
temperature must be considered as a minimum value.
Zircon rim2 has a low Th/U ratio of <0.01 and a late
Cretaceous age of 67.4+1.9 Ma (Table 7, Fig. 10). This
external rim has lower HREE contents with respect to
riml, a flat HREE pattern (Gdy/Luy=0.16-0.30) and no
Eu anomaly (Eu/Eu*=1.00-1.12, Fig. 10 and Additional
file 4). Titanium content for the two analyses is 1.0 and
2.0 pg/g, yielding temperatures of~575 and~615 °C
(Additional file 5).

5.4.2 Eclogite AV17-16
This eclogite sample contains few, small (diameter of
50-80 pm) anhedral zircon crystals with lobate bound-
aries, that display a brighter core in CC images and a
darker, discontinuous rim (Fig. 10). Th/U ratio in both
cores and rims is between 0.06 and 0.56. Dating results
are scattered between 390 and 222 Ma, with four U-Pb
analyses concordant at 272+ 10 Ma (Table 4).

Light REE show a pronounced positive Ce-anomaly
(only two analyses had LREE detectable) and a slight neg-
ative Eu anomaly (Eu/Eu*=0.25-0.66, Fig. 10, Additional
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MALONE VALLEY
AV16-47 eclogite

206Pp/238U

Fig. 6 Zircon in eclogite AV16-47 from Malone Valley. a—e Selected CC images of analysed zircon grains. Scale bar in all images is 30 um. Measured
spots are shown (yellow circles) with the associated date (= 10 Ma). f REE patterns of zircons. Permian zircon crystals interpreted as magmatic have a
steep REE pattern. g Concordia plot of zircon dates and weighted average 2Pb/>*%U age. The green circle represents the calculated Concordia age
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file 4). All the analyses display a steep HREE enrichment
with respect to MREE; the Gdy/Luy value increases with
decreasing REE content (Gdy/Luy=0.05-0.01).

6 Discussion

6.1 Carboniferous magmatism

Zircon cores in eclogite AV16-21 from the Ivozio Com-
plex yield an age of 340.7+6.8 Ma. According to the
steep REE pattern, the plain zoning and the relatively
high Th/U ratio (0.03—0.19), these zircon cores are inter-
preted as magmatic, therefore yielding a crystallization
age for the Ivozio Complex gabbro. The calculated Ti-
in-zircon temperature (663 £ 18 °C) is too low to reflect
the solidus of the gabbro. Zircon from metamorphosed
mafic rocks has been reported to have low Ti contents
(e.g. 15-25 pg/g of Ti in magmatic zircon for metagab-
bros from the Lanzo massif, Kaczmarek et al. 2008),
while higher Ti contents (up to 100 pg/g, resulting in
temperatures up to ~ 1000 °C) have been described in zir-
con from not metamorphosed gabbros in oceanic crust
(Grimes et al. 2009). This anomaly might be due to Ti
loss during metamorphism, but further investigations are
required to clarify this issue. The lack of documentation
on zircon trace element in continental gabbros prevents

any comparison with data from gabbro emplaced in a
tectonic context similar to that of the SZ.

The obtained age overlaps with the crystallization age
of an Ivozio mafic rock of 355+ 9 Ma reported by Rubatto
(1998) and with the intrusion age of the metagabbro body
of Cima di Bonze (350 &4 Ma, Rubatto et al. 1999). Car-
boniferous magmatism of a similar age has been reported
in other portions of the Variscan chain, as extensively
reported by Ballévre et al. (2018) and Pohl et al. (2018).
In the nearby Ivrea Zone, which also represents a por-
tion of middle-to-lower Adriatic crust that escaped
Alpine subduction, a crystallization age of 355+6 Ma
was obtained for an igneous felsic granulite (U-Pb in zir-
con, Vavra et al. 1996) (Fig. 11). In the Belledonne massif,
U-Pb dating of zircon from trondhjemites gave an age of
367 +17 Ma (Ménot et al. 1988). In the internal part of
the Brianconnais Zone, U-Pb dating of zircon from the
Cogne diorite gave an age of 356 &3 (Bertrand et al. 2000;
Guillot et al. 2012), while an older age of 371+0.9 Ma
was proposed by Bergomi et al. (2017). In the Bohemian
massif, Sm—Nd whole-rock dating of gabbroic cumulates,
diabase dikes and pillowed volcanics, resulted in an age
of 351+16 Ma (Pin et al. 1988). Similarly, the protolith
of the Beja-Acebuches amphibolites and metagabbros in
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Fig. 7 Eclogite AV16-21, Ivozio Complex. a-e Selected CC images of analysed zircon grains. Scale bar in all images is 30 um. Measured spots are
shown (yellow circles) with the associated date (& 10 Ma). f REE patterns of zircon cores. g Concordia plot of zircon core dates and weighted
average “°Pb/?*®U age

the Iberian Massif is dated at 332—340 Ma (zircon U-Pb,
Azor et al. 2008).

The emplacement setting for the Carboniferous mafic
rocks is not straightforward. The Bohemian Massif and
the Beja-Acebuches are the only localities in the Variscan
belt where the Carboniferous magmatism is attributed to
an oceanic sequence. In the SZ, the Ivozio and Cima di
Bonze gabbro bodies possibly intruded the continental
basement during the Early Carboniferous (Rubatto 1998).
However, the contacts between the metagabbros and the
hosting metasediments are affected by the Alpine, and
likely the early Permian tectonic evolution; therefore, any
interpretation of those ages as related to the evolution of
the SZ must use caution. The Ivozio metagabbro, simi-
larly to what reported for the Cima di Bonze metagabbro
(Rubatto 1998), does not show clear evidence for zircon
growth during the early Permian as instead observed in
the metasediments (see below). Mineralogical or geo-
chronological evidence of a Permian metamorphism in
the Ivozio metagabbro are lacking. We can only specu-
late that the structural position of the Ivozio gabbroic
body during the Early Permian was such that this section
escaped significant high-temperature (HT) metamor-
phism or that re-equilibration at HT conditions might
have been limited by the lack of fluids.

6.2 Permian metamorphism and magmatism

The investigated metasediments from Malone Val-
ley (blueschist AV16-44, micaschist AV16-45 and Lws-
micaschist AV16-51), Chiusella Valley (Mn-rich quartzite
VC10-04) and Monte Mucrone (micaschist AV17-07)
contain zircon rims with an early Permian age (Fig. 11).
These rims are typically weakly zoned or unzoned; their
chemical composition is characterized by variable Th/U
ratios (0.01-0.36), a moderately steep HREE pattern
and negative Eu anomaly. Small zircon cores are often
rounded, with variable and complex internal zoning;
the few scattered ages obtained for these cores (~ 645 to
346 Ma) suggest a detrital nature. Therefore, the early
Permian zircon rims are interpreted as metamorphic
overgrowth. In the case of Mn-rich quartzite VC10-04,
we can speculate that the occurrence of two Permian zir-
con generations reflects multiple metamorphic events
at high-temperature/low-pressure conditions, the age of
which cannot be resolved (e.g. Manzotti et al. 2012). In
this sample, not all the zircon cores have been analysed,
and thus the presence of a detrital component cannot be
excluded.

The Permian zircon ages from the SZ metasediments
are consistent with the ages obtained from other meta-
sediments from the central part of the EMC (~296
to~285 Ma, Kunz et al. 2018) (Fig. 11). In all those
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Fig. 8 Allanite in samples from Ivozio Complex. Blueschist AV16-53: a—d Thin section BSE images of zoned allanite (Aln) with a zoisite rim (Zo),
associated to glaucophane (GIn) and, to a minor extent, to garnet (Grt) and phengite (Ph). Zircon (Zrn) < 10 um in size are present. Yellow circles
represent analysed spots. e Tera-Wasserburg plot for LA-ICP-MS U-Pb allanite analyses. Data-point error ellipses are 20. Eclogite AV16-57: f-h Thin
section BSE images of zoned allanite (Aln) associated to glaucophane (GIn) and phengite (Ph). Garnet (Grt) is fractured and partially resorbed. Quartz
(Q2) and pum-size zircons (Zrn) are also present. Yellow circles represent analysed spots. i Tera-Wasserburg plot for LA-ICP-MS U-Pb allanite analyses.

metasediments, the textures indicate limited zircon dis-
solution (detrital rounded cores are commonly pre-
served) and new growth during HT metamorphism.
These ages were attributed to the regional late Paleozoic
HT metamorphism recorded in zircon across various
Adpriatic units of the Western Alps (EMC and IIDK in the
SZ, Mt. Emilius Klippe and Valpelline series, Kunz et al.
2018 and references therein).

In the samples from Malone Valley, the metamor-
phic zircon age of the metasediments (292.3+11.0 Ma

to 285.91+2.9 Ma) overlaps with the age of the zircon
in the eclogite AV16-47 (282.0+4.0 Ma). The age of the
zircon in the mafic rock is interpreted as magmatic due
to the steep REE pattern and the internal sector and fir-
tree zoning. In the Monte Mucrone eclogite AV17-16
zircon cores show a variably steep M- to HREE pattern
and a weak negative Eu anomaly, similar to REE patterns
described for magmatic zircon in metagabbros from the
Lanzo massif (Kaczmarek et al. 2008). They are there-
fore interpreted as magmatic with a crystallization age
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Fig.9 Zircon in Mn-rich quartzite VC10-04 from Chiusella Valley. a-f Selected CC images of analysed zircon cores. Scale bar in all images is 30 um.
Measured spots are shown (yellow circles) with the associated date (£ 10 Ma). g Concordia plot of zircon core dates and weighted average
206pk/238 age. h-I Selected CC images of analysed zircon rim1. Scale bar in all images is 30 um. Measured spots are shown (yellow circles) with the
associated date (4 10 Ma). m Concordia plot of zircon rim1 dates and weighted average 2*Pb/?*%U age

of 271+£10 Ma, which is slightly younger than the first
metamorphic rim of the associated metasediment AV17-
07 (289.4£4.5 Ma). However, the eclogite crystallization
age is calculated on only few (n=4) data associated to a
large uncertainty. The age of zircon metamorphic rim1 in
sample AV17-07 corresponds to the intrusion age of the
granitic body of Monte Mucrone, dated at ~297-285 Ma
(Paquette et al. 1989; Bussy et al. 1998; Rubatto et al.
1999; Cenki-Tok et al. 2011). Magmatic zircon cores from
a similar eclogitic boudin within the Monte Mucrone
metasediments yielded and age of 285+7 Ma (Rubatto
et al. 1999), which overlaps with the granite intrusion age
and is within uncertainty of our estimate. These samples

are fully recrystallized under eclogite-facies conditions
and thus the age of the relict magmatic zircon should be
considered a minimum, as Pb loss during Alpine meta-
morphism cannot be excluded. Consequently, scattered
dates significantly younger than the average ages are
interpreted as resulting from Pb loss during a later meta-
somatic or metamorphic event.

The early Permian magmatic and metamorphic ages
in the investigated samples are coeval with the bimodal
Permian magmatism at ~295-280 Ma recorded all across
the Western Alps (Paquette et al. 1989; Bussy et al. 1998;
Rubatto et al. 1999; Monjoie et al. 2007; Cenki-Tok et al.
2011; Bergomi et al. 2017; Ballévre et al. 2018; Manzotti
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Table 6 U and Pb LA-ICP-MS zircon data of the Mn-rich quartzite VC10-04 from Chiusella Valley

Spot name Concordia diagram 206ppy/238y +10 Comments
207ppy /235y +10% 206p, /238y +106% P Age (Ma)
Chiusella Valley-VC10-04 Mn-rich quartzite
04mrc1i 0316 3.813 0.043 0.884 0.15 273.6 2.7 Rim1
04mrc13 0334 3.850 0.043 1.134 012 2744 3.1 Rim1
03mrb06 0317 2.707 0.044 0.758 0.08 276.9 2.8 Rim1
03mrc11 0323 2.601 0.044 0.689 0.09 277.7 39 Rim1
03mrc07 0315 2.987 0.044 0.884 0.10 280.6 2.8 Rim1
03mrd12 0335 3.044 0.045 0.820 (OA N 281.6 2.8 Rim1
04mrb11 0312 2.735 0.045 0.782 0.09 2838 2.8 Rim1
03mrc06 0.306 6.537 0.041 1.846 0.28 261.6 4.8 Core
04mrcl4 0.289 4.820 0.042 1.465 0.14 263.7 3.9 Core
03mrd06 0.309 2.542 0.043 1.010 0.07 268.3 2.7 Core
03mrd11 0.320 2.020 0.043 0.904 0.03 273.8 2.7 Core
04mrb07 0.315 3.365 0.044 0.836 0.13 275.0 2.8 Core
03mrb07 0.320 2.652 0.044 0.828 0.06 2755 2.8 Core
03mrd07 0314 2519 0.044 1.086 0.05 276.7 3.0 Core
04mrci2 0.316 3.701 0.044 0.875 0.14 276.8 2.8 Core
04mrc06 0.326 6.074 0.044 1.408 0.18 2777 2.8 Core
04mrb13 0.307 2.570 0.044 0.656 0.09 278.2 2.8 Core
03mrb05 0316 4.493 0.044 1.195 0.14 279.1 33 Core
03mrc10 0.335 4174 0.044 1.182 0.14 279.3 33 Core
04mrc05 0311 4.540 0.045 1.191 0.15 281.7 34 Core
03mrc12 0333 3.994 0.045 1.151 013 282.0 32 Core
04mrb05 0317 2670 0.045 0.907 0.08 2826 2.8 Core
04mrb12 0311 2530 0.045 0576 0.09 2844 2.8 Core
04mrc07 0315 3913 0.045 0.908 0.15 286.4 29 Core
04mrb06 0334 2480 0.045 0.833 0.07 286.5 29 Core
03mrd05 0.334 2777 0.046 1.233 0.07 2885 3.6 Core
03mrc05 0333 4.204 0.046 1.205 0.13 291.8 35 Core

Data were processed using Lamtool. The dates that were not used for the age calculations shown in Fig. 9 are reported in italics

et al. 2018) and with the age of the Mafic Complex forma-
tion in the Ivrea Zone (zircon in diorite: 285+7/—5 Ma,
Pin 1986; zircon in gabbro: 288 4 Ma, Peressini et al.
2007; zircon in felsic and mafic intrusive: 282—-286 Ma,
Karakas et al. 2019) (Fig. 11). We conclude that contem-
poraneous Permian metamorphism and bimodal mag-
matism occurred in the SZ, similarly to what proposed
for the Dent Blanche Tectonic System (Manzotti et al.
2018) and the Ivrea Zone (Ewing et al. 2013; Guergouz
et al. 2018) (Fig. 11). This indicates that early Permian
magmatism and HT metamorphism are linked to the
same stage of extensional tectonics (e.g. Ewing et al
2015; Manzotti et al. 2018) with high thermal regime that
pervasively affected the South-Alpine and Austroalpine
basements (e.g. Voshage et al. 1987; Vavra et al. 1996;
Vavra and Schaltegger 1999; Mayer et al. 2000; Schuster
and Stiiwe 2008; Petri et al. 2017; Kunz et al. 2018), the
Dent Blanche Tectonic System (e.g. Manzotti et al. 2012,

2018; Kunz et al. 2018) and the Brian¢onnais basement
(Ballevre et al. 2018). This event may be related either to
the collapse of the Variscan belt or represents a separate
tectonometamorphic cycle from the Variscan orogeny
(e.g. Ballevre et al. 2018), as already identified in the East-
ern Alps (Schuster and Stiiwe 2008).

The allanite from the blueschist AV16-44 from Malone
Valley returns an age of 241.1+£6.2 Ma. There is little
constraint on the conditions of allanite formation in this
sample. No mineralogical relicts prior to Alpine meta-
morphism are present in the sample, apart from garnet
cores and zircon grains, both interpreted as associated to
the early Permian HT metamorphism. The small dated
allanite crystals do not contain primary inclusions. The
flat REE patterns of the dated allanite (Fig. 5) are dis-
tinct from those of magmatic allanite (Gregory et al.
2009) or of metamorphic allanite growing at HP condi-
tions (quartz-rich micaschist, Regis et al. 2014). There is
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Fig. 10 Zircon in samples from Monte Mucrone. Micaschist AV17-07: a—f Selected CC images of analysed zircon grains. Scale bar in all images is

30 um. Measured spots are shown (yellow circles) with the associated date (£ 10 Ma). The two grains yielding Alpine ages are marked by a red
frame. g REE patterns of zircon domains of Permian age (rim1, grey lines) and of Alpine Alpine age (rim2, red lines). h Concordia plot for zircon rim1
and weighted average “*Pb/**®U age. The green circle represents the calculated Concordia age. i Concordia plot for zircon rim2 and weighted
average “°Pb/?*8U age. The green circle represents the calculated Concordia age. Eclogite AV17-16: j-m CC images of the recovered and analysed
zircon grains. Scale bar in all images is 30 pm. Measured spots are shown (yellow circles) with the associated date (£ 10 Ma). n REE patterns of zircon

cores. o Concordia plot for zircon core and weighted average 2%Pb/***U age. The green circle represents the calculated Concordia age
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Table 7 U, Th and Pb SIMS zircon data of the micaschist AV17-07 from Monte Mucrone that yield the age of the Alpine HP

metamorphic event

Spotname U (ug/g) Th(ug/g) Th/U f206® Concordia diagram (2°®Pb corr.) 206pp/238y  +16 Comments
207pp/235y  +£106% 2%Pb/38U x10% p Age (Ma)
Monte Mucrone-AV17-07 micaschist
@13 207 1 0.01 2.58 0.06260 8.13 0.01023 2.12 0.2629 656 14 Rim2
@18 199 1 0.01 2.25 0.06597 4.35 0.01024 222 04904 65.7 15 Rim2
@1 241 2 0.01 172 0.06392 432 0.01032 2.02 04221 662 13 Rim2
@25 198 1 0.01 2.05 0.07004 443 0.01046 2.1 04485 67.1 14 Rim2
@34 339 2 0.01 0.69 0.07086 3.19 0.01056 1.70 05095 677 1.1 Rim2
@14 178 1 0.01 232 0.07012 4.65 0.01098 2.19 04475 704 15 Rim2
@23 287 1 0.01 0.36 0.07005 427 0.01124 2.89 06531 720 2.1 Rim2

Data were processed using SQUID 2.50

2 9% of common 2°Pb on total 2°°Pb

a similarity between the composition of allanite in our
sample with that of allanite equilibrated at amphibolite
to greenschist facies in metasediments from the Cen-
tral Alps (calcschist, Boston et al. 2017), but the effect of
different bulk rock compositions cannot be quantified.
Therefore, we suggest that this allanite is not associated
to a regional magmatic event and could reflect a metaso-
matic/metamorphic event related to the high geothermal
gradient during Permo-Triassic extension.

The occurrence of scattered,<270 Ma dates in zir-
con from the EMC has been previously described in
the Monte Mucrone area (Rubatto 1998) and in the Lys
Valley area (Kunz et al. 2018) in the central EMC. The
observed textures related to fluid-assisted recrystalliza-
tion (i.e. complete resetting of the chemical/isotopic sys-
tem occurring at subsolidus conditions, Rubatto 2017)
and U, Th and radiogenic Pb depletion in the Permian zir-
con grains have been attributed to late Permian and Tri-
assic metasomatic stages (266 +4 Ma and 221414 Ma;
Rubatto 1998; Kunz et al. 2018). Based on the available
geochronological data, it is possible that multiple meta-
somatic events affected the SZ during the late Permian
to Triassic extension in a setting with high geothermal
gradients and thus favourable to mineral recrystalliza-
tion. Post 270 Ma zircon ages attributed to metasomatic
events have also been reported for the Ivrea Zone (e.g.
Vavra et al. 1996; Vavra and Schaltegger 1999). In the
Ivrea Zone, sporadic intrusions are dated in the Triassic
(granitic dikes at 251 +2 Ma, Wright and Shervais 1980;
the Finero Mafic Complex at 232+3 Ma, Zanetti et al.
2013; and syenite dikes 225413 Ma, Stéhle et al. 1990),
alkaline pegmatoids at the Triassic-Jurassic boundary
(210-190 Ma, Oppizzi and Schaltegger 1999; Schalteg-
ger et al. 2008; 2011) and carbonate rocks related to sodic
alkaline intrusions and amphibole mantle peridotites in
the early Jurassic (187 £2.4 and 1924+2.5 Ma, Galli et al.

2019). This further supports a high geothermal gradi-
ent and circulation of fluids in the middle to lower crust
of the Sesia and Ivrea zones between ~250 and 190 Ma,
also enhanced by the intense deformation affecting these
domains in the Triassic and the Jurassic (e.g. Vavra and
Schaltegger 1999; Ewing et al. 2013, 2015).

6.3 Alpine HP metamorphism
Among all the investigated samples, Alpine zircon
rims were only found in the micaschist AV17-07 from
Monte Mucrone (Figs. 10, 11). They are characterized
by a relatively flat HREE distribution, lower HREE con-
tent compared to the other rim analyses and absence of
Eu anomaly, which is a typical pattern for HP zircon in
eclogites (Rubatto 2017 and references therein). The age
of these zircon rims (67.44+1.9 Ma) is therefore inter-
preted as dating eclogite-facies metamorphism. Ti-in-zir-
con thermometry of the Alpine rims gives temperatures
of 575-615 °C, in line with the peak temperature pro-
posed for this area (520-600 °C, Zucali et al. 2002).
Metamorphic zircon formation in sub-solidus condi-
tions is not uncommon in HP rocks, but certainly not
ubiquitous. Although restricted zircon net growth is
expected at HP from a mass-balance point of view (Kohn
et al. 2015), its formation can be generally ascribed to dis-
solution—precipitation enhanced by alkaline fluids (e.g.
Rubatto 2017) and thus may be locally controlled. Indeed
in the SZ the presence of Alpine zircon rims occurs only
locally (i.e. in the central part of the EMC), and it is mainly
documented in metasediments (Rubatto et al. 1999, 2011;
Regis et al. 2014; Giuntoli et al. 2018a). According to petro-
logical studies, the central portion of the EMC is the area
that experienced the highest T conditions during Alpine
subduction (up to 650£50 °C, Giuntoli et al. 2018b),
while the southern EMC reached maximum T of 500 °C
(e.g. Pognante 1989a, b). Moreover, in the central portion
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of the EMC, the occurrence of multiple fluid pulses at HP
has been inferred based on petrography and major ele-
ment composition of HP metamorphic minerals such as
garnet, phengite and amphibole (Konrad-Schmolke et al.
2011; Giuntoli et al. 2018b), while this is not the case in the
southern EMC, where the main hydration stage occurred
prior to or in the very early stage of subduction (Vho et al.
2020). While the solubility of Zr in aqueous fluids is low, it
increases with increasing Si contents and alkalinity of the
fluids (Ayers et al. 2012), both of which rise significantly
with pressure (Hermann and Rubatto 2014; Rubatto 2017).
The combination of slightly higher T conditions and more
fluid circulation at HP in the central EMC with respect to
the southern EMC might explain the paucity of HP zircon
in the latter, compared to the central part of the EMC. In
the area of Monte Mucrone, circulation of Si- and alkali-
rich fluids at HP has been proposed to explain peculiar
atoll and mushroom garnet textures (Robyr et al. 2013)
and phengite veins in mafic eclogites (Vho et al. 2020), and
such fluids might have locally enhanced zircon dissolution
and recrystallization in this area. The 67.4+ 1.9 Ma age for
the HP zircon rims from Monte Mucrone overlaps within

error with the eclogite-facies age of zircon rims in an
eclogitic boudin from the same area (6545 Ma, Rubatto
et al. 1999). Some of the Rb—Sr ages of white mica by Inger
et al. (1996) in samples from Monte Mucrone and the
nearby Mont Mars are also at the Cretaceous-Paleocene
boundary (Fig. 1). In Monte Mucrone, Rb—Sr and Ar—Ar
age analysis on single minerals and whole rock by Ober-
hénsli et al. (1985) range from 62+3 Ma to 85+1 Ma,
while Th-Pb single dates of allanite by Cenki-Tok et al.
(2011) range between 66+3 Ma and 88+1 Ma. Older
Cretaceous HP ages of 75—-85 Ma are also recorded in the
central EMC by zircon and allanite (Rubatto et al. 2011;
Regis et al. 2014) together with ~65 Ma ages. In the Cima
di Bonze area (Fondo slice according to the definition of
Regis et al. 2014), it has been proposed that a protracted
involvement of parts of the Sesia crust in the subduction
system led to two distinct HP stages (Yo-Yo subduction,
Rubatto et al. 2011); it remains to be clarified if whether or
not this is also the case for the Monte Mucrone rocks.

In the southern EMC, constraints on the age of the HP
metamorphism are scarce and mostly obtained by phen-
gite Rb—Sr dating (Fig. 1). No Cretaceous dates were found
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in zircon from this area as well as in the Ivozio Complex.
In the case where Alpine zircon rims are rare, allanite can
assist in constraining the time of the HP metamorphism
(e.g. Rubatto et al. 2011; Regis et al. 2014). In the Malone
Valley micaschist AV16-45, allanite is present in the main
foliation associated with phengite (Fig. 4), but the high
content of initial common Pb prevented the age from
being constrained. Further investigation is necessary to
better constrain the timing of the HP metamorphism in
this area.

Alpine allanite was dated in the blueschist AV16-53
and in the eclogite AV16-57 from Ivozio Complex. In
both samples, allanite coexists with glaucophane. In sam-
ple AV16-53 glaucophane grains are interpreted to have
grown in equilibrium with garnet, whereas in sample
AV16-57 textural observations indicate that glaucophane
and phengite post-date the static growth of omphacite
and garnet (see above). Clinopyroxene relics in sample
AV16-53 are interpreted as pre-Alpine remnants and
the glaucophane as part of the prograde-to-peak mineral
assemblage together with garnet and zoisite (1.2-1.8 GPa
and 450-550 °C, Zucali and Spalla 2011). The allanite age
of 62.9+4.2 Ma is therefore interpreted as dating a pro-
grade stage close to the peak conditions (1.8 GPa, 520—
600 °C). This age overlaps with the zircon age of 65+ 3 Ma
obtained in the surrounding micaschists by Rubatto et al.
(1999) and interpreted as the HP peak age. In sample
AV16-57, omphacite and garnet form the peak assem-
blage, and amphibole and phengite form at post-peak, but
still HP, conditions (1.5-1.8 GPa, 500-600 °C, Zucali and
Spalla 2011). The allanite age of 55.3+7.3 Ma is associated
to such post-peak stage, likely characterized by ingress of
fluid in the eclogite as suggested by the presence of local-
ised glaucophane+ phengite pods and veins in which
allanite was found. Fluids can mobilize significant amount
of Pb; this might explain the higher common Pb content
in allanite from sample AV16-57 with respect to that from
sample AV16-53 (Table 5). The ages of the prograde meta-
morphism and of the incipient retrograde stage are not
resolvable, but they assist in constraining the timing of the
metamorphism of the Ivozio Complex. In the same area,
an age of 764+1 Ma was obtained by U-Pb zircon dating
in a vein (Rubatto et al. 1999) and was attributed to a low-
pressure stage. A more complete dataset would be needed
to confirm this hypothesis and to clarify if those zircon
grains crystallized during the prograde path, as proposed
by Rubatto et al. (1999), or if the Ivozio Complex recorded
a more complex subduction history characterized by two
subsequent HP peaks as described for Cima di Bonze
(Rubatto et al. 2011; Regis et al. 2014).

Page290f33 24

7 Conclusions

In the Sesia Zone, three distinct magmatic and meta-
morphic events have been recorded and their age can be
retrieved by in situ dating of zircon and allanite grains
from various rock types.

1 The Ivozio mafic Complex intruded at 340.7 6.8 Ma
as part of an early Carboniferous magmatic phase
that is also recorded by the Cima di Bonze gabbro,
in the Ivrea Zone and in other portions of the Vari-
scan belt. In the Ivozio and Cima di Bonze metagab-
bros, mineralogical or geochronological evidence of a
Permian metamorphism are lacking, while they have
been pervasively overprinted at HP conditions dur-
ing Alpine subduction.

2 Early Permian magmatism and HT metamorphism
are extensively recorded across the Sesia Zone. Com-
bined with previous data, our results suggest that
magmatism and metamorphism occurred roughly
simultaneously. This concurs with similar scenarios
proposed for other closely related tectonic units,
e.g. the Ivrea Zone and the Dent Blanche Tectonic
System, indicating that a high-thermal regime with
associated magmatism broadly affected this portion
of the future Adriatic continental margin during the
early Permian.

3 Late Cretaceous to Paleocene HP metamorphism is
associated to Alpine subduction in the Sesia Zone.
In the EMC, mineral assemblages are intensively re-
equilibrated at HP conditions, but this event is rarely
recorded in zircon. Zircon rims yielding Alpine ages
were found only in one sample from Monte Mucrone
in the central portion of the EMC, while they are
lacking in the southern EMC. It is speculated that
zircon dissolution and growth was locally enhanced
by the combination of slightly higher T conditions
and more pervasive fluid circulation at HP in the
central EMC with respect to the southern EMC. This
would also justify the restricted distribution of pub-
lished Alpine zircon ages, limited to the central area
of the EMC, as due to a paucity of Alpine metamor-
phic rims in zircon grains from other localities. In
the absence of Alpine zircon rims, dating of allanite
(55.3£7.3 Ma, 62.9+4.2 Ma, Ivozio Complex) con-
firms metamorphism at the Cretaceous-Paleocene
boundary.
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