
ACS = acute chest syndrome; GPx = glutathione peroxidase; GSH = reduced glutathione; ICAM = intercellular adhesion molecule; NF-κB = nuclear
factor-κB; NO = nitric oxide; NOS = nitric oxide synthase; PMN = polymorphonuclear leukocyte; RBC = red blood cell; SCD = sickle cell disease;
TBARS = thiobarbituric acid-reactive substance; VCAM = vascular cell adhesion molecule; VOC = vaso-occlusive crisis; WBC = white blood cell.
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Introduction
ACS is an important cause of morbidity and mortality in
SCD, occurring in up to 45% of patients and recurring in up
to 80% of those afflicted [1,2]. The hallmark pathologic
event during ACS is vaso-occlusion, the etiology of which is
probably multifactorial. One of the mechanisms responsible
for vaso-occlusion is abnormal adherence of sickle RBCs,
WBCs, and/or platelets to the vascular endothelium.
Although the factors that lead to increased cellular adhesion
and vascular damage are unclear, one possible explanation
is that, during local vaso-occlusion, areas of ischemia/reper-
fusion develop. During periods of reperfusion, there is
increased production of oxidizing molecules such as O2

–,
H2O2, •OH radical and ONOO– [3]. These compounds lead
to the activation of second messengers such as nuclear
factor-κB (NF-κB), resulting in upregulation of endothelial
adhesion molecules. Adhesion molecules, such as vascular
cell adhesion molecule (VCAM)-1 and intercellular adhesion
molecule (ICAM)-1, facilitate binding of sickle RBCs and

WBCs to the vascular endothelium, and thus may play a
role in the development of vaso-occlusion [4–7]. In addition,
oxygen-related species can directly injure the endothelium
by peroxidation of the lipid membrane and/or DNA fragmen-
tation, potentially leading to cellular apoptosis [8,9].

There is a growing body of literature that suggests that
patients with SCD are subjected to increased oxidative
stress, particularly during vaso-occlusive crises (VOCs)
and ACS. Osarogiagbon et al [10] demonstrated that
transgenic sickle cell mice had higher levels at baseline of
markers of oxidative stress, such as ethane excretion and
•OH radical generation, than did their normal counterparts.
During exposure to hypoxia, this sickle cell mouse exhibits
evidence of ischemia/reperfusion injury, which is charac-
terized by increased oxygen radical formation, and leuko-
cyte adherence and emigration [5,10]. In addition,
ONOO– formation occurs within the renal tubular epithe-
lium with associated cellular apoptosis [11].
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In human studies [12,13], levels of thiobarbituric acid-
reactive substances (TBARSs) indicated that lipid peroxi-
dation occurs in sickle erythrocytes at baseline. In
addition, we observed a ninefold increase in the plasma
levels of F2 isoprostanes, a stable marker of lipid peroxida-
tion, in the plasma of ACS patients as compared with that
of normal volunteers (Klings ES et al, unpublished data).
These findings suggest, both in humans and in mouse
models of SCD, that there is increased oxidative burden
and that alterations in the redox state may play a role in the
development of vaso-occlusion. The source of oxygen rad-
icals in these patients is probably multifactorial, because
RBCs, WBCs, and the endothelium could each contribute
to their aberrant metabolism. We review the role of each
of these cell types in the generation of oxygen radicals,
and the effects that these molecules have on cellular
metabolism in SCD.

Role of sickle red blood cells in oxidant
production
Hemoglobin S as a source of oxidants
The RBC is an important source of oxygen-related radicals
in SCD. Hebbel et al [14], in 1982, demonstrated that
sickle RBCs produce greater quantities of O2

–, H2O2 and
•OH than do normal RBCs. Additionally, sickle RBCs at
baseline exhibit increased levels of TBARSs [12,13], sug-
gesting that they are targets for oxidative stress. Although
an evaluation of oxidant production by RBCs has not been
conducted in SCD patients with ACS, data from mouse
models of ACS [5,10] suggest that ischemia/reperfusion
injury can occur in this setting.

Within RBCs, one of the mechanisms of O2
– formation is

via the deoxygenation of hemoglobin. During deoxygena-
tion, there is a transfer of electrons between Fe and O2,
leading to the production of O2

–. Auto-oxidation of hemo-
globin, which occurs to a small extent physiologically,
leads to the production of methemoglobin and O2

–

[15,16]. Because hemoglobin S auto-oxidizes at 1.7 times
the rate of hemoglobin A, SCD patients may have a higher
propensity for oxidant production [12]. Once hemoglobin
is subjected to oxidant damage, it denatures and precipi-
tates; these events increase its susceptibility to auto-
oxidation [17]. Because of these findings, it has been
hypothesized that the production of oxidants by RBCs
would be greater than that observed at baseline.

Effects of oxidant production on red blood cells
Within the RBC, one of the targets of oxidant damage is
the plasma membrane. In the presence of an O2

– generat-
ing system Fe(III) is reduced to Fe(II), with subsequent for-
mation of •OH from H2O2 [16]. The hydroxyl radical
oxidizes unsaturated esterified membrane lipids, resulting
in changes in fluidity of the bilayer. Additionally, there is
increased ion permeability, inactivation of membrane
enzymes and receptors, and covalent cross-linking of lipid

and protein membrane constituents [18]. Membrane lipid
peroxidation, measured by TBARS production, is elevated
in sickle RBCs at baseline [13,19,20]. In addition to being
markers for oxidative stress, lipid peroxidation products
such as malondialdehyde have additional toxic effects
because of their ability to react with proteins, nucleic
acids, and lipids [16].

Once molecules such as O2
– and H2O2 are formed, they

are metabolized by antioxidant enzyme systems, such as
superoxide dismutase, catalase, and glutathione peroxi-
dase (GPx), to O2 and H2O (Fig. 1) [16,21,22]. Schacter
et al [23] and Gryglewksi et al [24] demonstrated that
superoxide dismutase and catalase levels and activity are
diminished in sickle RBCs at baseline; other investigators
have found that GPx activity is reduced [25]. Together,
these findings suggest that oxidants formed by sickle
RBCs are less likely to be removed effectively. The activi-
ties of these antioxidant enzyme systems have never been
directly studied during ACS, however. Nevertheless, it is
hypothesized that a decrease in antioxidant defense
mechanisms combined with increased production of
oxygen-related molecules in sickle RBCs, at baseline and
particularly during crisis, is responsible for the increased
oxidant burden observed in these erythrocytes.

Role of white blood cells in oxidant
production in acute chest syndrome
Although SCD is a genetic disorder of the hemoglobin mol-
ecule, there is a growing body of evidence that suggests

Figure 1

Mechanisms of oxidant production in sickle RBCs. Sickle RBCs,
through the auto-oxidation of hemoglobin (Hb)S, produce O2

–, which
is metabolized to H2O2 by superoxide dismutase (SOD). H2O2 is then
metabolized to O2 and H2O by catalase and GPx. Deficiencies in
SOD, catalase, and GPx in sickle RBCs lead to increased O2

– and
H2O2 production. GSSG, oxidized glutathione.
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that WBCs, particularly polymorphonuclear leukocytes
(PMNs), are abnormal in this disease as well. Peripheral
WBC counts are elevated in VOC and ACS, and WBC
counts greater than 15,000 are associated with increased
mortality [26,27]. Additionally, sickle PMNs at baseline
have increased expression of the high-affinity Fc receptor
CD64; this receptor is even more pronounced during
crisis [28,29]. In addition to being a marker of PMN activa-
tion, CD64 appears to play a role in the adherence of
sickle PMNs to the vascular endothelium [28]. When
PMNs become activated or adherent to the endothelium,
they can produce oxidants such as O2

– and H2O2 through
the activation of enzymes such as myeloperoxidase [30].
In a transgenic sickle cell mouse model, induction of acute
lung injury was associated with increased myeloperoxi-
dase activity as compared with wild-type mice, suggesting
that the development of ACS in SCD may be accompa-
nied by PMN infiltration into the lungs [31].

SCD patients have increased levels of the PMN
chemokine IL-8 during VOC, suggesting that during crisis
there is increased PMN recruitment [32]. Additionally,
PMNs from SCD patients at baseline have increased
myeloperoxidase activity [33]. Although not directly mea-
sured in human ACS, demonstration of increased
myeloperoxidase activity in sickle WBCs at baseline and
in transgenic mice during crisis suggests that this enzyme
may play a role in oxidant generation by PMNs in ACS. In
addition, sickle PMNs generate nitric oxide (NO) and O2

–

during crisis [34], and these molecules can react to form
ONOO–. These data suggest that, in addition to increased
activation, PMNs in SCD patients may have a greater
propensity toward oxidant generation. Finally, when incu-
bated with sickle RBCs, PMNs exhibit increased adher-
ence to these RBCs with a resultant increase in
production of oxidants, as measured by 2′,7′-dichloro-
fluorescein diacetate fluorescence [35].

Role of the endothelium in oxidant
production during acute chest syndrome
In addition to being a potential target for oxidative
damage, the vascular endothelium may play a primary role
in the generation of oxidants. Sultana et al [6] demon-
strated that coincubation of sickle RBCs with human
umbilical vein endothelial cells resulted in lipid peroxida-
tion, as measured by TBARSs, and transendothelial migra-
tion of monocytes. Additionally, we demonstrated that
coincubation of plasma from ACS patients with bovine
pulmonary artery endothelial cells resulted in formation of
ONOO– within the vascular endothelium [36]. We also
demonstrated [36] that there are decreases in the antioxi-
dant thiols and glutathione reductase system in bovine
pulmonary artery endothelial cells after coincubation with
plasma from ACS patients. These findings suggest that
the endothelium is more susceptible to oxidant-related
damage during ACS.

These in vitro findings may be biologically relevant,
because endothelial production of oxidants has been
demonstrated in vivo using a transgenic mouse model of
SCD [5]; exposure of these mice to hypoxia resulted in
formation of oxidants within the vascular endothelium of
the cremaster muscle. Although endothelial production of
oxidants is difficult to measure directly in human disease,
these in vitro and in vivo data suggest that the endothe-
lium of the pulmonary arteries may be involved in oxidant
production during ACS.

Vascular endothelium as a target for oxidant
damage
Although there appears to be increased oxidant production
and decreased antioxidant defense mechanisms in SCD,
how this relates to the pathophysiology of ACS has not
been elucidated. One mechanism responsible for vaso-
occlusion is the adhesion of sickle RBCs to the vascular
endothelium. It is hypothesized that, in part, this occurs
secondary to endothelial damage and increased adhesion
molecule expression resulting from increased oxidant
burden. The vascular endothelium appears uniquely sensi-
tive to damage from oxidizing molecules produced during
VOC and ACS. One mechanism by which this may occur
is via deactivation of NO (Fig. 2). Several studies have sug-
gested that alterations in NO metabolism occur during
SCD, particularly during VOC or ACS.

It was demonstrated that plasma NO levels are decreased
in VOC and correlate with decreases in L-arginine [37]
and increases in soluble VCAM-1 [38], a molecule that is
implicated in adhesion of sickle RBCs to the endothelium.
Rees et al [39] found that, compared with control individu-
als, plasma nitrite (NO2

–) levels are elevated in SCD
patients during crisis; however, these levels were not sig-
nificantly different from those in SCD patients at baseline.
Lopez and coworkers [40,41] demonstrated that, although
initial NO levels in VOC patients correlate inversely with
pain score, sequential values are not predictive of clinical
course. Additionally, interactions between sickle RBCs
and the endothelium lead to abnormal vascular responses
to NO in SCD. In two models of SCD, aortic vascular
strips failed to relax when stimulated with acetylcholine
[42] and infusion of the nitric oxide synthase (NOS)
inhibitor NG-nitro-L-arginine methyl ester resulted in
decreased cerebral blood flow [43].

One possible explanation for the conflicting results regard-
ing NO metabolism is that the NO that is produced is sub-
sequently deactivated. NO, an endogenous vasodilator
and inhibitor of platelet aggregation, is produced by a
variety of cell types, including vascular endothelium,
neurons, macrophages, and smooth muscle cells [44–46].
Additionally, by preventing metal catalyzed lipid oxidation,
NO can act as an antioxidant [44]. It is formed from L-argi-
nine by a family of enzymes termed the NOSs. Three iso-



forms of this enzyme exist [46,47]: constitutive neuronal
NOS, endothelial NOS, and inducible NOS. Unfortunately,
the beneficial actions of NO are often mitigated because of
preferential shunting toward toxic metabolites such as
NO2

–, nitrate (NO3
–), and ONOO– [47–49]. This occurs

rapidly in the presence of oxygen and oxygen-related mole-
cules such as O2

– and H2O2; specifically, NO reacts with
O2

– rapidly to form ONOO–, which exists in equilibrium with
peroxynitrous acid (ONOOH). Because the half-life of
ONOO– is very short (approximately one second), most of
its toxic effects occur via reaction products of ONOOH,
specifically •OH and NO2•, molecules that are implicated in
fatty acid oxidation and nitrosative stress via nitration of aro-
matic amino acids [50]. Production of oxygen radicals
results in peroxidation of the lipid membrane, and may pre-
dispose the endothelial cell to apoptosis [9].

In addition to decreasing the bioavailability of NO, free
radicals can contribute to vaso-occlusion through pro-
duction of the potent vasoconstrictor endothelin-1. Expo-
sure of cultured human endothelial cells to RBCs sickled
in vitro results in a fourfold to eightfold induction of
endothelin-1 mRNA [51]. Similarly, we demonstrated
increased endothelin-1 mRNA and protein levels in
endothelial cells exposed to plasma from ACS patients as
compared with those exposed to plasma from SCD

patients at baseline [52]. Endothelin-1 transcription may
be induced by activation of the redox-sensitive NF-κB or
activating protein (AP)-1 by reactive oxygen radicals gen-
erated during ACS [12]. These findings suggest that, in
addition to direct toxicity to the vascular endothelium,
reactive oxygen species may contribute to vaso-occlusion
through alteration in vascular tone.

Additionally, reactive oxygen species may act as second
messengers to alter endothelial cell gene expression via
activation of the redox-sensitive transcription factor
NF-κB. In unstimulated cells, NF-κB is sequestered in an
inactive state within the cytoplasm. When exposed to
oxygen radicals NF-κB is activated by phosphorylation and
translocates to the nucleus, where it affects gene expres-
sion [53]. Among the genes that are upregulated by
NF-κB activity are those that encode the adhesion mole-
cules VCAM-1 and ICAM-1, which can facilitate binding of
sickle RBCs and WBCs to the endothelium. In this way,
free radical generation in SCD may contribute to the prop-
agation of vaso-occlusion.

Antioxidant defense mechanisms in sickle
cell disease
Enzymatic antioxidants
There are several mechanisms by which aerobic organ-
isms protect themselves from oxidative stress. On a cellu-
lar level, this occurs primarily through the actions of the
enzymes superoxide dismutase, catalase, and GPx. As
noted above, sickle RBCs at baseline are deficient in each
of these enzyme systems [23–25]. Moreover, the reduced
glutathione (GSH) level in sickle RBCs was approximately
50% lower than that observed in hemoglobin A RBCs
[54]. Additionally, we demonstrated that, compared with
plasma from normal volunteers, exposure to plasma from
SCD patients at baseline decreases levels of GSH, which
is an essential cofactor for GPx activity in cultured
endothelial cells; there is a greater decrease in endothelial
cell reduced GSH on exposure to plasma from ACS
patients. Similarly, exposure to ACS plasma resulted in a
decreased level of the endothelial cell antioxidant thiols
[36]. These findings suggest that, in SCD patients, partic-
ularly during ACS, there is a decreased capacity to scav-
enge free radicals, making such persons more susceptible
to oxidant-related damage.

Vitamins A, C, and E
Other cellular antioxidants include α-tocopherol (vitamin
E), ascorbic acid (vitamin C), and β-carotene (vitamin A).
α-Tocopherol and β-carotene scavenge free radicals to
prevent lipid peroxidation [12]; of note, SCD patients
have approximately a 40% reduction in plasma carotene
levels and a 30% reduction in vitamin E levels [25,55].
Additionally, there is an inverse correlation between
vitamin E levels and the percentage of irreversibly sickled
RBCs [56].
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Figure 2

Mechanism by which free radicals alter NO bioavailability and
endothelial cell biology. Under conditions of increased O2

– production,
NO preferentially forms ONOO–. Both O2

– and ONOO– can alter
endothelial cell (EC) gene expression via activation and nuclear
translocation of second messengers such as NF-κB.



Although it appears that vitamin E depletion may play a
role in the development of vaso-occlusion, the effect of
vitamin E supplementation is unclear. In two small
prospective studies that evaluated the effect of vitamin E
supplementation in SCD patients [57,58], there was a
decrease in the number of irreversibly sickled cells, but
this did not correlate with a reduction in the number of
occurrences or severity of VOC. Measurement of ascorbic
acid levels in SCD has produced conflicting results;
several studies [54,59–62] have demonstrated reduced
levels in the plasma and WBCs of SCD patients, but
others have found no significant difference. This disparity
may reflect differences in the populations studied, but
makes it less likely that vitamin C represents an important
antioxidant in this population. To date, no clinical trials
have been conducted to evaluate the efficacy of either
vitamin A or C supplementation in the SCD population.

Homocysteine
Homocysteine, a sulfur-containing amino acid that is pro-
duced during methionine metabolism, can produce reac-
tive oxygen species via auto-oxidation [12]. Although no
clear link with ACS has been demonstrated, hyperhomo-
cysteinemia is associated with increased risk for cere-
brovascular disease in SCD patients [63], suggesting an
increased propensity toward vascular disease. Addition-
ally, serum levels of key cofactors in homocysteine metab-
olism (ie folate, and vitamins B12 and B6) are depressed in
SCD patients, suggesting that they are more prone to
hyperhomocysteinemia. Further work is needed to eluci-
date the role of homocysteine in vaso-occlusion.

Conclusion
Reactive oxygen species may play an important role in the
vascular dysfunction that is observed during ACS and
VOC of SCD. Currently, however, there is little direct infor-
mation available to confirm this hypothesis. In addition to
being directly toxic to the endothelium via peroxidation of
the lipid membrane, reactive oxygen species can upregu-
late expression of molecules such as VCAM-1, ICAM-1,
and endothelin-1. The adhesion molecules VCAM-1 and
ICAM-1 facilitate interaction between sickle RBCs and
WBCs and the endothelium, thereby promoting vaso-
occlusion. Endothelin-1 is a potent vasoconstrictor and an
important mediator of vascular tone. By upregulating
endothelin-1 expression and deactivating the vasodilator
NO, oxygen radicals modulate vascular tone, and thereby
could increase vaso-occlusion. 

Although the genetic hemoglobinopathy of SCD is
responsible for a percentage of the oxygen radicals that
are produced, deficiencies in antioxidant defense mecha-
nisms and the presence of other sites of oxidant produc-
tion suggest that other genetic polymorphisms exist within
the SCD population. It is possible that both genetic and
dietary heterogeneity exist among SCD patients, and that

this is in part responsible for the clinical variability in
disease course. Further work is necessary to define more
clearly the oxidant/antioxidant profile of SCD patients at
baseline and during VOCs, including ACS, and to examine
the clinical effect of pharmacologic intervention to reduce
oxidant production in SCD. This will hopefully lead to a
better understanding of the role of reactive oxygen
species in the pathogenesis of vaso-occlusion.
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